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ABSTRACT
The main protease of SARS-CoV-2 is one of the important targets to design and develop antiviral
drugs. In this study, we have selected 40 antiviral phytochemicals to find out the best candidates
which can act as potent inhibitors against the main protease. Molecular docking is performed using
AutoDock Vina and GOLD suite to determine the binding affinities and interactions between the phy-
tochemicals and the main protease. The selected candidates strongly interact with the key Cys145 and
His41 residues. To validate the docking interactions, 100ns molecular dynamics (MD) simulations on
the five top-ranked inhibitors including hypericin, cyanidin 3-glucoside, baicalin, glabridin, and a-ketoa-
mide-11r are performed. Principal component analysis (PCA) on the MD simulation discloses that bai-
calin, cyanidin 3-glucoside, and a-ketoamide-11r have structural similarity with the apo-form of the
main protease. These findings are also strongly supported by root-mean-square deviation (RMSD),
root-mean-square fluctuation (RMSF), radius of gyration (Rg), and solvent accessible surface area
(SASA) investigations. PCA is also used to find out the quantitative structure-activity relationship
(QSAR) for pattern recognition of the best ligands. Multiple linear regression (MLR) of QSAR reveals
the R2 value of 0.842 for the training set and 0.753 for the test set. Our proposed MLR model can pre-
dict the favorable binding energy compared with the binding energy detected from molecular dock-
ing. ADMET analysis demonstrates that these candidates appear to be safer inhibitors. Our
comprehensive computational and statistical analysis show that these selected phytochemicals can be
used as potential inhibitors against the SARS-CoV-2.
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1. Introduction

In December, the first epidemic of 2019 novel coronavirus
(SARS-CoV-2) took place in Wuhan city, China (Hasan et al.,
2020; Lu et al., 2020; Wu et al., 2020). Since the outbreak, it

has been rapidly infecting people around the world and
turned into a pandemic. The worldwide number of corona
virus cases reached to 2,621,449 with a death toll of 182,991
as of April 22, 2020 (Worldometers.info, 2020). Although it
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was started from China, the number of active cases in United
States, Spain, Italy, France, Germany, and UK have surpassed
the cases identified in China (82,788). It is projected that the
total COVID-19 deaths will reach to around 81,114 in US only
and approximately a total of 60,000 deaths estimated in
Spain, Italy, and France by August 4, 2020 (Team, I. C.-19
Health Service Utilization Forecasting & Murray, 2020).

The Main protease (Mpro) also known as 3-C like protease
(3CLpro) received great attention because of its important
role in post-translational processing of replicase polyproteins
(Boopathi et al., 2020; Elmezayen et al., 2020; Khan, Jha,
et al., 2020; Wang et al., 2016). The enzymatic activity of this
protein leads to processing of viral polyproteins. The �306
amino acid long main protease has high structural and
sequence similarity to that of SARS-CoV 3CLpro (Liu & Wang,
2020). The SARS-CoV-2 Main protease (Mpro) monomer con-
sists of N-terminal domain-I, N-terminal domain-II, and C-ter-
minal domain-III (Mirza & Froeyen, 2020). The active site of
enzyme contains a catalytic dyad having Cys145 and His41
(Bacha et al., 2004; Khan, Zia, et al., 2020). HIV drugs includ-
ing lopinavir and ritonavir have been explored recently
against MERS-CoV (Sheahan et al., 2020). In addition, pepti-
domimetic a-ketoamides were designed and synthesized to
test their performance against the main proteases of beta-
coronaviruses, alphacoronaviruses, and the 3CLpro of entero-
viruses. In a recent follow-up study, Zhang et al. resolved the
crystal structure of Mpro complex of SARS-CoV-2 with modi-
fied a-ketoamide inhibitors (Zhang et al., 2020). After the
outbreak, several types of drugs alone or with combination
have been using in many countries (Colson et al., 2020;
Gautret et al., 2020; Wang et al., 2020). However, still there is
no definite antiviral drug to fight against the deadly virus.

Herb species and fruits have been serving patients as
sources of herbal medicine for a long time through the
human history. They contain a wide variety of phytochemi-
cals, such as flavonoids, alkaloids, glucosides, and poly-
phenolic compounds. These phytochemicals offer a wide
range of therapeutic properties and novel scaffolds to design
new drugs (Aanouz et al., 2020; Gupta et al., 2020). Among
them, some phytochemicals showed high antiviral activity
against a number of viral infections. For example, baicalin is
an experimentally proved antiviral agent against several
viruses, e.g. SARS-CoV-1 (Chen et al., 2004), SARS-CoV-2 (Liu
et al., 2020), H1N1-pdm09 (Nayak et al., 2014), and
Chikungunya (Oo et al., 2018).

