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Abstract

Primary immunodeficiencies (PIDs) form a large and heterogeneous group of mainly rare

disorders that affect the immune system. T-cell deficiencies account for about one-tenth of

PIDs, most of them being monogenic. Apart from genetic and clinical information, lots of

other data are available for PID proteins and genes, including functions and interactions.

Thus, it is possible to perform systems biology studies on the effects of PIDs on T-cell physi-

ology and response. To achieve this, we reconstructed a T-cell network model based on

literature mining and TPPIN, a previously published core T-cell network, and performed

semi-quantitative dynamic network simulations on both normal and T-cell PID failure

modes. The results for several loss-of-function PID simulations correspond to results of pre-

viously reported molecular studies. The simulations for TCR PTPRC, LCK, ZAP70 and ITK

indicate profound changes to numerous proteins in the network. Significant effects were

observed also in the BCL10, CARD11, MALT1, NEMO, IKKB and MAP3K14 simulations.

No major effects were observed for PIDs that are caused by constitutively active proteins.

The T-cell model facilitates the understanding of the underlying dynamics of PID disease

processes. The approach confirms previous knowledge about T-cell signaling network and

indicates several new important proteins that may be of interest when developing novel

diagnosis and therapies to treat immunological defects.

Introduction

The human immunome consists of the genes and proteins essential both for the innate and

adaptive immunity. Interactions between these proteins are indispensable for immune

responses [1]. Studies have been carried out to identify and characterize the essential immu-

nome interactome, i.e. the totality of interactions in the immune system [1, 2]. Knowledge

from these studies enables the investigation of the dynamic behavior of networks in both

health and disease. The immunome interactome varies depending on the cell-type, timing and

localization of expressed and active proteins.

CD4+ T-cells are crucial immune response white blood cells. They recognize and bind to

antigens on antigen-presenting cells via the cell surface T-cell receptor (TCR) complex [3].

Antigen binding to the TCR triggers a sequence of signaling events that lead to the activation

and nuclear transportation of specific transcription factors (TFs) [3]. In the nucleus, these TFs

PLOS ONE | https://doi.org/10.1371/journal.pone.0176500 April 27, 2017 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Teku GN, Vihinen M (2017) Simulation of

the dynamics of primary immunodeficiencies in

CD4+ T-cells. PLoS ONE 12(4): e0176500. https://

doi.org/10.1371/journal.pone.0176500

Editor: Sunil K Ahuja, South Texas Veterans Health

Care System, UNITED STATES

Received: January 23, 2017

Accepted: April 11, 2017

Published: April 27, 2017

Copyright: © 2017 Teku, Vihinen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by

Vetenskaprådet, (http://www.vr.se/) to GNT and

Barncancerfonden, (https://www.

barncancerfonden.se) to VM. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0176500
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0176500&domain=pdf&date_stamp=2017-04-27
https://doi.org/10.1371/journal.pone.0176500
https://doi.org/10.1371/journal.pone.0176500
http://creativecommons.org/licenses/by/4.0/
http://www.vr.se/
https://www.barncancerfonden.se
https://www.barncancerfonden.se


transactivate genes that are required for T-cell responses. CD4+ T-cells are divided into sub-

populations of T helper 1 (Th1), Th2, Th17, regulatory T (Treg) and follicular helper T (Tfh)

cells [4]. Each cell type plays different roles in the immune response by virtue of their different

master regulator TFs and signature cytokine expression [5].

Here, we investigated the qualitative dynamics of the naïve CD4+ T-cells in both health and

in disease in primary immunodeficiencies. Protein interaction networks in T-cells and their

role in various diseases have been investigated [6, 7]. Primary immunodeficiencies (PIDs) are

intrinsic diseases of the immune system, and are typically rare with heterogeneous phenotypes.

Currently about 300 PIDs are known. Disease-causing variants in PIDs have been collected

into the IDbases [8] and other databases and are available for more than 150 PIDs. Differential

diagnosis of PIDs can be difficult due to overlapping signs and symptoms. Several classification

schemes have been made, including the frequently updated classification by the International

Union of Immunological Societies (IUIS) expert committee for PIDs [9]. PIDs have also been

classified with a network approach that clusters the diseases based on signs, symptoms and lab-

oratory parameters [10]. The severity of PIDs ranges from mild to moderate, and severe to

lethal. By integrating the diverse information sources, systems level studies of the underlying

mechanisms on PIDs can be conducted.

In systems biology, the reconstruction of cellular networks and their simulations facilitate

studies of diseases as perturbations (or alterations) to the networks [11, 12]. These approaches

provide insight on the dynamics of biomolecular interactions that drive cellular processes

and contribute towards deciphering biological processes in both health and disease. Disease-

causing variations can affect protein-protein interaction (PPI) networks at the cellular or tissue

level. Studies of quantitative dynamics of PPIs require kinetic parameters and reaction con-

stants. A problem emerges as reaction constants for most of the reactions have not been deter-

mined. Further, these network calculations are very computer intensive. The number of

parameters, even for a moderate size network is so large that calculations would be very costly

and time-consuming. Another approach amenable to larger networks of few tens to hundreds

of nodes is to use qualitative and semi-quantitative dynamic methods [13–15], which provide

useful models for approximating systems.

In this study, we employed a semi-quantitative method, the normalized HillCube Boolean

approach [16], to simulate the dynamics during the activation of naïve CD4+ T-cells. With

these simulations, we investigated the mechanisms of perturbations of known PID-causing

proteins and revealed novel putative PID-related factors. Semi-quantitative simulations with

synchronous updates were performed, and in silico validated. The simulations qualitatively

replicated PIDs due to variations in PID-related proteins which disrupt essential signal trans-

duction pathways during T-cell development from pre- to mature CD4+ T-cells [12]. Further,

several novel proteins affected by PIDs were identified.

