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Radiomics is an objective method for extracting quantitative information from medical images. However, in
radiomics, standardization, overfitting, and generalization are major challenges to be overcome. Test–retest
experiments can be used to select robust radiomic features that have minimal variation. Currently, it is un-
known whether they should be identified for each disease (disease specific) or are only imaging device-spe-
cific (computed tomography [CT]-specific). Here, we performed a test–retest analysis on CT scans of 40 pa-
tients with rectal cancer in a clinical setting. Correlation between radiomic features was assessed using the
concordance correlation coefficient (CCC). In total, only 9/542 features have a CCC � 0.85. Furthermore,
results were compared with the test–retest results on CT scans of 27 patients with lung cancer with a 15-min-
ute interval. Results show that 446/542 features have a higher CCC for the test–retest analysis of the data
set of patients with lung cancer than for patients with rectal cancer. The importance of controlling factors
such as scanners, imaging protocol, reconstruction methods, and time points in a radiomics analysis is
shown. Moreover, the results imply that test–retest analyses should be performed before each radiomics
study. More research is required to independently evaluate the effect of each factor.

INTRODUCTION
Radiomics is the procedure of extracting features from medical
images taken in clinical practice, for example, computed tomog-
raphy (CT), positron emission tomography or magnetic reso-
nance imaging (1-7). It is the imaging features’ quantitative
properties that make radiomics an objective method to quantify
the phenotype of the tumor. With radiomics, numerous features
are extracted from each image. Therefore, one of the main
pitfalls of radiomics is the risk of overfitting. This can be solved,
in part, by following a strict policy of feature reduction, for
example, with test–retest and multiple delineation studies (8, 9),
to select only those robust features that provide repeatable and
reproducible measurements. These studies are usually performed
on imaging data sets following a fixed acquisition and recon-
struction protocol and using the same methodology for feature
extraction.

However, imaging features have been shown to be influ-
enced by multiple factors, including the type of scanner, imag-
ing settings, reconstruction parameters, delineation of the tu-

mor, and the mathematics of extracting features. Several studies
assessed the influence of different scanners and reconstruction
settings (10-15). In addition, the effect of image discretization,
for example, standardized uptake value in positron emission
tomography radiomics, is a necessary step before feature extrac-
tion that requires investigation (16). Thus, it is evident that
standardization is required to generalize the use of radiomics.
Thus, a key and unanswered question is whether results from
test–retest studies can be generalized or if these also depend on
one or more of the same factors that affect imaging features.

Previously, the repeatability of radiomic features in CT
imaging was tested in a “coffee-break” test–retest data set of
patients with lung cancer, in which 2 scans where made on the
same scanner with a 15-minute interval [RIDER data set (4, 17)]
(4). In such a test, one assumes that the tumor has not changed
and, therefore, that the radiomic feature values should be re-
peatable. However, it is unknown if robust features in one tumor
site are the same as those in another tumor site. Moreover, it is
unknown if radiomic features are also robust in a more clinical
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test–retest setting, in which the time between scans is in the
order of days and different scanners and/or scanner settings are
used. Because of data inhomogeneity in the clinical test–retest
setting, we hypothesized that test–retest results of the coffee-
break scenario are not generalizable to the clinical scenario.
Moreover, we expected that different features may be robust at
one tumor site compared with those at another tumor site. To
test this hypothesis, we examined the robustness of radiomic
features obtained from CT scans of patients with rectal cancer in
a clinical scenario (18) and compared this to the robustness of
radiomic features for a CT lung cancer data set in a coffee-break
scenario. Moreover, the role of features’ correlation with volume
on the robustness of radiomic features was assessed to investi-
gate this potential surrogate for feature robustness.

METHODOLOGY
A clinical data set of 40 patients with rectal cancer was included
in this study. For each patient, 2 CT scans were taken before
treatment using Brilliance CT Big Bore (Philips Healthcare,
Cleveland, OH). The RIDER data set of patients with lung cancer
was included in the study as a second test–retest data set,
described elsewhere (4, 17, 19-21). To avoid discrepancies be-
tween methods of analysis, results of the previous study were
not reused but obtained again. In total, 27 patients of the RIDER
data set were included in the final analysis (data of 5 patients
could not be retrieved or had to be excluded because of technical
problems). CT parameters are summarized in Table 1.