Therefore, an efficient approach is to test the efficacy of
antiviral phytochemicals against the 2019 novel SARS
Coronavirus (Jassim & Naji, 2003; Li et al., 2020; Naithani
et al., 2008; Tong, 2009). Herein, we have selected 40 known
phytochemicals isolated from natural herbs and fruits. These
phytochemicals have already showed antiviral activity against
different viruses. The aim of this study is to explore and
identify the binding affinities and interactions of these anti-
viral phytochemicals against the main protease of SARS-CoV-
2 using computational and statistical tools. Molecular dock-
ing, molecular dynamics, principal component analysis (PCA),
and quantitative structure-activity relationships (QSAR) are
performed to assess the performance of these

phytochemicals. In addition, absorption, distribution, metab-
olism, and excretion properties of the best candidates
are evaluated.

2. Methods and computational details

2.1. Phytochemicals optimization, protein preparation,
and molecular docking

Total forty phytochemicals were selected considering their
proved antiviral activities (Table S1). Optimization of the phy-
tochemicals and calculation of vibrational frequency were
performed using Gaussian 09 software package (Frisch et al.,
2009). The structure of the phytochemicals was optimized at
semi-empirical PM6 method (Stewart, 2007). The crystal
structure of the main protease was taken from the RSCB
Protein Data Bank (PDB ID: 6LU7). Then the crystal structure
of the protease was optimized and checked by Swiss-PDB
viewer software packages (version 4.1.0) based on their least
energy. Some significant factors, such as improper bond
order, side chain geometry, and missing hydrogen, were
observed in the crystal structure of the protease. PyMol (ver-
sion 1.1) software package was used to erase all the hetero
atoms, water molecules, and inhibitor present in the struc-
ture (DeLano, 2002). Finally, the non-covalent interaction of
phytochemicals-protease was calculated using Autodock Vina
software package for the docking analysis (Trott & Olson,
2009). Using this method, binding affinities of ligand-prote-
ase were determined and reported in kcal/mol unit. The grid
box in Autodock Vina was generated targeting the active site
of the main protease, where the center was at X: �11.76, Y:
15.17, Z: 69.19 and the dimensions of the grid box were, X:
25.22, Y: 29.33 and Z: 29.22 (unit of the dimensions, Å). To
get more insights of these results, GOLD (Jones et al., 1997)
docking program was also employed.

2.2. Molecular dynamics

The molecular dynamics (MD) simulation was performed on
the best five selected phytochemicals obtained from molecu-
lar docking study, which helped to get more insight into the
protein and docked complexes in biological condition. In this
study, MD simulation was conducted by YASARA Dynamics
software (Krieger et al., 2012). The AMBER14 force field was
employed for this study to describe the macromolecular sys-
tem (Dickson et al., 2014). Water and Naþ/Cl- ions were also
added to the system. Periodic boundary condition was incor-
porated to perform the simulation, where the cell size was
20 Å larger than the protease size in all cases. By employing
steepest gradient approach (5000 cycles), the initial energy
minimization for each system was performed. MD simulations
were performed using the PME method to designate long-
range electrostatic interactions at a cut off distance of 8 Å,
and defining physiological conditions at 310 K, pH 7.4, 0.9%
NaCl (Krieger et al., 2006). The simulation temperature was
controlled using the Berendsen thermostat, where the pres-
sure kept constant throughout the simulation. A multiple
time step algorithm was employed, where the simulation
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time step was selected as 1.25 fs (Krieger & Vriend, 2015).
Finally, MD simulation was performed for 100 ns long and
snapshots were saved at every 100 ps into MD trajectory for
further analysis. Root-mean-square deviation (RMSD), root-
mean-square fluctuation (RMSF), radius of gyration (Rg), solv-
ent accessible surface area (SASA), and total number of H-
bond count were calculated from the MD simulations similar
to other studies (Elfiky & Azzam, 2020; Enayatkhani et al.,
2020; Muralidharan et al., 2020; Pant et al., 2020).

2.3. Pharmacokinetic parameters

Toxicity and some pharmacokinetic parameters were pre-
dicted using admetSAR online (Cheng et al., 2012). In early
stage of drug discovery, pharmacokinetic study, and data
analysis assist scientists to identify safe and effective
drug candidates.

2.4. Principal component analysis (PCA) on MD
simulation data

The principal component analysis is a widely used unsuper-
vised data reduction method. Here, in this project, the goal
of applying PCA method is to highlights the similarity and
dissimilarity in the collected structural and energy profile of
MD trajectory data (Martens & Naes, 1992; Wold et al., 1987).
Using this technique, any structural quality change during
MD can be characterized by comparing different drug-pro-
tein complexes. The following equation highlights the
important components of a PCA model: X ¼ TkPTk þ E, where,
X matrix is expressed as a product of two new matrices, i.e.
Tk and Pk, Tk serves as the matrix of scores that represents
how samples relate to each other, Pk represents the matrix
of loadings which contain information about how variables
relate to each other, k is the number of factors included in
the model, and E is the matrix of residuals.