Results

The naïve CD4+ T-cell activation network

We reconstructed the signal transduction network for naïve CD4+ T-cells by using the T cell

PPI network, TPPIN [17] as a basis for formulating reaction equations. The nodes and links of

the PPI network were used to mine the published literature for valid reaction equations on

CD4+ T-cells. The TPPIN is a PPI network that contains 227 core signal transduction interac-

tions derived from integrated, time series, gene expression data sets. This network does not

include link directions and, in most cases, lacks cellular context. Thus, we mined manually the

direction, interaction and cellular context information by literature survey. We included only

signaling interactions that were TCR/CD28-dependent and CD4+ T-cell-specific, leaving 85
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interactions, which were used for reconstructing the Boolean network model (S1 Table). The

interactions were defined manually as Boolean equations using the sum-of-product (SOP)

form. The SOP representation offers a convenient means to represent Boolean equations of a

signaling network in a hypergraph [18]. Proteins, i.e. the nodes, represent the Boolean vari-

ables. The edges (hyperarcs) represent the interactions between proteins and are signed either

activating (+) or inhibiting (-). Edges have a tail that begins from a start node and a head (or

arrow), which points to an end node, indicating the direction of signal transduction. Multiple

edges with the same end node were summed by an OR operator. The AND gate was used as a

product operator for multiple incoming edges that together are required to activate or inhibit

a protein. 19 input nodes did not have in-coming links (Fig 1).

We started by analyzing the structure of the network and the signaling paths between the

initial events of the TCR-dependent activation and the late events that involve the activation of

the major TFs that turn on the expression of response genes. The TCR complex, its co-receptor

CD4, and the co-stimulatory receptor CD28, are involved in the initial events, while the TFs

AP1, NFAT, and NF-κB control the late events of T-cell activation [3].

The TCR is activated when it binds to an antigen (signal 1) presented by an antigen present-

ing cell. Another signal (signal 2) through the co-activation receptor CD28 is needed to elicit

Fig 1. Naïve CD4+ T-cell activation Boolean network model. The network consists of 182 links and 118 nodes (including Boolean operators), 19 of

which are input nodes, i.e., no link points to them (S1 Table). The Boolean network represents the naïve CD4+ T-cell activation events. The boxes

represent non-PID (white) and PID proteins (gray). Spheres denote the AND gate. Activating links have a pointed head and solid line while inhibiting links

have a blunt head and dashed line. Signal 1 represents peptide-MHC/TCR complex while Signal 2 represents co-receptor-ligand association, e.g.

CD80-B7. Since the network focuses on TCR/CD28 signaling events, some events, e.g. for survival signaling that occur after antigen mediated T-cell

activation and response through interleukin 2 (IL2), have not been fully considered.

https://doi.org/10.1371/journal.pone.0176500.g001
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activation, survival and response [19]. The multiple paths from receptors to TFs guarantee a

fail-safe and robust T-cell activation [20, 21]. It may also imply that the sensitivity of the level

of activation is modulated by different routes [22]. On the other hand, signal transduction may

be critical if only a single route exists from the receptors, through the network, to the TFs.

We identified signaling paths from signals 1 and 2 to the major response TFs NF-κB, AP1

and NFAT. For this purpose, we converted the Boolean network into an interaction network

(Fig 2). Such a network captures the dependencies, interactions, and thus, the paths through

which signals are transduced through the network. The interaction network consists of a con-

nected component with 85 nodes interconnected by 146 links. To detect the part of the net-

work with the most cross-talk between the signaling pathways, we identified the strongly

connected component that consists of 25 nodes and 48 links (Fig 3).

To identify proteins essential for signal transduction from the receptors to the downstream

actuators we analyzed the feedback loops (FBLs) in the network. Those proteins whose Bool-

ean update equations are along most of the FBLs are considered essential. Input and output

nodes were not included in the FBLs. We identified 419 such loops, of which the longest spans

20 nodes and the shortest 2 nodes (Fig 4). The median and mean length of the FBLs is 14

nodes long. Among the PID proteins, LCK was in 409 FBLs, ZAP70 in 380, CBM in 316,

CARD11 in 312, BCL10 in 210, ITK in 120, PI3K in 110 and MALT1 in 106 FBLs. The other

PID proteins, NEMO, IKKB, NFKBIA and MAP3K14, do not occur in any of the FBLs.

PTPRC is an input node and is thus not included in any of the FBLs.

Fig 2. Boolean model transformed into its underlying interaction graph. The network consists of nodes and links derived from the Boolean network

model without the AND operator. The interaction graph consists of 85 nodes and 146 links, and represents the underlying interaction network of the model.

The nodes are as described in Fig 1. The network shows the paths through which signals from the receptors are channeled through the network to the

TFs, which turn on the response genes.

https://doi.org/10.1371/journal.pone.0176500.g002
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Validation of reconstructed network and identification of the wild type

attractor

After the engagement of the TCR complex and the co-activator CD28, a series of signal trans-

duction cascades occur in naïve CD4+ T-cells [23] and are captured by the reconstructed

network. The signaling cascades lead to response either via NF-κB, AP1 or NFAT [3]. The

reconstructed network is cogent if the major TFs (here TFs NF-κB, AP1 and NFAT

that together activate IL2) and the signaling components that lead to their activation are

turned on.