We investigated the test–retest stability on both data sets of
a total of 542 radiomic features, divided into the following 4
groups: (1) Tumor intensity (n � 15), (2) shape (n � 11), (3)
texture (n � 44), and (4) wavelet (n � 472). Mathematical
descriptions of all features are published elsewhere (4).

Statistical Analysis
The concordance correlation coefficient (CCC) was used to
examine agreement between radiomic features derived from
the test–retest scan (22). CCCs were calculated for the RIDER
data set and the rectum data set and each feature group was
compared. For all features in the rectum data set, we also
assessed the correlation with volume using a simple linear
regression and R2 as correlation parameter. Statistical anal-
ysis was performed using the package psych in R (version
3.2.3).

RESULTS
For each feature group, CCC values between the RIDER data set
and the clinical data set were compared. Results are shown in
Figure 1. This analysis was also performed after resampling all
data into images with an isotropic voxel size of 3 mm before
feature extraction. These results are shown in Supplemental
Figure 1.

In total, for 446/542 features (82.3%), the data points are on
the left side of the diagonal, meaning that they have a higher
CCC in the RIDER data set than in the clinical data set. This is
36/44 features (81.8%) for the “Texture” group, 11/11 features

Figure 1. Comparison between stability of ra-
diomic features derived from the lung cancer data
set (RIDER) and the rectal cancer data set, with
feature groups “Texture,” “Shape,” and “Tumor
Intensity” (A) and “Wavelet” (B). Gray-level co-
occurrence matrix (GLCM), gray-level size zone
matrix (GLSZM), and run-length gray level (RLGL).

Table 1. CT Scan Parameters for Both Data sets

Parameters Rectum Data Set RIDER Data Set

Manufacturer Philips Healthcare GE Healthcare

Acquisition type Helical Helical

Tube voltage 120 kVp 120 kVp

Tube current 250 or 350 mAs Range 165–549 mAs

Slice thickness 5 mm 1.25 mm

Pixel spacing Range 0.98–1.25 mm Range 0.51–0.91 mm

Pixels 512 � 512 512 � 512
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(100%) for “Shape” group, 10/15 features (66.7%) for “Tumor
Intensity” group, and 389/472 features (82.4%) for “Wavelet”
group.

Shape features were the most reproducible (100% CCC � 0.6
for both sets), followed by the gray-level co-occurrence matrix
features of the “Texture” group (91% and 68% CCC � 0.6 for the
RIDER set and the clinical set, respectively). Wavelet features
seemed to be the least reproducible in the clinical setting.
When using a cutoff CCC of 0.85, only 9 features were
reproducible in the clinical scenario-derived rectal cancer
test–retest set, whereas 234 features were reproducible in the
coffee-break lung cancer test–retest set; 8 of these feature
overlapped.

Considering the 100 most stable features of the RIDER
data set (range CCC � 0.951–0.995), 36 of those features were
also in the 100 most stable features of the clinical data set,
which is not likely to be found because of chance (P � .0001).
The overlapping features included 7/11 “Shape” features
(63.6%), 1/15 “Tumor intensity” features (6.7%), 2/44 “Tex-
ture” features (4.6%), and 26/472 “Wavelet” features (5.5%).
The 100 most stable features of both data sets are displayed in
Supplemental Table 1.

For all features of the clinical rectum data set, we assessed
the correlation with volume using the coefficient of determi-
nation (R2) of a simple linear regression. Features extracted
from the test scan were used for this analysis. Results are
shown in Figure 2. The y-axis represents the robustness of all
features, and the x-axis represents the R2 of the correlation
with volume.

In total, 4 features had an R2 value �0.9, meaning a high
correlation with volume. These were “Tumor intensity–Total
energy” (R2 � 1.0), “Wavelet–LLL Tumor intensity [L: Low-pass
(4)]–Total energy” (R2 � 1.0), “Tumor intensity–Energy” (R2 �
0.90), and “Wavelet–LLL Tumor intensity energy” (R2 � 0.90).

Features were generally more robust with an increase in corre-
lation with volume.