These residuals contain the unmodeled variances.
Complexes of the main protease with the selected five phyto-
chemicals may have differences with the main protease, i.e.
apo-protein, during MD simulations in terms of structural and
energy profile. These differences can be detected by the PCA
algorithm (Islam et al., 2019). All calculations were performed

on R platform using in-house developed codes (R Core Team,
2019), and plots were generated using the package ggplot2
(Wickham, 2009). Data were preprocessed using autoscale
function before applying PCA algorithm (Martens & Naes,
1992). The final 50 ns of MD trajectory data were used for ana-
lyzing the PCA.

2.5. Quantitative structure-activity relationships (QSAR)
of phytochemicals

Forty potential ligands were randomly divided into a training
set with 25 ligands and test set containing 15 ligands. The
test set was utilized as the validation samples. TPSA (topo-
logical polar surface area, Å2), molecular weight, XLogPs-AA,
HBD, ROTB count, no. of H, C, O, Cl, N, and F atoms, single
bonds (SB) count, double bonds (DB) count, and no. of ben-
zene rings of the drug candidates were the considered as
variables. These variables with calculated binding energies
were used to correlate with structure-activity relationship
using multiple linear regression (MLR) (Fakayode et al., 2009;
Liu et al., 2017; Mark & Workman, 2007). Multiple liner
regression was performed using XLSTAT (Adinsoft, 2010).

Figure 1. Frequency distribution of 40 phytochemicals over the range of dock-
ing scores.

Table 1. Docking results of all phytochemicals with main protease of SARS-
CoV-2 (AutoDock Vina scores are in kcal/mol and GOLD scores are
dimensionless).

Ligand name AutoDock Vina GOLD

Hypericin �10.7 80.15
Pseudohypericin �10.7 85.31
Cyanidin 3-Glucoside �8.4 81.71
Baicalin �8.1 59.19
Glabridin �8.1 63.68
Glycyrrhizin �7.9 60.37
a-Ketoamide-11r �7.8 93.07
Isobavachalcone �7.8 78.59
Apigenin �7.7 61.85
Betulinic Acid �7.6 50.96
Oleuropein �7.6 78.78
Quercetin �7.6 66.11
Luteolin �7.5 60.33
Oleanolic Acid �7.5 49.4
Psoralidin �7.5 62.31
Sageone �7.5 62.02
Ursolic Acid �7.5 46.43
Cystoketal �7.4 65.35
Emodin �7.3 56.4
Dithymoquinone �7.2 42.44
Rosmarinic Acid �7.2 70.63
Liquiritigenin �7.1 58.53
Curcumin �6.9 70.18
Cinanserin �6.7 66.07
Safficinolide �6.6 52.89
Lapachol �6.3 55
Hibiscus Acid �5.9 36.75
Gingerol �5.4 62.7
Hydroxytyrosol �5.3 44.08
Zingerone �5.3 48.64
Carvacrol �5.2 43.9
Cinnamic �5.2 44.24
Methyl Cinnamate �5.1 42.05
Thymohydroquinone �5 47.77
Thymoquinone �5 42.44
Thymol �4.9 45.1
Cinnamaldehyde �4.6 39.1
Ajoene �4.2 48.47
Allicin �3.3 37.59
Diallyl Trisulfide �3.3 41.64
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3. Results

3.1. Molecular docking

By using Autodock Vina, molecular docking is performed to
find out the best candidates among the 40 phytochemicals
based on their binding scores. Binding affinities of the phyto-
chemicals are distributed within the range of �3.0 to �4.0,
�4.1 to -5.0, �5.1 to �6.0, �6.1 to �7.0, �7.1 to �8.0, �8.1 to
�9.0, and �10.0 to �11.0 kcal/mol (Figure 1). Selected com-
pounds are screened primarily using AutoDock vina scoring
function to find out the best candidates, then the GOLD suit
was employed to understand their fitness. The ChemPLP fit-
ness score is used in GOLD docking, which is the default scor-
ing function of GOLD software program. In GOLD scoring
system, higher fitness score indicates the better docking inter-
action between ligand and protein. The binding affinity and

fitness score of all phytochemicals are shown in Table 1. Based
on the best binding affinities, hypericin, cyanidin 3-glucoside,
baicalin, and glabridin are selected for further analysis. In this
study, a-ketoamide-11r is considered as a control ligand
because it is recently reported as a good inhibitor against main
protease (Zhang et al., 2020), which shows binding affinity of
-7.8 kcal/mol. Hypericin and pseudohypericin show the highest
binding affinity of -10.7 kcal/mol. As both of them are structur-
ally similar, only hyperici is selected for further study.