To ensure that the reconstructed model reproduces CD4+ T-cell activation, we performed

simulations by iteratively changing the initial states of the input nodes while making sure that

the network represented the main signaling events. We used normalized HillCube dynamic

simulations [16] with signals 1 and 2 turned on and validated the simulations in silico. This

network model was used for the subsequent analyses. Additionally, we performed simulations

by turning signal 1 on and signal 2 off, and vice versa. When either of the signals were turned

off, only AP1 and NFAT, but not NF-κB, were activated.

The normalized HillCube simulations were run until the networks reached their attractor

states. The model settled in a cyclic attractor or limit cycle after about 40 update rounds (arbi-

trary time units, Fig 5). The network subsequently continues in a cycle attractor after about

every 20 updates. This attractor is in accordance with published experimental results [3, 24],

which also is evident in the activation of the major downstream TFs (AP1, NF-κB, and NFAT)

when signals 1 and 2 are turned on.

Fig 3. The strongly connected components of the interaction graph. The strongly connected component of the interaction graph consists of 25 nodes

and 48 links. This subnet shows the interconnectedness and cross-talk of the early signals after the antigen-TCR ligation.

https://doi.org/10.1371/journal.pone.0176500.g003
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PID failure analysis

To study the effects of disease-causing variations on the long-term dynamics of naïve CD4+

T-cells, we perturbed PID proteins in the network model and simulated their dynamics with

the normalized HillCube update approach. Twelve PIDs are known to affect the proteins in

the network including BCL10, CARD11, IKKB, ITK, LCK, MALT1, MAP3K14, NEMO,

NFKBIA, PI3K, PTPRC, TCR (TRAC, a component of the TCR complex) and ZAP70. The

proteins were identified from the ImmunoDeficiency Resource [25], IDbases [8], the most

recent classification by the IUIS expert committee for PIDs [9] and a recent review [26]. These

proteins are expressed at the pre-CD4+ stage during T-cell development and differentiation.

The effects of knockouts or overexpression of these proteins to the signaling pathways were

investigated by turning them off (on) during simulation. The resulting perturbed attractors

were probed for differences compared to the wild type attractor.

The three major TF pathways were dysregulated in the attractors of PIDs involved in the

early events of the TCR-dependent T-cell activation including ITK, LCK, PTPRC, TCR and

ZAP70 perturbations (Fig 6). AP1 was inactive in the PID attractors for BCL10, CARD11,

Fig 4. Feedback loops or cycles in the interaction graph. Signaling paths having FBLs from signals 1 and 2 to the major transcription factors identified

from the interaction graph. The columns represent the Boolean update equations and are labeled with the updated protein. Each row represents an FBL,

and consists of the proteins located along it. On each row, cells with a black background indicate proteins that are along the FBL. There are 419 loops,

containing on average 14 proteins.

https://doi.org/10.1371/journal.pone.0176500.g004
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ITK, LCK, MALT1, MAP3K14 and PTPRC. The NF-κB pathway was dysregulated in all the

PID-perturbed attractors, except that for PI3K and NFBIA. The NFKBIA knockout and the

PI3K overexpression simulations were identical to the wild type. The perturbations indicate

profound effects in the networks for almost all the PIDs. Several novel proteins were found to

be affected by the complete and partial knockouts (knockins) of the PID proteins.

Correlation to PID severity

The severity of PIDs varies greatly from very mild to life-threatening conditions. Severe com-

bined immunodeficiency (SCID) is associated with high susceptibility to bacterial, viral and

Fig 5. Attractor basin of the CD4+ T-cell network model normalized HillCube simulation. The basin of

attractors of the CD4+ T-cell network model simulated using the normalized HillCube algorithm. The

horizontal axis denotes time in arbitrary units.

https://doi.org/10.1371/journal.pone.0176500.g005

Fig 6. Wild type and PID attractors of the CD4+ T-cell network simulation. The node states for the wild

type and the PID-perturbed attractors (knockout perturbation of LCK, ZAP70, ITK, IKKB, NEMO, CARD11,

MALT1, BCL10, NFKBIA, PTPRC, MAP3K14 and knockin perturbation of PI3K) attractors. The attractors are

represented by the rows while the states of the nodes in the attractors are represented on the columns. The

state of a node for an attractor is represented by the color of the cell on the row of the attractor; black means

inactive whereas white means activate.

https://doi.org/10.1371/journal.pone.0176500.g006
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fungal infections [27]. Persistent infections with respiratory and gastrointestinal viruses and

opportunistic pathogens are frequent and often associated with protracted diarrhea and failure

to thrive. According to the IUIS classification [9], most of the PIDs in this study are associated

with SCIDs with reduced numbers or absent T and B cells. These include BCL10, CARD11,

IKKB, ITK, LCK, MALT1, MAP3K14, NEMO, PTPRC, TCR and ZAP70 deficiencies. Interest-

ingly, the attractors for these proteins show severe dysregulation (Fig 6).

Gain-of-function variants in the PIK3CD gene, a catalytic subunit of the PI3K heterodi-

meric complex is associated with a milder PID [28–30]. Additionally, variants in the gene that

code for NFKBIA are associated with various forms of ectodermal dysplasia with immunodefi-

ciency (EDA-ID) [31–34]. The attractors for these two proteins are very similar to the wild

type form.

