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Introduction

Protein kinase CK2 is a highly conserved serine/ 
threonine kinase that is ubiquitously expressed in a variety 
of eukaryotic cells. CK2 kinase may act as a monomeric 
kinase alone or as a tetrameric complex, which consist of 2 
catalytic subunits (CK2α and/or CK2α’) and 2 regulatory 
subunits CK2β. Its catalytic part is encoded by two genes, 
CK2α (CSNK2A1) and CK2α’ (CSNK2A2). In mouse 
tissues, expression levels of CK2α are higher than those 
of CK2α’ (Xu et al., 1999b). A separate gene CSNK2B 
encodes the regulatory subunit CK2β, which regulates 
the substrate specificity of CK2 kinase and enhances the 
catalytic subunit stability in the tetrameric complex of 
CK2 (Bibby et al., 2005). In addition, an intron less CK2α 
pseudo-gene (CK2αP) can be activated in mammalian 
cells and is, to some extent, associated with carcinomas 
(Wirkner et al., 1992; Ortega et al., 2014). Interestingly, 
CK2 subunits mutually regulate their protein expression 
levels. For example, inhibition of CK2α can reduce CK2β 
expression or vice versa (Zhang et al., 2002; Olsen et al., 
2010).

Protein kinases are the largest family among kinases. 
Protein kinases act on specific substrates and phosphorylate 
them to alter their activity. Protein kinase CK2 claims a 
diverse range of substrates. Researchers described that the 
number of CK2 substrates was 307 in 2003 (Meggio et 
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al., 2003) and the number has increased greatly afterward. 
About one third of CK2 substrates are involved in gene 
expression and protein synthesis, including transcription 
factors, DNA / RNA structural and translational elements. 
Many substrates are involved in signal pathways, the 
source of viruses, or crucial to the life cycle of viruses. A 
small number of CK2 substrates are classical metabolic 
enzymes. It is assumed that the CK2 monomeric enzyme 
is more conducive to the production of phospho-protein 
in eukaryotic cells than any other protein kinase. CK2 
is widespread in eukaryotes and involved in almost 
all kind of key processes in the cells. It enhances cell 
proliferation (Pinna et al., 1997; Ahmed et al., 2000), 
cell growth (Litchfield, 2003), cell survival (Ahmed et 
al., 2002; Ahmad et al., 2008), changes cell morphology 
(Canton et al., 2006), increases cellular transformation 
(Seldin et al., 2005; Dominguez et al., 2009) and promotes 
angiogenesis (Kramerov et al., 2008; Montenarh, 2014). 
Thus CK2 plays a very important role in the growth and 
development of vertebrates.

There are two kinds of CK2α genes in zebra fish 
(CK2α and CK2α’) and one kind of CK2β gene (Daniotti 
et al., 1994; Antonelli et al., 1996). The expression 
levels of CK2α gene after 1 hour post fertilization 
(hpf) were higher than those after 24 hpf. There was no 
difference in the transcription levels of CK2β between 
1 and 24 hpf. The formation of zebra fish gastrula (5-10 
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hpf), three-germ layered embryo, requires CK2. DMAT, 
a specific inhibitor of CK2, delays the gastrulation in 
zebrafish embryos (Finkielsztein et al., 2009). CK2 may 
inhibit the activity of PTEN by phosphorylation during 
gastrulation, thus impairs cell motility associated with 
gastrulation (Finkielsztein and Kelly, 2009). In addition, 
CK2 also affects angiogenesis in zebrafish embryos. 
Emodin inhibits CK2 and suppresses the proliferation and 
migration of endothelial cells, the formation of endothelial 
cell tube and vascularization (Crawford et al., 2011). 

1. CK2 and embryo development
In mouse embryos, the activity of CK2 peaks at 12 

days of pregnancy days 12(E12) and decreases at birth 
(Schneider et al., 1986).  Mouse, mRNA and protein 
of CK2α and CK2β have different temporal and spatial 
expression patterns in different organs from day E10.5 to 
E18.5 (Mestres et al., 1994). CK2α and CK2β are enriched 
in neuroepithelial and epithelial cells, with high levels in 
epithelial cells at E10.5 and neuroepithelial cells at E11.5 
(Mestres et al., 1994). CK2 is also expressed in heart, 
skeletal muscle, connective tissues and cartilage (Mestres 
et al., 1994; Lou et al., 2008). The deletion of CK2α results 
in the death of mice at E11 while loss of CK2β results in 
early death of mice at E6.5 (Buchou et al., 2003). Mice can 
survive without CK2α’, but male mice become infertile 
(Xu et al., 1999a). 