3.2. Molecular interaction of the selected
phytochemicals with the main protease

Analysis of the non-covalent interactions of the best five
phytochemicals with the main protease reveals that the
selected compounds interact with either both (Cys145 and
His41) or at least one catalytic residue detected by Autodock
Vina, as shown in Table 2 and Figure 2 (interaction detected
by GOLD is summarized in Table S2). The a-ketoamide-11r is
stabilized by nine hydrogen bonds and two hydrophobic
bonds while interacting with the receptor protein. It also
forms hydrogen bonds with catalytic residue Cys145 and
hydrophobic interaction with His41. Baicalin interacts
through six hydrogen bonds, one hydrophobic interaction,
and one pi-sulfur interaction with the catalytic residue
Cys145. Cyanidin 3-glucoside forms six hydrogen bonding
interactions and three hydrophobic interactions in which one
hydrophobic interaction is observed with the catalytic resi-
due Cys145. Glabridin gets stabilized by one electrostatic,
five hydrophobic interactions, and no hydrogen bonding
interaction is observed. Hypericin forms four hydrogen bond-
ing interactions and five hydrophobic interactions in which
one pi-alkyl interaction is observed with catalytic resi-
due Cys145.

3.3. Molecular dynamics simulation

The RMSD of alpha carbon atoms of all systems are analyzed
to detect their stability. It is observed from Figure 3a that
a-ketoamide-11r complex exhibits the lowest RMSD than
other complexes. Even RMSD of the apo-protein is slightly
higher than the a-ketoamide-11r, which indicates the greater
stability of a-ketoamide-11r. The RMSD of baicalin-protein
complex reaches to �1.63 Å from 10 to 50 ns, however, this
value significantly increases after 50 ns and reaches to 2.24 Å.
While assessing the RMSD of cyanidin 3-glucoside complex,
the steady increase of RMSD is observed after 21 ns (average
RMSD >3.0 Å). Nonetheless, this value is decreased eventu-
ally, which indicates that cyanidin 3-glucoside may change
the protein conformation. Unlike apo-protein and a-ketoa-
mide-11r complex, RMSD of the glabridin complex is mostly
stable. But the complex is found exhibiting its increased
RMSD from 45.6 to 78 ns (average RMSD >2.74 Å), and subse-
quently the complex gets stable. Particularly, the hypericin
complex shows consistent fluctuation from 11 to 100 ns. This
complex also shows the higher deviation of fluctuations
throughout the trajectory.

Table 2. Nonbonding interactions of selected five phytochemicals with main
protease of SARS-CoV-2 (pose predicted by AutoDock Vina) where,
CH¼ Conventional Hydrogen bond, H¼ hydrogen bond, C¼ carbon hydrogen
bond, A¼ alkyl.

Interacting residue Distance Bond category Bond Type

a-Ketoamide-11r
ASN142 2.49 H CH
GLY143 2.58 H CH
GLY143 2.48 H CH
SER144 2.09 H CH
SER144 2.13 H CH
CYS145 2.68 H CH
PHE140 2.73 H CH
HIS164 2.89 H CH
GLY143 2.54 H CH
HIS41 2.87 Hydrophobic Pi-Sigma
MET49 4.92 Hydrophobic Alkyl
Baicalin
PRO168 2.96 H CH
GLU166 2.19 H CH
GLU166 2.53 H CH
SER144 3.06 H CH
GLU166 3.01 H C
GLU166 2.08 H C
CYS145 5.27 Other Pi-Sulfur
MET49 5.18 Hydrophobic Pi-Alkyl
Cyanidin 3-Glucoside
GLN189 3.02 H CH
LEU141 2.52 H CH
THR26 2.84 H CH
ASP187 2.75 H CH
GLU166 2.46 H CH
GLY143 2.84 H C
MET49 4.93 Hydrophobic Pi-Alkyl
MET49 4.31 Hydrophobic Pi-Alkyl
CYS145 5.17 Hydrophobic Pi-Alkyl
Glabridin
GLU166 4.10 Electrostatic Pi-Anion
MET49 3.76 Hydrophobic Alkyl
MET49 4.86 Hydrophobic Alkyl
MET165 4.79 Hydrophobic Pi-Alkyl
HIS41 4.64 Hydrophobic Pi-Alkyl
HIS41 3.91 Hydrophobic Pi-Alkyl
Hypericin
GLU166 2.41 H CH
LEU141 2.83 H CH
ASN142 2.95 H C
GLU166 2.99 H Pi-Donor H
GLU166 2.69 Hydrophobic Pi-Sigma
GLN189 2.50 Hydrophobic Pi-Sigma
MET165 4.32 Hydrophobic Alkyl
MET165 4.35 Hydrophobic Pi-Alkyl
CYS145 5.05 Hydrophobic Pi-Alkyl
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Since RMSF (root means square fluctuation) helps to under-
stand the region of protein that is being fluctuated during the
simulation, the flexibility of each residue is calculated to get
better insight on what extent the binding of ligand affects the
protein flexibility. It can be understood from Figure 3b that
the binding of hypericin makes the protein most flexible in all
areas in contrast to apo-protein and the other complexes.
Hypericin is found to induce local flexibility at Met49 (S2
pocket), Asn51, Pro52, Tyr154, Asp248, Arg279, and Phe294.
The apo-protein structure is found to have the lowest RMSF,
which indicates that even in unliganded state, the protein is
not very much flexible. Besides, the RMSF values of other