Novel PID-associated proteins

The discovery and cataloging of the PIDs is an ongoing effort. With the improvement, devel-

opment and reduction in the cost of new technologies, more PIDs are identified. Due to the

large number, rarity and overlapping symptoms of PIDs, the diagnosis may be late, difficult

and costly. Several efforts have been made to ease diagnosis by classifying PIDs [9, 10], predict-

ing and prioritizing candidate genes and proteins [35–38]. The FBLs of our model and the

PID-perturbed attractors from simulations provide information about proteins that affect sev-

eral pathways and could be involved with PIDs. Proteins which are along at least 20 FBLs

include the majority of the investigated PIDs and several proteins essential for CD4+ T cell

activation and functions. Interestingly, most of these proteins also indicate abrogated signaling

in the attractors for most of the PIDs. To evaluate, in silico, the effects of perturbing the non-

PIDs in Table 1, we performed knockout simulations for each node, except for CBL for which

knockin simulation was performed, as CBL is turned off in the wild type attractor. Twenty-one

(70%) of the perturbed nodes are impaired in TCR-dependent T cell activation. Further, we

investigated the Human Gene Connectome (HGC) (ref) and found that many of the proteins

involved in numerous FBLs have significant connections to known PID proteins. Taken

together, the genes coding for these proteins are worth considering when prioritizing genes

during challenging diagnosis.

Discussion

In this study, we used the normalized HillCube approach to simulate the PID knockout effects

in the naïve CD4+ T-cell network dynamics. To achieve this, a network was reconstructed

based on evidence from the literature and a previously identified core T-cell network. By using

normalized HillCube simulations, we refined and in silico validated the reconstructed network.

The normalized HillCube perturbation studies qualitatively replicated complete loss-of-

function variation effects for several PIDs at CD4+ T-cell developmental stages.

Comparison of the wild type to the PID attractors highlighted significant differences in the

signal transduction patterns for ITK, LCK, PTPRC, TCR and ZAP70. The effects of the LCK,

PTPRC, TCR and ZAP70 perturbations are severe. Knockout simulations for these proteins

qualitatively capture major changes in signaling patterns. The differences between the wild

type and MAP3K14, NEMO and IKKB PID simulations were somewhat minor. In the BCL10,

MALT1, CARD11, MAP3K14, NEMO and IKKB knockouts, the NF-κB pathway was the most

affected. This is because these proteins connect receptor-dependent signals to the distal NF-κB

pathway [24]. Knockout of any of these genes may cause the IKK complex, the major NF-κB

regulator, to be impaired, leaving NFKBIA bound to NFKB1, and preventing its nuclear trans-

portation and function as a TF [24]. These results show that our approach of simulating effects

Simulation of the dynamics of PIDs in CD4+ T-cells
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of protein variations in networks is effective when the affected proteins are in the core of the

interconnected network or along non-redundant paths belonging to crucial pathways. No

major changes were revealed in overexpression perturbation, as in PI3K, or redundant signal-

ing path between the receptor to the TF. In the NFKBIA PID heterozygous variants that

either lack the phosphorylation sites [31, 32] or truncate the protein [34] protect it from phos-

phorylation-induced proteosomal degradation. The inactivated NFKBIA sequesters NFKB1 in

the cytosol [32]. Thus, the deficient NFKBIA acts as a dominant negative form for NFKB1,

reducing NFKB1’s activity and causing the reduction of TCR activation-dependent cytokine

Table 1. Number of FBLs along which each protein is in the T cell network model.

Protein No of

FBLs

Effect on NFAT

pathway

Effect on NF-κB

pathway

Effect on AP1

pathway

BRP Core proteinsb

LCK 409 0 0 0

MAPK1 404 1 1 1 0.00275 NFKBIA (PI3K, PTPRC)

ZAP70 380 0 0 0

DAG 344 1 0 0

CBMa 316 1 0 0

PRKCQ 312 1 0 0 0.00024 IKKB (CARD11, LCK, MALT1, NEMO, PTPRC,

ITK, PI3K, NFKBIA)

CARD11 312 1 0 0

MAP3K7 312 1 0 0 0.00281 IKKB (CARD11, MALT1, NEMO, NFKBIA, ZAP70,

ITK, PI3K)

LCP2 310 1 0 0 0.00048 ITK (LCK, ZAP70, PTPRC, PI3K, NFKBIA, IKKB)

PLCG1 304 1 0 0 0.00167 ITK (PI3K, LCK, ZAP70)

BCL10 210 1 0 0

LAT 193 1 0 0 0.00119 ZAP70 (PTPRC, ITK, PI3K, LCK, NFKBIA)

CBL 190 0 0 0 0.00114 ITK (PI3K, ZAP70, LCK, PTPRC)

ABL1 189 0 0 0 0.00633 NFKBIA (LCK, ZAP70, ITK, PI3K)

GRAP2 171 1 0 0 0.00048 ITK (PTPRC, PI3K, NFKBIA, IKKB, MALT1)

TRAF6 160 1 0 0 0.00191 NFKBIA (MALT1, IKKB, CARD11, LCK, NEMO,

ZAP70, PI3K)

VAV1 120 1 0 0 0.00036 ITK(PI3K, LCK, ZAP70, NFKBIA)

ITK 120 0 0 0

PI3K 110 1 1 1

MALT1 106 1 0 0

MAP2K1 92 1 1 1 0.00072 PI3K (ITK, NFKBIA)

RAF1 92 1 1 1 0.00329 PI3K (LCK, ITK, NFKBIA)

RAS 92 1 1 1 0.00335 LCK (ZAP70, PI3K, NFKBIA, IKKB)

RASGRP1 86 1 1 1 0.00125 ZAP70 (PI3K, IKKB, MALT1, CARD11, LCK, ITK,

PTPRC, NEMO)

PIP3 70 1 0 0

SOS 47 1 1 1 0.00036 ITK (PI3K, LCK, ZAP70, CARD11)

TCRP 40 1 1 1

DGK 40 1 1 1 0.00556 NFKBIA (ZAP70, CARD11)