2. CK2 and tumor
The expression of CK2 is often found aberrant 

in carcinoma cells. Research data have shown that 
overexpression of CK2 in mice induces carcinoma, 
suggesting CK2 plays an important role in the carcinoma 
pathogenesis (Dominguez et al., 2005; Seldin et al., 2005; 
Dominguez et al., 2009; Ruzzene et al., 2010; Zhang et 
al., 2015). The ability of protein kinase CK2 to promote 
tumorigenesis, to a large extent, depends upon, how it 
modulates key signaling pathways, which may be different 
among various carcinomas. CK2 regulates a number of 
signaling cascades such as Wnt (Dominguez et al., 2004; 
Dominguez et al., 2005), Hedgehog (Jia et al., 2010), 
NF-κB (Dominguez et al., 2009), JAK / STAT (Zheng et 
al., 2011), and PTEN / PI3K / Akt-PKB (Torres et al., 2001; 
Miller et al., 2002; Di Maira et al., 2005; Park et al., 2013) 
signaling pathways. Dysregulation of these signaling 
pathways can lead to tumorigenesis. CK2 promotes 
tumorigenesis in a variety of ways, such as enhancing 
the stability of MYC proto-oncogene (Channavajhala 
et al., 2002), activation of NF-κB (anti-apoptotic factor) 
(Romieu-Mourez et al., 2002), inhibition of DNA repair 
and inhibition of the tumor suppressor phosphatase, PTEN 
(Torres and Pulido, 2001; Miller et al., 2002).

Various CK2 chemical inhibitors with good cell 
permeability have been developed. The most commonly 
studied inhibitors are CX-4945 (Siddiqui-Jain et al., 2010), 
CIGB-300 (Perea et al., 2008), TBB (Sarno et al., 2001), 
DMAT (Pagano et al., 2004), Quinalizarin (Cozza et al., 
2009), hematein (Hung et al., 2009), TBCA (Pagano et al., 
2007), DRB (Zandomeni et al., 1986), apigenin (Hagiwara 
et al., 1988), Emodin (Yim et al., 1999) and TF (Gotz et al., 
2012). Among them, CX-4945 and CIGB-300 have been 

enrolled in clinical trials to test their anti-tumor effects 
and toxic side effects in human. 

2.1 The expression and role of CK2 in solid tumors
Expression of CK2 mRNA and protein is variable 

in different tumors. mRNA and protein levels of CK2 
are up-regulated in many carcinomas. In some cases, 
an increase in CK2 protein levels was detected with 
no changes in mRNA levels (Tawfic et al., 2001).  
We have noticed that not all published data support 
the notion that overexpression of CK2 is driver for 
tumorigenesis and associated with poor prognosis. CK2 
gene expression is down-regulated in some tumors (e.g, 
CK2α’ is down-regulated in breast, ovarian and pancreatic 
carcinomas) and up-regulation of CK2 gene in some 
tumors correlates with increased survival time (e.g, 
adenocarcinoma of lungs) (Wirkner et al., 1992; Ortega et 
al., 2014). Nonetheless in general, up-regulation of CK2 
mRNA and / or protein is associated with poor prognosis.

The overexpression of CK2 is associated with poor 
prognosis of many common solid tumors, including those 
associated with the chronic exposure to carcinogen such as 
head and neck carcinomas, non-small cell lung carcinoma, 
urinary bladder carcinoma or mesothelioma. CK2 is 
also involved in the pathogenesis of gastrointestinal 
malignancies, including hepatobiliary carcinoma, 
esophageal carcinoma and gastric carcinoma, and 
other types of tumors such as renal carcinoma, cervical 
carcinoma and glioblastoma multiforme. Table 1 
summarizes expression levels of CK2 in common 
malignant solid tumors and its effects on tumor biological 
behavior. When there is no publicly published data, 
expression levels of CK2 are unlabeled in that type of 
tumors.