complexes including a-ketoamide-11r, baicalin, cyanidin 3-glu-
coside, and glabridin are mostly similar in all areas. Overall, the
residues such as Ile136, Lys137, Gly138, Ser139, Phe140 (S1
pocket), Leu141, Asn142, Asp153, Typ154, Arg222, Ser301,
Val303, Thr304, Phe305, and Gln306 are found flexible for both
of apo-protein and ligand-bound complexes.

Higher SASA value indicates the expansion of protein vol-
ume and a low fluctuation is expected over the simulation
time. Binding of any small molecule might change SASA and
sometimes could greatly affect the protein structure. The
SASA values of alpha ketoamide-11r are found lowest in
most of the frames compared to apo-protein. Thus, it can be

Figure 2. Nonbonding interactions of five selected phytochemicals with the main protease of SARS-CoV-2 (pose predicted by AutoDock Vina).
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suggested that the binding of a-ketoamide-11r potentially
could reduce protein expansion.

In addition, the baicalin complex shows normal fluctua-
tions as compared to the apo-protein and a-ketoamide-11r
complex. But it shows highest SASA from 80.8 to 100 ns
revealing the conformational states with higher protein
expansion. Interestingly, cyanidin 3-glucoside complex shows
quite similar fluctuations from 60 to 100 ns as exhibited by
a-ketoamide-11r complex. It signifies its SASA mediated

behavior as it is also observed by a-ketoamide-11r complex.
Although the SASA of glabridin complex is observed in the
median till 46 ns compared to other complexes as described
earlier, the fluctuations are quite irregular from 66 to 78 ns.
The average SASA value of all systems are 14160.7, 13985.1,
14209.3, 14039.9, 13958.4, and 13955.1 for apo-protein,
a-ketoamide-11r, baicalin, cyanidin 3-glucoside, glabridin,
and hypericin, respectively. The first and second lowest aver-
age SASA is found for hypericin and glabridin complexes.

Figure 3. Analysis of RMSD, RMSF, Rg, SASA, and total number of hydrogen bond of apo-protein and selected five phytochemical complexes with protein at
100 ns MD simulations. (a) Root-mean-square deviation (RMSD) of the Ca atoms, (b) RMSF values of the alpha carbon over the entire simulation, where the ordin-
ate is RMSF (Å) and the abscissa is residue, (c) Radius of gyration (Rg) over the entire simulation, where the ordinate is Rg (Å) and the abscissa is time (ns), (d)
Solvent accessible surface area (SASA), where the ordinate is SASA (Å2) and the abscissa is time (ns), and (E) Total number of H-bond count throughout
the simulation.
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The radius of gyration (Rg) represents the compactness
of a structure. The lower degree of fluctuation with its con-
sistency throughout the simulation indicates the greater
compactness and rigidity of a system. The Rg of apo-protein
is found almost stable in terms of consistency of fluctuations
throughout the simulation. Besides, the Rg of a-ketoamide-
11r is increased from 22 to 95.6 ns (average Rg � 22.82). The
greater change of Rg might be the result of protein folding,
or unique conformational changes. The baicalin complex
shows increased Rg from 78 to 100 ns (average Rg � 22.50),
and its last parts of the trend are similar to a-ketoamide-11r.
In case of cyanidin 3-glucoside complex, the lowest Rg value
is observed from 80 to 100 ns, which indicates greater
rigidness in contrast to the other complexes. Besides, the
glabridin complex seems to have lowest Rg corresponding to its
highest rigidity from 0 to 40ns and 63ns to 77ns. The Rg value
of hypericin is much higher after 20ns (average Rg� 23.16) indi-
cating its slackness of packing compared to all other complexes.
On the basis of average Rg, the glabridin complex has the lowest
Rg, which are calculated as 22.24, while for apo-protein, a-ketoa-
mide-11r, baicalin, cyanidin 3-glucoside, and hypericin, the Rg
values are determined as 22.35, 22.74, 22.34, 22.32, and 23.03,
respectively. Therefore, the order of compactness and rigidness
should be glabridin> cyanidin 3-glucoside>baicalin> apo-
protein> a- ketoamide-11r> hypericin.