PDPK1 30 1 0 0 0.00102 MALT1 (CARD11, PI3K, IKKB, NFKBIA, LCK,

NEMO, ZAP70)

MAP3K4 24 1 0 0 0.01673 PI3K (LCK, IKKB, NEMO)

Rows with tan background are for PIDs.
aCBM deficiency is considered as a PID because it is a complex, all of whose components are related to PIDs.
bThe first core protein is the most significant to the target and those in parenthesis are other significant ones for the target (BRP < 0.05).

https://doi.org/10.1371/journal.pone.0176500.t001
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response [32]. Indeed, there were no observed differences between the PI3K and NFKBIA PID

simulations compared to the wild type. LCK and ZAP70 perturbations that cause major effects

are present in over 90% of the FBLs in the network and CARD11 and the CBM complex in

75% of the FBLs. Seven of the 12 PID proteins emerge in the FBLs, most of which are proximal

TCR activation events, highlighting the fact that the simulation studies are effective for detect-

ing effects of centrally located proteins.

Antigen-TCR complex ligation causes conformational alterations of CD3 chains, which

contain immunoreceptor tyrosine-based activation motifs (ITAMs) on which they are phos-

phorylated by LCK [3]. This is an essential step in early TCR activation. The LCK kinase activ-

ity is regulated by the antagonistic actions of the membrane protein tyrosine phosphatase

PTPRC and the carboxy-terminal Src kinase (CSK) (30). The phosphorylation of Tyr505 in

LCK by CSK inhibits LCK activity via auto-phosphorylation of Tyr394 in the catalytic domain.

The dephosphorylation of the Tyr505 by PTPRC relieves this inhibition [39]. TCR is crucial

for T cell activation and cytokine response, and simulation of TCR deficiency shows profound

impairment of all TF pathways. A homozygous variant of TRAC, a crucial component of the

TCR complex, causes this deficiency [40]. The deficiency is associated with lymphadenopathy,

recurrent infections and hepatosplenomegaly. Because the increased activity of LCK is crucial

for the T cell response after antigen stimulation, the PTPRC knockout causes a severe pertur-

bation. This is confirmed by disease-causing variations in the gene [41–45]. The known vari-

ants include large deletions [44] and amino acid substitutions [45]. Immunodeficiencies

caused by the lack of LCK activity lead to T cells that are low in number and non-responsive,

which in turn causes susceptibility to infections. Our PTPRC-perturbed simulations indicate

that all the signaling paths of NFAT, NFKB1 and AP1 TFs, crucial for TCR-dependent

response, are disrupted.

The activation of LCK is a crucial early step for T-cell activation and response. The phos-

phorylation of the CD3 ITAMs leads to the recruitment of ZAP70 and its activation by LCK.

ZAP70 subsequently phosphorylates LAT, leading to the formation of the LAT signalosome

(the proximal signaling complex) [46]. LAT signalosome transduces signals to pathways that

are indispensable for the three major TFs necessary for T-cell activation and response. Thus,

the improper constitution of this signaling site affects multiple pathways and disrupts the

transduction of TCR activation signals, as verified by our simulations.

The absence of LCK signaling disrupts the NFAT pathways and abrogates the T-cell

response. The LCK deficiency is associated to naive CD4+ T-cell lymphopenia, respiratory

tract infections, and early-onset autoimmune inflammation [47–49]. The major effects of this

PID on naïve CD4+ T-cells are a profoundly defective TCR signaling, lack of calcium/magne-

sium signaling and defective NF-κB response. Our simulation of the knockout perturbation

confirms the dysregulation of most signaling events associated with the calcium signaling,

thereby affecting the AP1, NFKB1 and NFAT signaling pathways. LCK and ZAP70, the two

vital components necessary for the formation of the LAT signalosome, are turned off in the

LCK-perturbed attractor. This suggests that the LAT signalosome is disrupted and thus, down-

stream signaling is impaired. As shown in Fig 6, the signaling components required for the

AP1, NF-κB, NFAT family of proteins, including the calcium-dependent signaling, are turned

off in the LCK knockout attractor. The affected signaling components include PLCG2, PIP2,

IP3, DAG and CALN.

Because of the proximity of ZAP70 to LCK in the early activated TCR signaling events, the

effects of ZAP70 are expected to be similar. This is indeed the case. Partially affected signaling

occurs in ZAP70 deficiency, but downstream responses, like proliferation, are abrogated

because of the TCR signaling defect. Severe conditions caused by the ZAP70 deficiency have

been diagnosed in several patients [50–55]. Like the PTPRC and LCK knockout simulations,
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the major effectors associated to the calcium signaling are turned off in the ZAP70 perturbed

attractor. Based on these results, the activated T-cells would become anergic and/or undergo

apoptosis. SYK, the ZAP70 homolog in non-T-cells, is expressed at high levels in the CD4+

T-cells of ZAP70-deficient patients [50, 53]. The SYK expression might compensate for the

lack of ZAP70, and has been used to explain the less severe phenotype of the ZAP70 deficiency

[50].

During the constitution of the LAT signalosome, LCP2 and PLCG1 bind to LAT and are

phosphorylated by ZAP70 [46]. The phosphorylated LCP2 then recruits ITK, which leads to

the activation of PLCG1. PLCG1 hydrolyzes its substrate PIP2 to generate second messengers,

IP3 and DAG. ITK is a non-receptor tyrosine kinase expressed in T-cells and has been

described as an important component of proximal TCR signaling [56].