2.1.1 The role of CK2 inhibitors in solid tumors
Based on the abnormal expression of CK2 in most of 

malignant solid tumors, it seems possible to treat those 
tumors with a CK2 inhibitor. In most malignancies, it has 
been demonstrated that inhibition of CK2 can affect the 
biological behavior of tumor cells in both in vivo and in 
vitro experiments. CK2 inhibitors reduce the migration 
and invasion of human adenocarcinoma and non-small 
cell lung carcinoma (NSCLC) cells by down-regulating 
the transcriptional expression and activity of MMP-2 
via the ERK pathway (Ku et al., 2013). The use of 
CK2 inhibitors (e.g TBCA, TBB and hematein) along 
with radiotherapy significantly reduced the number of 
cells in four different types of large cell lung carcinoma 
(LCLC) and adenocarcinoma cells compared with single 
drug therapy or radiotherapy alone (Lin et al., 2011). 
Quinalizarin inhibits the viability of adenocarcinoma 
cells with EGFR mutations more significantly than those 
without EGFR mutations (Zhou et al., 2015). The inhibitor 
hematein reduced lung adenocarcinoma cell colony 
formation, phosphorylated AKT levels, and increased 
PARP fragmentation (Hung et al., 2010). In xenograft 
models of lung adenocarcinoma, Hematein was also found 
suppressing tumor growth (Hung et al., 2013).
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containing RNAi-CK2α/α’) significantly reduced tumor 
volume, decreased the number of metastases and increased 
the survival time of mice (Unger et al., 2014). In addition, 
tumors of mice treated with CK2α/α’-RNAi showed 
reduced staining of proliferating proteins (such as cyclin 
D1) and up-regulation of tumor suppressor genes (such 
as P53) compared with tumors of control mice (Brown 
et al., 2010).

Glioblastoma multiforme
Preclinical xeno-grafted glioblastoma multiforme 

(GBM) models demonstrated that various CK2 inhibitors 
were effective in inhibiting tumors growth and enhancing 
survival in mice (Prudent et al., 2010; Moucadel et al., 
2011; Zheng et al., 2013; Nitta et al., 2015; Chou et al., 

Head and neck tumors
In head and neck squamous cell carcinoma (HNSCC), 

antisense CK2α decreased the number of cells (Faust 
et al., 2000; Brown et al., 2010) and induced apoptosis 
(Wang et al., 2001; Brown et al., 2010). Similarly, 
antisense CK2β also induced apoptosis (Faust et al., 
2000; Brown et al., 2010). Knock-down of CK2α, CK2α’ 
or CK2β alone left the HNSCC cell arrested in the G0 
/ G1 phase. Similarly, CX-4945 reduced the number of 
HNSCC cells, induced cell cycle arrested in S or G2 / 
M phases, and increased apoptosis (Bian et al., 2015). 
CK2 inhibitors have reduced tumor load in preclinical 
models of head and neck carcinomas. In HNSCC xeno-
graft tumor models (lingual carcinoma, hypopharyngeal 
and laryngeal carcinoma), CK2 inhibitor (nano-capsules 

Tumor Type Expression Level of CK2 Affected Biological Behavior
Lung carcinoma (Daya-Makin et al., 1994; 
Yaylim et al., 2002; P et al., 2004; Hung et al., 
2010; Ortega et al., 2014)

CK2α,CK2α’,CK2βand 
CK2αP↑*

Cell proliferation, survival, migration and 
invasion, maintenance of stem cell

Mammary carcinoma (Gray et al., 2014; Ortega 
et al., 2014; Kren et al., 2015; Bae et al., 2016)

CK2α↑, CK2β↑, CK2α’↓* Cell morphology, proliferation (anchorage-
independent proliferation), migration and 
invasion

Urothelialcarcinoma (Shimada et al., 2011) CK2α↑ Cell cycle arrest, metastasis

Head and neck carcinoma
 (Gapany et al., 1995; Faust et al., 1996; Heriche 
et al., 1998; Faust et al., 2000; Bian et al., 2015)

CK2α, CK2α’ and CK2β↑ Cell cycle regulation, proliferation, metastasis, 
tumor stem cell-like cell maintenance

Mesothelioma (Quotti Tubi et al., 2013) CK2α↑ Cell Proliferation

Hepatocellular carcinoma (Wu et al., 2014; 
Zhang et al., 2015)

CK2α, CK2α’↑ Cell proliferation and colony formation, cell 
cycle distribution, apoptosis, migration and 
invasion

Gastric carcinoma (Lee et al., 2014) CK2α↑ Cell proliferation, migration and apoptosis

Esophageal carcinoma (Yoo et al., 2012) CK2α↑ Invasiveness, cell proliferation and metastasis

Cholangiocarcinoma (Zhou et al., 2014) CK2β↑, CK2α↑

Colorectal carcinoma (Lin et al., 2010; Zou et al., 
2011; Ortega et al., 2014)

CK2α↑ Cell proliferation, cell cycle distribution, cell 
motility and invasiveness

Pancreatic carcinoma (Hamacher et al., 2007; 
Giroux et al., 2009; Guerra et al., 2015)