The number of intermolecular hydrogen bonds in the lig-
and-protein complex are determined, since it is known to con-
tribute conformational stability. The average number of
hydrogen bonds are 513, 504, 518, 526, 508, and 505 for apo-

protein, a-ketoamide-11r, baicalin, cyanidin 3-glucoside, glabri-
din, and hypericin complexes, respectively. The highest num-
ber of hydrogen bonds is observed for cyanidin 3-glucoside
complex, whilst the lowest number of hydrogen bonds is
observed in a-ketoamide-11r complex over the 100 ns simula-
tion period. The baicalin complex possesses a greater number
of hydrogen bonds compared to apo-protein, which shows
almost similar trend to that of glabridin complex.

3.4. Pharmacokinetic properties

Total seven pharmacokinetic parameters including carcinogenicity,
rat acute toxicity (LD50, mol/kg), p-glycoprotein inhibitor, blood-
brain barrier, glycoprotein substrate, organic cation transporter,
and human intestinal absorption are tested for the selected best
phytochemicals. The results are summarized in Table 3. The results
show that the phytochemicals are safer to use. Outcomes are
explained in more detail in the discussion section.

3.5. Principal component analysis (PCA) of
molecular dynamics

Principal component analysis (PCA) is used to analyze the
structural and energy data obtained from MD simulation on
protein-phytochemical complexes and apo-protein. Bond dis-
tances, bond angles, dihedral angles, planarity, Van der
Waals and electrostatic energies were included as variables.
The PCA score plot (Figure 4a) reveals different clusters

Table 3. Pharmacokinetic parameters of the best phytochemicals.

Drugs Carcinogenicity
Rat Acute Toxicity
(LD50, (mol/kg)

P-glycoprotein
Inhibitor

Blood-brain
barrier

Human intestinal
absorption

Renal organic
cation transporter

P-glycoprotein
Substrate

Cyanidin 3-Glucoside Non carcinogenic 2.6483 Non inhibitor Positive Negative Non inhibitor Substrate
Hypericin Non carcinogenic 2.6870 Non inhibitor Negative Positive Non inhibitor Substrate
Baicalin Non carcinogenic 2.7357 Non inhibitor Negative Positive Non inhibitor Substrate
a-Ketoamide-11r Non carcinogenic 2.3318 Non inhibitor Negative Positive Non inhibitor Substrate
Glabridin Non carcinogenic 2.9435 Non inhibitor Positive Positive Non inhibitor Substrate

Figure 4. (a) The score plot presented six data clusters in different color, where each dot represented one time point. The clustering is attributable as: apo-protein
(black), a-ketoamide-11r complex (red), baicalin (green), cyanidin 3-glucoside complex (blue), glabridin complex (cyan), hypericin complex (magenta), (b) Loading
plot from principal components analysis of the energy and structural data.
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formation. Among these clusters, a-ketoamide-11r-protein
complex (red), cyanidin 3-glucoside-protein complex (blue),
and the apo-protein (black) are overlapped. Loading plot of
the PCA (Figure 4b) reveals that the dihedral angle energies
show positive correlation with these three groups. Baicalin-
protein complex (green) demonstrates similar patterns to
a-ketoamide-11r and cyanidin 3-glucoside complexes in the
score plot, although the energy distribution of baicalin is
broader compared to the other two complexes. The fluctuat-
ing nature of baicalin-protein complex in the MD simulation
could be the reason for its wider distribution in the score
plot. However, it can be considered as a potential candidate.
The hypericin-protein complex exhibits significant difference
compared to the other drug-protein complexes by forming a
distinct cluster (magenta). This is reasonable as hypericin
shows the highest deviation during complex formation com-
pared to the other candidates. The glabridin-protein complex
is also formed a distinct cluster (cyan) in the score plot.