Several homozygous ITK variants cause PID [57–60]. The ITK deficiency is associated with

naive CD4+ T-cell lymphopenia, modest change in the number of CD4+ T-cells, impaired

positive and negative selection of thymocytes due to reduced TCR signal levels, recurrent

infections (for example, herpes virus infections), autoimmune cytopenias, lymphoprolifera-

tion, lymphadenopathy and hepatosplenomegaly. Genotype studies point to a twofold increase

in activated CD4+ T-cells, impaired activation-induced cell death and decreased levels of TCR

signaling. Additionally, there is evidence that TXK could substitute for ITK [61]. The lack of

ITK in mice is mitigated by the ability of TXK to activate PLCG1 [62]. ITK is present in both

the strongly connected component and several (29%) of the FBLs. These findings indicate that

in the absence of ITK, T-cells are activated, but signaling resulting from TCR stimulation leads

to impaired response. Indeed, the attractors from our perturbed simulations showed abro-

gation of the NFAT, AP1 and NF-κB pathways. This agrees with normal, but progressive

decrease in T cell numbers that may be caused by defective response in the TCR-dependent

response pathways, which are indispensable for IL-2 transactivation and T cell response

[63, 64].

The constitution of the CBM complex is an essential event in the regulation of NF-κB path-

way. After the TCR/CD28 activation, PRKCQ is activated and recruited to the proximal signa-

losome. Here, PRKCQ activates CARD11 [65], which leads to its association with BCL10.

Because BCL10 is constitutively bound to MALT1, the association of CARD11 to BCL10 leads

to the formation of the CBM complex. Several PIDs have been connected to variations that

occur on the genes that code for CARD11 [66], MALT1 [67] and BCL10 [68]. The CARD11

PID case is caused by a homozygous premature stop codon on the gene that codes for

CARD11, and truncates its kinase-like domain. A homozygous variant in the CARD domain

of MALT1 causes MALT1 PID. The known BCL10 PID case is due to a homozygous splice-site

variation at intron 1 of the gene encoding BCL10. The CARD11 PID is associated with hypo-

gammaglobulinemia, severe interstitial pneumonia, dyspnea and respiratory tract infections

[66]. The MALT1 deficiency is associated with bronchiectasis, mastoiditis, chronic aphthous

ulcers, gastritis, gingivitis, duodenitis and meningitis while the BCL10 PID is associated with

hypogammaglobulinemia, gastroenteritis, otitis, respiratory tract infection and several viral

infections [68]. Although the CBM PIDs show normal T cell counts, the BCL10 and MALT1

deficiencies show predominantly naïve CD4+ T cells, including severely abrogated TCR-

dependent NF-kB signaling and cytokine response [69]. As expected, the pathways for NF-κB

and AP1 are severely disrupted in the attractors of the CARD11, MALT1 and BCL10 PIDs.

The major regulator of NF-κB is the IKK complex [24]. It consists of two protein kinases,

IKKA and IKKB and a regulatory protein, NEMO [70]. The activation of the IKK complex is

NEMO-dependent. After the TCR/CD28 activation PRKCQ is activated and recruited to the

proximal signalosome, where it activates CARD11 [65], which leads to the formation of the

CBM complex. The TRAF6 oligomerizes with the CBM complex through the association with
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MALT1 and BCL10 [71]. This oligomerization recruits UBE2V1 which polyubiquitinates and,

thus, activates TRAF6 [72]. The activated TRAF6 in turn activates MAP3K7, which subse-

quently coordinates the assembly of the IKK complex [71, 73].

Some PIDs have been linked to both IKKB and NEMO [74–77]. A complete loss of function

homozygous truncating variant, a duplicating variant, and a nonsynonymous nucleotide sub-

stitution on the gene that codes for IKKB have been reported to cause the disease [77–79].

IKKB deficiency is associated with life-threatening bacterial, fungal, and viral infections, defec-

tive immunoglobulin production and hypo- or agammaglobulinemia. Although T cell num-

bers are normal, T cell subsets are lower, and peripheral T cells fail to respond to stimulation.

IKBKB loss of function variants abrogates signaling and response via the NF-κB pathway in

these patients [24]. Genetic studies have revealed several PID cases linked to IKBKG, the gene

that codes for NEMO [74, 75, 80–82]. The disease results from amino acid substitution and

exon skipping variations. The NEMO deficiency is associated with anhidrotic ectodermal dys-

plasia, polysaccharide non-response, various infectious diseases, colitis, ectodermal dysplasia,

conical teeth, variable defects of skin pigmentation and monocyte dysfunction [74, 75]. The

T cell counts are normal but TCR activation is impaired, especially NF-κB activation. In accor-

dance with these studies, our simulation indicates that the NEMO and IKKB perturbations

lead to inactivation of NF-κB, despite normal activation of AP1 and NFAT [24, 83, 84].

MAP3K14 is a member of the family of mitogen-activated protein kinases that is involved

in both the canonical [24] and non-canonical [85] NF-κB pathways. In the canonical NF-κB

pathway, the CD28 co-stimulatory signal is required for the MAP3K14 activation through

MAP3K8 (COT). After activation by AKT1, MAP3K8 activates MAP3K14, which in turn con-

tributes in the activation and subsequent ubiquitination of NFKBIA [71, 73, 86]. The ubiquiti-

nation of NFKBIA releases NFKB1 which is translocated into the nucleus and results in T-cell

response. In the non-canonical NF-κB pathway, MAP3K14 associates with IKKA to induce

the phosphorylation and subsequent ubiquitination of the p100 subunit [85, 87]. This leads to

the proteolysis of NFKB2/p100 to NFKB2/p52-RELB dimer, which is translocated to the

nucleus and transactivates κB-containing genes for response [85].