CK2α’↑ Apoptosis

Cervical carcinoma (Perera et al., 2014; Liu et 
al., 2015)

Not yet clear Cell proliferation, tumor stem cell 
maintenance

Glioblastoma (Dixit et al., 2012; Zheng et al., 
2013; Mandal et al., 2014; Nitta et al., 2015)

CK2α, CK2α’↑ Proliferation, apoptosis, cell cycle, adhesion, 
migration and molony formation, autophagy, 
stem cell phenotype maintenance

Melanoma (Zhou et al., 2016) CK2α↑ Cell proliferation

Ovarian carcinoma (Pathak et al., 2015; Tang et 
al., 2015)

CK2α↑ Tumor stem cell maintenance

Prostatic carcinoma (Yoo et al., 2012) CK2α↑ Apoptosis, invasion

Renal cell carcinoma (Stalter et al., 1994) CK2α, CK2α’ and CK2β↑ Cell survival

Table 1. CK2 Expression Level in Common Malignant Solid Tumors and Its Influence on Biological Behavior of 
Carcinoma
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2016). Inhibitors also decreased the activation of AKT, 
c-MYC, STAT-3, NF- κB, and the expression of EGFR, 
indicating that CK2 regulates various signaling pathways 
responsible for proliferation and survival (Zheng et al., 
2013; Chou et al., 2016). In addition, silencing of CK2 
alone or with EGFR increased tumor necrosis and mouse 
survival rate (Chou et al., 2016). Therefore, for patients 
with GBM who have undergone surgical resection plus 
radiotherapy combined with temozolomide adjuvant 
chemotherapy, the use of CK2 inhibitors may, to a certain 
extent, prevent tumor recurrence.

Hepatocellular carcinoma
In hepatocellular carcinoma (HCC), DMAT and 

CK2α shRNAs inhibited the growth of tumors in a 
mouse xenograft model of liver carcinoma (Sass et al., 
2011; Zhang et al., 2015). DMAT acts by reducing tumor 
cell proliferation with no effects on cell survival nor 
angiogenesis, and more importantly with no liver damage, 
through a mechanism that is mediated by the reduction 
of NF- κB and activation of Wnt / β-catenin signaling 
pathways (Sass et al., 2011). In addition, CK2 inhibitors 
also potentiated the efficacy of chemotherapeutic agents 
(5-fluorouracil, doxorubicin, or sorafenib) and helped in 
preventing the spread of HCC (Kim et al., 2008; Sass et 
al., 2011). These results indicated that CK2 inhibitors can 
effectively treat liver carcinomas as single or along with 
other remedies.

Pancreatic carcinoma
In mouse xeno-grafted pancreatic carcinoma models 

CX-4945 inhibited the tumor growth and reduced 
p21 staining (Siddiqui-Jain et al., 2010). In addition, 
intra-peritoneal injection of O-methyl-modified CK2α 
siRNA resulted in a significant decrease in tumor volume 
and increased apoptosis of pancreatic carcinoma in 
mice (Giroux et al., 2009). The use of CK2α siRNA 
in combination with PAK7 and / or MAP3K7 siRNA 
significantly reduced tumor volume (Giroux et al., 2009). 
Above treatments did not affect the body weight of mice. 
These data suggested that CK2 inhibitors can be used as 
an effective treatment for pancreatic carcinoma.

Cervical carcinoma
Apigenin inhibited the formation and self-renewal 

of sphere-forming cells (SFCs) of HeLa cells in cervical 
carcinomas, whereas overexpression of CK2α conversely 
increased their capacity of self-renewal (Liu et al., 
2015). CK2 inhibitor, CIGB-300 also inhibited cervical 
carcinoma cell proliferation and tumor growth in a 
mouse xeno-graft model even after treatment cessation 
(Siddiqui-Jain et al., 2010; Perera et al., 2014). Further, 
CIGB-300 had a synergistic effect with paclitaxel and 
doxorubicin and had an additive effect with cisplatin 
(CDDP). In combination with cisplatin, it could 
significantly slow the tumor growth and increase the 
survival of mouse (Perera et al., 2014).