3.6. Quantitative structure-activity relationships (QSAR)

QSAR is a vastly used tool in bioinformatics, drug discovery for
the pharmaceutical industry, clinical research, agrochemical,
and petrochemical sectors for modeling and predictive pattern

analysis (Alam & Khan, 2017; Fakayode et al., 2014; Funar-
Timofei et al., 2017). Herein multiple linear regression (MLR)
has been used for further analysis. For instance, TPSA (Å2),
molecular weight, XLogP3, H-bond donor count, and H-bond
acceptor count of the ligands are the most significant variables
on QSAR contributors to the MLR regression (Table S3). PCA is
used for pattern recognition of potential ligands, which is rep-
resented in this study by PCA score plot (Figure 5c). The first
principal component (PC1) shows 57% of the variability in lig-
and QSAR and 21% of the variation of ligand binding energy.
Second principal component (PC2) exhibits 22% in QSAR vari-
ability of ligands and the variation of the ligands binding
energy is 11%. An interesting grouping of the ligands is
observed by the score plot. The ligands with a similar func-
tional group are gathered together side by side on the score
plot. For example, ligands (L6, L7, L12, L15, L16, L22, and L25)
containing -OH, -COOH, and C¼O functional group attached
to benzene ring are clustered on the first and second quad-
rants of the score plot. Only L3 (a-ketoamide-11r) with contain-
ing -CONH- and C¼O functional groups is placed on the
upper-right corner of the score plot.

In contrast, ligands containing isoflavane backbone in (L4,
L8, L17, L18, and L19) are clustered on the third and fourth
quadrants of the score plot. The observed grouping of

Figure 5. (a) Graphical representation observations vs. standardized residues by MLR (training set), (b) Graphical representation observations vs. standardized resi-
dues by MLR (test set), (c) Score plot of PCA analysis for QSAR of ligands.
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ligands on the score plot is highly significant. In addition,
this class of ligands has cyclic ether, -OH, -COOH groups,
which may have a significant influence on drug reactivity,
chemical behavior, therapeutic effect, and potency. L11 and
L13 contain common anthraquinone derivative with fused
ring and -OH functional group. This isoflavane and anthra-
quinone backbone pattern could be a key for further investi-
gations to explore new drugs for COVID-19.

The overarching goal of any MLR model is to predict
binding energy of the future drug candidates. The MLR
model is developed and therefore is used to predict the
binding energy of the test set for validation of drug candi-
dates. The results demonstrate almost the same binding
energies obtained from the binding energies from molecular
docking. Binding energy (kcal/mol) ¼ �3.51þ 4.27E-02�TPSA
(Å2)-6.42E-03�MW(g/mol)-0.25�XLogP3-AA-0.48�HBD-
0.64�HBA. Here the R2 is 0.842 for the training set and 0.753
for the test set. Figure 5a,b show the prediction results ver-
sus original binding results of the training set and test set. In
Figure 5a, L3 and L7 show lowest residuals. Possible reason
could be the presence of the -CONH- and C¼O groups in
L3, and the carboxylic group and -C¼C- present in L7. On
the other hand, in the test set L27 (Figure 5b) reveals the
lowest standardized residuals may be the presence of hetero
N, S, and O atoms. L33 exhibits a high standardized residual
may be due to the large asymmetric molecule and their con-
formational change. The lowest standardized residual indi-
cates that the predicted binding energies have close
agreement to the binding energies obtained by molecular
docking. The predicted QSAR binding energies and the dock-
ing binding energies obtained from the ligands with similar
SAR typically have similar chemical reactivity, pharmaco-
logical activity, behavior, and efficacy. But the results
obtained by the QSAR should be used with caution as the
binding energies are not experimental. The model can be
further used for rapid screening of COVID-19 candidates for
drug discovery in pharmaceuticals and pharmacol-
ogy research.

4. Discussion

Computer-aided drug design (CADD) has become one of the
essential approaches in modern drug discovery as it can sig-
nificantly minimize the cost and labor involved in the drug
discovery process. It accelerates the drug development by
allowing the scientists to narrow down the biological and
synthetic testing efforts. Moreover, molecular docking,
molecular dynamics, QSAR, and ADMET tools have become
some of the key parts in the CADD because of their reliable
predictions (Talele et al., 2010).

Molecular docking predicts the prevailing binding modes
between a ligand and a protein by proposing the hypothesis
of how the ligands inhibit the protein and thus it ranks can-
didate ligands (Morris & Lim-Wilby, 2008). In this study, 40
antiviral phytochemical agents are docked against the main
protease of SARS-CoV-2. Among them, five candidates are
then selected according to their high binding affinity. It is
observed that hypericin, cyanidin 3-glucoside, baicalin,