DISCUSSION
In comparison to the RIDER data set with the “coffee-break”
scenario, features were much less stable in a more clinical
scenario of repeated imaging. However, the results show that a
subset of stable features derived from the RIDER data set is also
stable in the clinical scenario. There is particularly high corre-
spondence between the “Shape” features, whereas correspon-
dence between “Wavelet” features is low. The low correspon-
dence between the clinical RIDER data sets can be because of
many factors, including the disease site, time between scans,
and the CT settings. Slice thickness is one of the factors that
differs considerably between the CT scans of patients with rectal
cancer (5 mm) and those with lung cancer (1.25 mm). However,
resampling the data into isotropic voxels of 3 mm before feature
extraction did not substantially change the results. Slightly
more features were robust after resampling, but the difference in
stability between both data sets is similar. The stability of ra-
diomic features may be disease-specific and a function of the
time between scans, but we are not able to eliminate the effect of
protocol differences between both data sets. If we could show
that numerous features are robust in a clinical scenario and that
these features correspond to the robust features found by a
“real” test–retest analysis (ie, with a very short time interval),
this could have implied that one extensive test–retest study
could provide a set of stable radiomic features that could be used
in any further radiomics analysis. However, as this appeared to
be not the case, we emphasize, in this study, the importance of a
proper test–retest study in each scenario with a tight control on
influencing parameters and further investigation of the influ-
ence of factors such as hardware, scan acquisition and recon-
struction settings, tumor delineation, and the mathematics of
extracting features.

Volume was one of the robust features in the clinical test–
retest analysis (CCC � 0.96). Of the 100 most stable features in
the rectum data set, 4 other features highly correlated with
volume. Moreover, when the correlation with volume was in-
creasing, features were also more robust. This could partly ex-
plain the stability of these features. In total, only a small portion
of radiomic features, 9/542, was robust in the clinical test–retest
analysis (CCC � 0.85), which suggested that differences between
the 2 CT scans influence the stability of the radiomic features.
Various causes may explain this. For example, for a subset of 17
patients, a different tube current was used for the test–retest
scan—250 mAs and 350 mAs or vice versa—leading to different
noise properties in both scans. Another factor that could have
reduced the robustness of radiomic features is the voxel resolu-
tion because of different reconstruction diameters, which was
not constant over all CT scans. Moreover, the number of days
between the test–retest scan ranged from 5 to 19 (median 8),
which is not comparable to the 15-minute interval in the RIDER
data set. It cannot be excluded that in this time period, the tumor
changes sub-clinically and that this change is detected by ra-
diomics. Therefore, if this data set is used for test–retest analysis
as shown in this study, it would mean that we discard features
that are actually informative. If such rapid changes occur in an

Figure 2. Robustness of radiomic features in the
rectum data set (y-axis) versus the features’ corre-
lation with volume (x-axis).
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untreated tumor, future protocols should closely control the
time of the CT (eg, the time between CT and treatment) so that
the scan is taken at the time when it is the most informative.
When prognostic information is derived from image features in
a radiomics study, one should be aware of changes in a tumor,
and it is advisable to avoid using features that are not robust
in a test–retest study, in which the time interval between
scans is large. Future studies, where the predictive perfor-
mance for the outcome of interest is investigated, of images
taken at different time points before treatment are necessary
to address these considerations.

Several factors could have reduced the robustness of the
radiomic features. In this study, the radiomics methodology is
controlled, but the hardware, scan acquisition and reconstruc-
tion settings, disease site, and scan time interval are different.
This study shows that test–retest results are not generalizable,
and there is a dependency on one or a combination of these
factors. Ideally, one should alter only one of these factors at a
time for testing the influence. However, the number of patients

in a test–retest analysis is usually low. Although in this study we
had numerous patients for a test–retest study (n � 40), the data
set is very small to be able to analyze subsets to test these effects.
Phantom measurements could play an important role in accu-
rately assessing the potential influence of differences in scan-
ners, reconstruction methods, and imaging settings on radiomic
features and may allow for a calibration of the feature values. To
conclude, we emphasize that it is important to tightly control all
aforementioned factors in a radiomics study. Nevertheless, to
minimize the risk of using unstable and unreproducible features
in a radiomics analysis, it is advisable to perform treatment
site-specific and time-, scanner-, and imaging protocol-con-
trolled test–retest analyses.

Supplemental Materials
Supplemental Figure 1: http://dx.doi.org/10.18383/j.tom.
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