A PID caused by a biallelic variation in the gene coding for MAP3K14 protein leads to loss

of its kinase activity [88]. This variant disrupts both the canonical and non-canonical NF-κB

pathways in immune response cell-types [88]. Despite the normal overall T cell numbers, sev-

eral T cell subsets show defective response and perturbation. The MAP3K14 PID is associated

with several microbial infections, including bacterial and viral infections [88]. The MAP3K14

PID-perturbed simulations are in accordance with its crucial and non-redundant role in

T cells as seen in the defective activation of NFKB1, albeit normal activation of AP1, NFAT

and MAPK14 [89].

The results for simulations of NFKBIA and PI3K did not differ from wild type. To investi-

gate the effects of variants and knockouts in these proteins, dedicated networks would be

needed with more information about downstream factors.

Our results show PID-caused trends in the cellular dynamics of the CD4+ T-cells when the

affected proteins are involved in non-redundant paths along major TF signaling pathways.

The downstream signaling events show minor effect on the network dynamics than the early

events. This paper is the first attempt, as far as we are aware, to investigate, with systems bio-

logical simulations, the effects of variations in immune response proteins in PIDs. We found

profound effects in the ITK, LCK, PTPRC, TCR and ZAP70 perturbed simulations, and less

profound but noticeable effects in the BCL10, CARD11, IKKB, MALT1, MAP3K14 and

NEMO perturbed simulations.

The non-PID proteins in Table 2 are indispensable for T cell activation and response, are

affected in several of the simulated PID attractors and have also been associated with other
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diseases. Several of them have been identified as candidate PIDs. VAV1, RAF1, LAT, LCP2 and

MAPK1 were identified as candidate PID genes with high confidence by Keerthikumar et al.

[37]. Moreover, 15 out of 22 of the proteins are predicted to be candidates by another recent

study [38]. These include LCP2, CBL, TRAF6, MAP3K7, VAV1, PLCG1, PRKCQ, RAF1,

ABL1, PDPK1, GRAP2, LAT, MAPK1, MAP3K4 and MAP2K1. Several of the candidate

genes are central in the Human Gene Connectome (Table 2) providing independent proof

for their significance. As the connectome is not complete, the fact that there is no support

from this method does not mean that our findings were not significant even from this point of

view.

Nine of the proteins in Table 2 are protein kinases (MAPK1, PRKCQ, MAP3K7, PLCG1,

LAT, MAP2K1, RAF1, PDPK1, MAP3K4), 4 are mitogen-activated protein kinases (MAPK1,

MAP2K1, RAF1 and MAP3K4), 3 are serine-threonine kinases (PRKCQ, MAP3K7, and

PDPK1), and 3 have guanyl-nucleotide exchange factor activity (VAV1, RASGRP1 and SOS).

Four of the proteins are linked to various forms of the Noonan syndrome (CBL, MAP2K1,

RAF1 and SOS), 5 to various types of tumors (MAPK1, PRKCQ, ABL1, GRAP2 and RAS) and

one to an autoimmune disorder (RASGRP1). Seven of the genes are not linked to any disease

(MAP3K7, LCP2, LAT, VAV1, DGK, PDPK1 and MAP3K4). The listed proteins are strong

PID candidates; however, their involvement in PIDs needs to be experimentally verified. In

the case of the NFKBIA perturbed simulations we observed local effect on NF-κB and for

PI3K, no effects. Further simulation studies of these PIDs will require more specific networks,

if applicable.

Several studies suggest candidate PID genes [35, 37, 38]. Ortutay and Vihinen constructed a

PPI network of immune system-specific proteins, proteins with high network statistics and

PID-related Gene Ontology term enrichment scores [35]. Itan and Casanova identified the top

1% of genes that were biologically close to known PIDs and, and from these selected the ones

with similar Gene Ontology terms as the known PIDs [38]. A machine learning technique,

support vector machine, was applied by Keerthikumar and colleagues to identify candidate

Table 2. Tuned parameters of nodes in the Odefy-simulated T cell network model.

Influenced node Influencing node(s) τ n k

PAG1 []a 1 20 0.9

PAG1 [] 1 20 0.9

DAG DGK 1 20 0.9

DGK [] 1 20 0.9

DGK [] 1 3 0.9

DGK [] 1 3 0.9

LCK MAPK1 10 20 0.1

CBL [] 3 20 0.9

CALN CABIN1 1 3 0.9

CALN RCAN1 1 3 0.9

CALN AKAP5 1 3 0.9

aAll influencing nodes.

PAG1, phosphoprotein membrane anchor with glycosphingolipid microdomains 1; DAG, second messenger,

diacylglycerol; DGK, diacylglycerol kinases; LCK, LCK proto-oncogene, Src family tyrosine kinase; MAPK1,

mitogen-activated protein kinase 1 (ERK); CBL, Cbl proto-oncogene; CALN, calcineurin complex; CABIN1,

calcineurin Binding Protein 1, RCAN1, regulator of calcineurin 1, AKAP5, A-kinase anchoring protein 5.

https://doi.org/10.1371/journal.pone.0176500.t002
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PIDs by utilizing binary features from PIDs and non-PIDs [37]. The above approaches were

successful in identifying several candidate genes that were subsequently verified to be PID

related. Our approach focuses on T-cell-specific PIDs and how they affect other components

of the cellular signaling dynamics. This, as well as other evidence presented above, allowed us

to identify the candidate PIDs.

Diagnosis and prognosis of PIDs is still often problematic. Our approach provides novel

insights into the mechanisms of PID effects on signaling cascades and may highlight novel tar-

gets for therapy downstream of the defective proteins. The presented approach can be used to

study PIDs of any cellular system and even diseases outside the immune system.