glabridin, and a-ketoamide-11r could be used as potential
inhibitors for the main protease. Hypericin shows the highest
binding affinity of �10.7 kcal/mol and forms a pi-alkyl inter-
action with the catalytic binding residue Cys145. Cyanidin 3-
glucoside, baicalin, glabridin, and a-ketoamide-11r also
exhibit high binding affinity of �8.4, 8.1, �8.1, and �7.8 kcal/
mol, respectively. All the top scored phytochemicals demon-
strate strong noncovalent interactions with the binding site
residues. More specifically, the selected five phytochemicals
form non-covalent interactions with both the two (Cys145
and His41) or at least one of the catalytic residues, and
thereby can act as inhibitors of the main protease. QSAR
study reveals that the topological polar surface area (TPSA,
Å2), molecular weight, XLogP3, H-bond donor count, and H-
bond acceptor count of the ligands are the most significant
variables. MLR regression model validated their role in the
binding affinity and non-covalent interactions of the ligands
with the main protease. It is also predicted from the principal
component analysis (PCA) of QSAR that L3 (a-ketoamide-11r)
shows the lowest residuals because of the presence of the
-CONH- and C¼O groups in its chemical structure.
Furthermore, QSAR analysis of all the phytochemicals show
almost similar binding affinity predicted by the binding affin-
ity of the molecular docking in Autodock Vina.

Molecular dynamics simulation of a-ketoamide-11r shows
the lowest RMSD value than the apo-protein and the other
complexes, which indicates its greater stability. SASA of
a-ketoamide-11r also confirms that it unfolds and stabilizes
the main protease. Cyanidin 3-glucoside has lower Rg and
SASA values, which indicates that it can make the protease
more compact and rigid. Moreover, the lowest RMSF value of
the apo-protein indicates its compactness even without
forming a complex with a ligand. Except hypericin, all the
selected phytochemicals demonstrate similar patterns in
RMSF. Hypericin is the most flexible in all areas in contrast to
apo-protein and other complexes. Baicalin also shows lower
RMSD value and followed the similar trend. Principal compo-
nent analysis reveals the structural similarity between
a-ketoamide-11r-protein and cyanidin 3-glucoside-protein
complexes, which is strongly supported by the RMSD, RMSF,
Rg, and SASA analysis. PCA analysis unveils that baicalin
could be a good candidate to stabilize the main protease as
supported by the RMSD analysis.

Recent drug discovery depends on drugs which show
good pharmacokinetic properties. To be a promising drug
candidate, pharmacokinetic parameters must be optimized
so that these can pass standard clinical trial criteria. The best
five phytochemicals are found to be noncarcinogenic as evi-
dence obtained from carcinogenicity and rat acute toxicity.
Cyanidin 3-glucoside and glabridin might cross the blood-
brain barrier. All selected phytochemicals might interact with
p-glycoprotein which is a member of ABC transporter family
and they will not inhibit organic cation transporter. These
parameters provide information about the secretion of drugs
through urine. Only cyanidin 3-glucoside could show nega-
tive result in terms of human intestinal absorption. These
pieces of information may provide necessary data for design-
ing promising and effective inhibitors of the main protease
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of SARS-CoV-2 in future (Cheng et al., 2012; Motohashi &
Inui, 2013; Mukhametov & Raevsky, 2017).

5. Conclusion

In summary, molecular docking, molecular dynamics, QSAR
modeling, PCA, and ADMET tools are successfully employed
to determine the best phytochemicals against the main pro-
tease of SARS-CoV-2. Among the studied 40 phytochemicals,
hypericin, cyanidin 3-glucoside, baicalin, glabridin, and
a-ketoamide-11r show the highest binding affinity and
strong interactions with both or at least one of the catalytic
residues (Cys145 and His41) of the main protease. These
compounds show many non-covalent interactions, such as
hydrogen bonding, hydrophobic, and electrostatic interac-
tions. MD results show that in the physiological environment,
baicalin, cyanidin 3-glucoside, and a-ketoamide-11r are the
most stable ligands and they are making a greater number
of interactions through hydrogen bonds with the main pro-
tease. Pharmacokinetic and ADMET analysis indicate their
efficacy as drug molecules. PCA of QSAR results show that
the ligands, e.g. L6, L7, L12, L15, L16, L22, and L25 contain-
ing -OH, -COOH, and C¼O functional groups attached to
their benzene ring are grouped together in the first and
second quadrants of the score plot. Only a-ketoamide-11r
(L3) with -CONH- and C¼O functional groups take position
on the upper right corner of the score plot. The ligands, e.g.
L4, L8, L17, L18, L19, L11, and L13 containing isoflavane
backbone, anthraquinone with cyclic ether, fused ring, -OH,
and -COOH are placed in the third and fourth quadrants of
the score plot. Therefore, PCA analysis successfully divides
the studied phytochemicals into two groups. The MLR model
calculates the value of R2, which is 0.842 for the training set
and 0.753 for the test set. It means that our proposed model
can predict the binding energies compared to the values
obtained from molecular docking. It can be concluded that
most of the selected phytochemicals show promise and can
be used to design effective antiviral drugs against the SARS-
CoV-2.
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