CIGB-300 has also entered clinical trials to verify 
its anti-tumor effects on cervical carcinoma. In this 
clinical trial, 31 female patients with cervical carcinoma 
underwent CIGB-300 treatment. Drug was administered 

sequentially with increasing dosage for consecutive 
5 days. Adverse effects were minimum even with the 
highest dose, and tumors were significantly reduced 
in 75% of the patients. Strikingly, 19% of patients had 
complete recovery (histologically proven) and 48% of 
patients became negative for HPV DNA at the end of 
the trial (Solares et al., 2009). After one year follow-up, 
there was no recurrence and no adverse event observed. 
Moreover, among treated patients, four were pregnant 
and two of whom were infertile before the intervention 
(Solares et al., 2009). Pharmacokinetic studies have 
provided the basis for CIGB-300’s treatment in Phase 
II clinical trials (Sarduy et al., 2015). Therefore, human 
body can tolerate the inhibition of CK2. CK2 inhibition 
alone or with other chemotherapeutic drugs are promising 
for the treatment of cervical carcinoma (Liu et al., 2015). 
Another open clinical trial is currently undergoing in 
Argentina. Researchers use CIGB-300 for treating 
squamous cell carcinoma on, IIA and IIB FIGO stage 
patients with cervical adenocarcinoma, combined with 
external radiotherapy, intracavitary brachytherapy and 
weekly systemic treatment with cisplatin (trial number: 
NCT01639625).
Ovarian carcinoma

CX-4945, cisplatin and gemcitabine synergistically 
increased the apoptosis of A2780 tumors cell (Ovarian 
carcinoma cell line) with wild-type p53 while there was 
no change in the apoptosis of p53 null SKOV-3 cells 
(Siddiqui-Jain et al., 2012). The combination of CX-4945 
with dasatinib (tyrosine kinase inhibitor) promoted 
apoptosis in an epithelial ovarian carcinoma cells (Pathak 
et al., 2015). In a xeno-grafted model (A2780 cells), the 
survival time of mice treated with CX-4945 along with 
3 other drugs (cisplatin, carboplatin, and gemcitabine) 
was double to that of untreated control. Interestingly, 
carboplatin has a synergistic effect with CX-4945, 
whereas cisplatin and gemcitabine have additive effects on 
the inhibition of tumor growth. Therefore, CK2 inhibitors 
can be used to treat advanced ovarian carcinomas.

Prostate carcinoma
Proliferation of prostate carcinoma cells can be 

reduced by CK2 inhibitors (TF, TBB, DMAT, TBCA 
siRNA, apigenin, and KI-CK2α) (Wang et al., 2005; 
Schneider et al., 2009; Gotz et al., 2012; Trembley 
et al., 2012; Yao et al., 2012; Trembley et al., 2014), 
while the apoptosis was increased (Wang et al., 2008; 
Schneider et al., 2009; Hessenauer et al., 2011; Pierre 
et al., 2011; Gotz et al., 2012; Yao et al., 2012; Qaiser 
et al., 2014). CX-4945, TBCA and apigenin induced 
cell cycle arrested at the G2 / M phase (Pierre et al., 
2011; Yao et al., 2012). Furthermore, DMAT and CK2α / 
α’siRNAs were capsulated and were found to specifically 
reduce the proliferation of the prostate carcinoma cell 
line (PC3-LN4) but not the benign cell line (BPH-1) 
(Trembley et al., 2012). CK2α/α’ siRNAs also affected 
C4-2 prostate carcinoma cell line but not normal prostatic 
epithelial cell line (Funfschilling et al.; Trembley et al., 
2012). The inhibition of CK2 can reduce tumor load 
in xeno-grafted mouse models. CK2α/α’siRNA, RNAi 
(Ahmed et al., 2016) and CX-4945(Pierre et al., 2011) 
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reduced tumor volume in metastatic PC-3-derived 
xeno-grafted models. DMAT decreases the proliferation of 
PC3-LN4 cell-derived xeno-grafted tumors and decreased 
protein levels of CK2α and CK2α ‘ (Trembley et al., 2014).

Breast carcinoma
In preclinical studies of breast carcinoma, CX-4945 

reduced the growth of tumors in a mouse model of 
orthotopic xeno-transplantation of breast carcinoma 
with no body weight loss and no significant toxicity 
(Siddiqui-Jain et al., 2010). Inhibition of CK2 can also 
enhance the sensitivity of breast carcinoma to antitumor 
drugs. DMAT effectively reduced the number of cells, 
increased apoptosis and altered cell morphology in 
breast carcinoma cells resistant to tamoxifen (Yde et al., 
2007). CK2 inhibitors are potential therapeutic agents for 
triple-negative and estrogen-tolerant breast carcinoma.