Methods

Network reconstruction and analysis

The T-cell PPI network (TPPIN), a core network of PPIs specific to T-cells [17], was used as

the basis for extensive literature survey and the reconstruction of the Boolean equations for the

T cell model. Only those nodes that have been demonstrated to play a crucial role in the TCR/

CD28-dependent activation of CD4+ T cells were retained.

The CellNetAnalyzer version 2016.1 [18] was used for identifying feedback loops in the

underlying interaction graph of the model. The base R software version 3.2.3 [90] and Cytos-

cape version 3.3.0 [91] were used for data analysis and network visualization, respectively. The

strongly connected components were calculated using igraph, a library for network and graph

analyses in R [92].

A Boolean model consists of N nodes/proteins X1, X1,. . ., XN. The proteins are represented

by variables xi that take values {0, 1} [93]. Each protein, xi is influenced by a set of proteins

Ri = {X1, X1,. . ., XN} connected to it. Based on the values of their influencing proteins Ri, for

each time step, the value of each protein xi, is calculated from the update function B:{0, 1N}.
Because the time is discretized in Boolean simulations, at time point t + 1, updates are done

synchronously as follows [93, 94],

xiðt þ 1Þ ¼ Biðxi1ðtÞ; xi2ðtÞ; . . . ; xiNi
ðtÞÞ � f0; 1g; i ¼ 1; 2; . . . ; N:

The Boolean update functions, Bi, are converted into a system of continuous ordinary dif-

ferential equation (ODE) model where xi takes values [0, 1] using the following ODE equation

_xi ¼
1

ti
ð�Bi ð�xi1; �xi2; . . . ; �xiNi

Þ � �xiÞ;

where, �Bi is a continuous homologue of the discrete function Bi, parameter τi represents the

life-time of the protein, and �xi describes its decay.

Odefy [16], a toolbox compatible with MATLAB, transforms Bi to the ODE system and

computes the solution of the system using the BooleCubes [95] as follows,

�BIð�x1; �x2; . . . ; �xNÞ ¼
X1

x1¼0

X1

x1¼0

. . .
X1

xN¼0

Bðx1; x2; . . . ; xNÞ:
YN

i¼1

ðxi�xi þ ð1 � xiÞð1 � �xiÞÞ

" #

:

�BI , the BooleCube, is obtained from the multilinear interpolation of the Boolean update

function Bi. Biomolecular interactions show switch-like behavior and are modeled using sig-

moidal functions. Thus, the Hill function, f ð�xÞ ¼ �xn=ð�xn þ knÞ, was used to smoothen the

affine multilinear BooleCube, to obtain the sinusoidal HillCube [95]. Hence, the parameter

n was introduced (the Hill coefficient or slope of the Hill function), to represent the coopera-

tivity between the protein interactions and parameter k represent the value at which the
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activation is half-maximal. The HillCube is obtained from the BooleCube as follows,

�BHð�x1; . . . ; �xNÞ ¼
�BIðf1ð�x1Þ; . . . ; fNð�xNÞÞ:

To obtain perfect homologues of the Boolean update functions Bi, the HillCube functions

are normalized to the unit interval to give the normalized HillCube [95] as follows,

�BHnð�x1; . . . ; �xNÞ ¼
�BI f1ð�x1Þ

f1ð1Þ
; . . . ;

fNð�xNÞ

fNð1Þ

� �

:

The network model used in this study is available in SBML qual format (S1 Text) on the

website http://structure.bmc.lu.se/tcell_net/web_session/#/.

Basin of attraction and attractor identification

The Odefy was used to simulate the qualitative dynamics of the network model. It provides

simulation algorithms for both synchronous and asynchronous updates and allows simula-

tions based on the BooleCubes [16]. We used the normalized HillCube functions, which repre-

sent the normalized BooleCubes in the range [0–1]. Boolean dynamic simulations were

performed using normalized HillCube simulations [95]. Except for nodes involved in some

negative feedback loops, the default parameter values were used. The default parameters for

the normalized HillCube were n = 3, k = 0.5 and τ = 1. Table 2 lists non-default parameters for

nodes on some feedback loops. The variable n represents the Hill exponent of the Hill function

and is used for converting the discrete Boolean update functions that take value {0, 1} into

their continuous BooleCube equivalents that have values [0, 1]. It captures the influence that

nodes of the same Boolean equation have on each other. k is a variable to control the continu-

ous relaxation of the Boolean step function. It represents the value at half-maximal activation

of a protein. τ is a decay parameter; for each protein, the higher its value the slower the decay

of the protein. The simulations were run until the network dynamics settled in an attractor.

Perturbation

The Analysis of PID effects was performed for each protein encoded by a PID gene using the

normalized HillCube simulations. For each perturbation, the node was converted to an input

before assigning a state, either off or on, depending on the PID. For example, if the PID occurs

as a result of over-activity of the protein, then the perturbed state is ON. This state was main-

tained until the simulation transitioned into the attractor. The parameter values used in the

wild type simulations were maintained for all the PID perturbed simulations. The end result of

the simulation represents the perturbed PID attractor.

Primary immunodeficiency data

PID proteins expressed after the pre-CD4+ T-cell development stage were retrieved from the

IDbases [8], the most recent updated IUIS expert committee classification of PID data [9], and

a recent survey [26], and used for the PID failure mode simulations. The PIDs included LCK,

ZAP70, ITK, IKKB, NEMO, CARD11, MALT1, BCL10, NFKBIA, PTPRC, MAP3K14 and

PI3K deficiencies.
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S1 Table. CD4+ T-cell activation Boolean network model update equations. The table lists
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