2.1.2 The combination of CK2 inhibitors and other 
antitumor drugs

CK2 plays a role in tumor chemotherapeutic drug 
resistance. CK2 has been considered to mediate resistance 
to cisplatin in gastric carcinoma cell, as increased 
levels of CK2α protein have been observed in these 
types of carcinomas (Xu et al., 2014). In addition, CK2 
protected colon carcinoma cells from TRAIL (TNF 
related apoptosis inducing ligand) induced apoptosis. 
Reciprocally inhibition of CK2 phosphorylation by DRB 
resulted in increased cells apoptosis induced by TRAIL 
in colon carcinoma cells. shRNA interference with 
CK2α also increased the sensitivity of human colorectal 
adenocarcinoma cells to TRAIL (Izeradjene et al., 2005).

Perera et al., (2014) have observed the synergistic 
interaction between CK2 inhibitor CIGB-300 and other 
chemotherapeutic drugs, in the preclinical tumor models 
of lung carcinoma and cervical carcinoma (Liu et al., 
2015). They used Cisplatin (alkylation), 5- fluorouracil 
(DNA/RNA antimetabolite), Paclitaxel (anti-mitosis), 
and Doxorubicin (anti topoisomerase II) to treat lung 
carcinoma and cervical carcinoma cells. Results showed 
excellent synergistic / additive effects of cisplatin and 
paclitaxel with CIGB-300, according to the combination 
and dose reduction index. Paclitaxel showed the strongest 
synergistic effect in combination with CIGB-300 in SiHa 
and NCI-H125 cell lines and exhibited the same inhibitory 
effect on cell proliferation with reduced dose (1/5 of 
normal CIGB-300 dosage). These findings provided a 
theoretical basis for the clinical combination of anti-CK2 
(CIGB-300) and other antitumor drugs, and suggested 
that platinum and taxane can be used as anti-cancer drugs 
with good prospect. Similarly, CX-4945 has been studied 
in combination with erlotinib (an EGFR tyrosine kinase 
inhibitor) for the treatment of advanced non-small cell 
lung carcinoma. Bliesath et al., (2012) investigated the 
combined effect of CX-4945 and erlotinib in non-small cell 
lung carcinoma and squamous cell carcinoma in both, in 
vitro and in vivo. They found significant inhibition of the 
PI3K-Akt-mTOR signaling pathway and tumor growth 
arrest with the combination treatment. Additionally, they 
noticed the decreased cell proliferation and increased cell 
apoptosis after combination treatment. In conclusion, 

these data suggested that CK2 can be used as an effective 
pharmacological target for combination treatment 
of carcinomas. Studies also emphasized on further 
exploration of combined effects of CX-4945 and EGFR 
targeting agents (Bliesath et al., 2012).

The combined use of CX-4945 with gemcitabine 
and cisplatin in the treatment of cholangiocarcinoma is 
currently undergoing phase I / II clinical trial. CX-4945 
can inhibit DNA repair and is particularly effective in 
combination with DNA damaging drugs such as cisplatin. 
The purpose of this clinical study is to determine the 
maximum-tolerated dose (MTD) of drugs and compare 
the antitumor activity of standard gemcitabine / cisplatin 
with that of the combination of three drugs. This project 
has been conducted at a number of central research 
institutes in the United States, South Korea and Taiwan. 
The completion date of the study was December 2017 (test 
number: NCT02108282). No report has been published 
yet.

2.2 CK2 and Hematological tumor
Hematological tumors are mostly liquid tumors. 

Their cells exist in blood circulation, and can invade 
any hematopoietic organ and tissue. The treatments of 
lymphoma and myeloma have been greatly improved. 
CK2 inhibitors may be of little use in some cases. But 
there are still other reasons for their usage, especially in 
cases of acute leukemia. 

2.2.1 Non-Hodgkin’s lymphoma (NHL)
Recently multiple drugs are available for the treatment 

of NHL, but there is still a strong need for new treatment 
with better efficacy and less adverse effects. A recently 
published study showed that levels of CK2α and CK2β 
protein increased in Burkitt’s lymphoma, DLBCL, 
follicular lymphoma, and lymphoma cell lines (Pizzi 
et al., 2015). CK2 inhibitor CX-4945 can induce a 
dose-dependent increased apoptosis in Burkitt’s lymphoma 
and DLBCL cells (Pizzi et al., 2015), while CX-4945 does 
not affect normal peripheral blood mononuclear cells. 
In animal models, the increased expression of CK2α in 
lymphocytes of transgenic mice led to the occurrence 
of T cell lymphoma (Seldin, 1995; Seldin et al., 1995; 
Channavajhala and Seldin, 2002). These data suggested 
that the development of CK2 inhibitors is still of great 
significance for the treatment of NHL.

2.2.2 Multiple myeloma
Although treatment options for multiple myeloma 

(MM) have increased rapidly in recent years, but in 
most cases the final results are deterioration or death. 
Therefore, there is still a need to explore new treatment 
options for better management. CK2 kinase activity and 
CK2α protein levels increase in bone marrow cells of 
multiple myeloma patients (Piazza et al., 2006; Manni et 
al., 2013). Similarly, CK2α and CK2β staining increased 
significantly in multiple myeloma tissue samples (Manni 
et al., 2013). Inhibition of CK2 by IQA, TBB, apigenin 
and TBB derivative K27 (2- amino -4,5,6,7- four bromo 
-1H- benzimidazole) (Zhao et al., 2011) can reduce the 
viability and increase the apoptosis of myeloma cells. 
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This suggested that CK2α plays a role in the survival of 
myeloma cells (Piazza et al., 2006; Manni et al., 2013; 
Piazza et al., 2013).

CK2 inhibitors induced the impairment of 
NF-κB-dependent transcriptional activity (Piazza et al., 
2006) and also down regulated endoplasmic reticulum 
(ER) stress response, resulted in increased apoptosis 
(Manni et al., 2013). This is because myeloma cells 
produced abnormally excessive quantity of antibodies. 
ER- stress/ unfolded protein response is essential for 
the survival of myeloma cells. Existing studies have 
shown that CK2 inhibitors act synergistically with the 
conventional chemotherapeutic drug, Melphalan, to 
increase cytotoxicity (Piazza et al., 2006). CK2 inhibitors 
combined with geldanamycin (an anti-cancer drug) also 
have a cumulative effect and can increase the apoptosis of 
cells (Manni et al., 2013). Therefore, CK2 inhibitors can 
enhance the sensitivity of myeloma to chemotherapy and 
reduce its required dosage (Piazza et al., 2006). All above 
mentioned studies indicated that CK2 might represent a 
potential target in MM therapy.

2.2.3 Leukemia
CK2 plays an important role in acute myeloid leukemia 

(AML), acute lymphoblastic leukemia (ALL) and chronic 
lymphocytic leukemia (CLL). The activity of CK2 and 
its protein levels are up-regulated in primary B-ALL, 
T-ALL, AML, CLL cells (Martins et al., 2010; Gomes et 
al., 2014; Song et al., 2015). In AML patients, high CK2α 
protein levels are the predictor of the overall survival rate 
(Kim et al., 2007). CK2 participates in multiple blood 
tumor related signal transduction pathways, including 
PI3K/AKT/PTEN, JAK/STAT, NF-κB and others (Piazza 
et al., 2012). PI3K/AKT/PTEN cascade regulation is 
crucial for survival and proliferation of ALL, CLL, and 
AML tumor cells. In chronic myeloid disease (CMD) and 
multiple myeloma (MM), CK2 regulates the activation 
of JAK / STAT, downstream of cytokine / growth factor 
signaling. CK2 mediates IκBα phosphorylation (Located 
in the PEST domain) and causes the latter to be degraded 
by the proteasomal pathway. After the degradation of 
IκBα, NF-κB p65 enters into the nucleus, where CK2 
mediates Ser529 phosphorylation of NF-κB p65 to activate 
NF-κB pathway. This pathway is very important for the 
survival of CLL and MM cells as it provides the resistance 
to chemotherapeutic drugs.

In AML cell lines, overexpression of CK2α leads to 
fewer cells in the G0 / G1 phase, whereas CK2 inhibition 
by CX-4945, K27, apigenin or CK2α siRNA led to 
increased apoptosis (Kim et al., 2007; Quotti Tubi et al., 
2013). It has been reported that normal bone marrow 
cells are hardly affected by apigenin (Kim et al., 2007). 
Furthermore, the use of CK2 inhibitors or CK2α / β 
siRNA can sensitize AML cells to daunorubicin (AML 
chemotherapeutics) (Quotti Tubi et al., 2013).

In CLL, CK2 inhibition by CX-4945, DRB and TBB 
resulted in decreased cell viability without affecting 
normal T and B cells (Martins et al., 2010; Martins et al., 
2014). Similar to ALL, primary CLL cells also showed 
up-regulation of phosphorylated PTEN. Knockdown 

or inhibition of CK2 increased expression levels of 
phosphorylated PTEN and PTEN (Martins et al., 2010). 
The CK2 inhibitor CIGB-300 also promoted the PTEN 
activation in CLL cells and terminated PI3K signaling 
pathway. Therefore, CIGB-300 decreases cell viability 
and proliferation in CLL cell lines, enhances apoptosis in 
primary leukemia cells, and showed anti-cancer activity 
in a human CLL xenograft mouse model (Martins et al., 
2014).

In B-ALL cells, CX-4945 mediated inhibition of CK2 
increased apoptosis in B-ALL cell lines and primary 
B-ALL cells but did not affect apoptosis in normal 
primary myeloid cells (Gomes et al., 2014). CX-4945 
inhibited CK2-induced cell proliferation (Gowda et al., 
2017). There are two possible mechanisms by which 
CX-4945 inhibits B-ALL: lowering levels of both total 
PTEN and phosphorylated PTEN (Gomes et al., 2014), 
and decreasing the phosphorylation of Ikaros, a tumor 
suppressor, thus restore the anti-leukemic function of 
Ikaros (Gowda et al., 2017). It is noteworthy that in both 
xenograft models of B-ALL cells and cell lines, CX-4945 
inhibited leukemic cell growth and increased mouse 
survival (Gowda et al., 2017).

In T-ALL, the CK2 inhibitors CX-4945, TBB and DRB 
reduced primary T-ALL cell viability without affecting 
normal T cells (Silva et al., 2008; Buontempo et al., 2014). 
CX-4945 deterred tumor growth in T-ALL xenograft 
models (Buontempo et al., 2014). CK2 is overexpressed 
in T-ALL cell lines and is related to the increased activity 
of NOTCH1 and MYC. CX-4945 exerted pro-apoptotic 
effects on T-ALL cell lines and also promoted proteasomal 
degradation of NOTCH1 in cells and decreased MYC 
transcription. Overexpression of CK2α in primary 
T-ALL cells correlated with PTEN phosphorylation, and 
inhibition of CK2 resulted in an increase in PTEN activity, 
therefore decreasing Akt phosphorylation (Kim et al., 
2007; Silva et al., 2008; Martins et al., 2010; Piazza et al., 
2012; Buontempo et al., 2014; Martins et al., 2014; Gowda 
et al., 2017). A recent study of CK2 in T-ALL showed that 
inhibition of CK2 induced apoptosis of T-ALL cells by 
regulating the endoplasmic reticulum stress (ER stress) 
/ unfolded protein response (UPR) signaling pathway. 
CX-4945 down-regulated PI3K / Akt / mTOR signaling 
pathway, and might be effective in treating T-ALL diseases 
(Buontempo et al., 2014).

In conclusion, CK2 is overexpressed in many 
carcinomas and often associated with poor prognosis 
(but not in all cases). CK2 has been used as a diagnostic 
and prognostic marker for certain malignancies such 
as prostate carcinoma (Ortega et al., 2014; Qaiser et 
al., 2016). Further research about CK2 activity levels 
of all three CK2 subunits and their localizations may 
explore greater potential of CK2 as a diagnostic and 
prognostic marker. The mechanism of the increased 
CK2 RNA and protein levels in most carcinoma types is 
still unknown, while changes in gene dosage, epigenetic 
and post-translational regulation have been proposed. 
In some carcinomas the activity of CK2 is differentially 
displayed without changes in expression levels of CK2α 
/ α’ (Trembley et al., 2012; Yoo et al., 2012), suggesting 
the existence of additional post-translational regulatory 
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mechanisms. CK2 protein is localized in nuclei of many 
tumor cells and correlates with clinical features in some 
cases. This suggests that the phosphorylation of target 
proteins in the nucleus is an importance step for the CK2 
function in carcinoma. However, we know little about 
CK2 nuclear targets.

CK2 has become a potential anti-carcinoma target. It 
has been studied in various tumors include lung carcinoma, 
head and neck carcinoma, cholangiocarcinoma, cervical 
carcinoma and multiple myeloma, etc. CK2 inhibitors are 
highly effective against solid tumors and in combination 
with other therapies for hematological malignancies. 
Among them, CIGB-300 is well tolerated in clinical trials 
of cervical carcinoma. CX-4945 is also well tolerated in 
Phase I trials conducted at the MD. Anderson Carcinoma 
Center in the United States, involving a variety of patients 
with advanced solid tumors and multiple myeloma. 
These two inhibitors can be used as a single agent for 
treatment, just as other signal transduction inhibitors in 
some carcinomas. They can also be used in association 
with radiotherapy or in combination with other therapies 
such as immunotherapy and other drugs such as JQ1. 
Combination therapy displays several advantages as it can 
enhance anti-proliferative effects, help to overcome the 
drug resistance and reduce the drug dosage which leads 
to fewer side effects.
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