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Comparison of Different Post-Processing Algorithms for Dynamic 
Susceptibility Contrast Perfusion Imaging of Cerebral Gliomas
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Satomi Higuchi1, and Makoto Sasaki1

Purpose: The purpose of the present study was to compare different software algorithms for processing 
DSC perfusion images of cerebral tumors with respect to i) the relative CBV (rCBV) calculated, ii) the 
cutoff value for discriminating low- and high-grade gliomas, and iii) the diagnostic performance for dif-
ferentiating these tumors.
Methods: Following approval of institutional review board, informed consent was obtained from all patients. 
Thirty-five patients with primary glioma (grade II, 9; grade III, 8; and grade IV, 18 patients) were included. DSC 
perfusion imaging was performed with 3-Tesla MRI scanner. CBV maps were generated by using 11 different 
algorithms of four commercially available software and one academic program. rCBV of each tumor compared 
to normal white matter was calculated by ROI measurements. Differences in rCBV value were compared 
between algorithms for each tumor grade. Receiver operator characteristics analysis was conducted for the 
evaluation of diagnostic performance of different algorithms for differentiating between different grades.
Results: Several algorithms showed significant differences in rCBV, especially for grade IV tumors. When 
differentiating between low- (II) and high-grade (III/IV) tumors, the area under the ROC curve (Az) was 
similar (range 0.85–0.87), and there were no significant differences in Az between any pair of algorithms.  
In contrast, the optimal cutoff values varied between algorithms (range 4.18–6.53).
Conclusions: rCBV values of tumor and cutoff values for discriminating low- and high-grade gliomas dif-
fered between software packages, suggesting that optimal software-specific cutoff values should be used for 
diagnosis of high-grade gliomas.
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differentiation of tumor types,6 and discrimination of tumor 
recurrence from radiation necrosis.7,8 CBV, a parameter cal-
culated from perfusion images, reflects microvascularity and 
is commonly used for glioma grading. It has been reported 
that a malignant (high-grade) glioma often shows increased 
vascularity and therefore higher CBV.1,9,10

Recently, different MR manufacturers, third-party work-
station vendors, and academic groups have made available a 
variety of post-processing programs and algorithms for DSC 
imaging. However, these programs and algorithms substan-
tially differ in terms of the maps and quantitative values in 
DSC as well as CT perfusion.11–14 In particular, there are sev-
eral variations in the calculation method for CBV. CBV can be 
calculated as a ratio of the area under the curve (AUC) for 
tissues and that for large vessels as well as by deconvolution of 
the arterial input function (AIF). These differences in the cal-
culation methods potentially affect the diagnostic performance 
of DSC perfusion imaging in different clinical applications. In 
addition, the same calculation method can sometimes yield 
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Introduction
DSC perfusion imaging is widely used for brain tumors1,2 as 
well as acute stroke.3,4 It has several applications with respect 
to brain tumors, such as grading of primary gliomas,1,2,5 
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Data analysis
The DSC data were post-processed and CBV maps were gen-
erated using 11 different algorithms of four commercially 
available software packages (GE Healthcare, Philips Medical 
Systems, Siemens Healthcare, and Infocom) and one academic 
program (Perfusion Mismatch Analyzer [PMA]) (Table 2).11,12 
Of the 11 algorithms, six use the AUC method for CBV calcu-
lation, while five use deconvolution of the AIF. One of the six 
AUC algorithms uses baseline correction,16 and two imple-
ment curve fitting. All five deconvolution algorithms use sin-
gular value decomposition (SVD). The contralateral MCA was 
used as the AIF for deconvolution, and the same AIF position 
was used for all software packages.

ROI measurements were conducted on the CBV maps 
using the Dr.View/Linux software (Infocom Corporation, 
Tokyo, Japan) by a physicist (I.U., 4 years of experience in 
perfusion post-processing). Five ROIs (diameter of 2 mm) 
were manually placed in the high CBV area of the tumor 
(which shows the high CBV value on CBV map), and repeated 
for two to five sections depending on the size of the tumor. For 
example, if the tumor was large enough, five sections were 
maximum to measure, and if the tumor size was less than five 
sections, maximum numbers of sections which contain the 
tumor were used for the measurement (in this study the smallest 
tumor appeared in two sections). Ten ROIs of the same diam-
eter were also placed in the contralateral, normal white matter. 
As these ROIs were used as the reference standard, not single 
ROI but 10 ROIs per section were measured to minimize the 
variations.

These ROIs were carefully placed to avoid large vessels 
(which appeared as a linear structure with high CBV), and 
the all the ROIs were copied to achieve exactly the same ROI 
positions for the different algorithms. The rCBV value of 
each tumor was then calculated as follows:

  
rCBV =

averageCBV

averageCBV
tumor

WM  

Statistical analysis
Differences in the rCBV value between algorithms were 
compared for each glioma grade (grade II, III, and IV). Dif-
ferences in rCBV value between glioma grades were also 
compared for each algorithm. These multiple comparisons 
were performed using Steel-Dwass non-parametric test.

For evaluating the diagnostic performance of rCBV, 
receiver operator characteristics (ROC) analysis was con-
ducted for differentiation between grade II and III, grade III 
and IV, and low-grade (II) and high-grade (III and IV) gli-
omas. Optimal cutoff values for these discriminations were 
defined as the minimal distance from the ROC curve to the 
left upper corner. The area under the ROC curve (Az) values 
were compared between algorithms using the DeLong 
method with Bonferroni correction.17 Average Az values for 
the two calculation methods (AUC and deconvolution) were 
compared using Mann-Whitney’s U-test.

varying results, probably because different software packages 
have different implementations even if they use the same basic 
algorithm. These differences between software packages have 
been reported to prevent standardization in perfusion imaging 
for stroke.15 The same may be true for tumor imaging; how-
ever, few reports have investigated differences in software 
used for processing DSC perfusion images of tumors.

The purpose of the present study was to compare dif-
ferent software packages for processing DSC perfusion 
images of cerebral tumors with respect to i) the relative CBV 
(rCBV) values calculated, ii) the cutoff value for discrimi-
nating low- and high-grade gliomas, and iii) the diagnostic 
performance for differentiating these tumors.

Materials and Methods
Subjects
This prospective study was conducted from May 8, 2009 to 
June 13, 2011. It was approved by the institutional review 
board, and informed consent was obtained from all the sub-
jects. Thirty-six patients diagnosed with primary glioma 
(WHO grade II to IV) were included in this study. One patient 
for whom perfusion imaging was not conducted was 
excluded. Finally, 35 patients (17 men and 18 women) were 
selected to participate in this study. The mean age of the men 
and women was 59.8 (range 23–91) and 45.9 (range 8–74) 
years, respectively. Nine, eight, and 18 patients were diag-
nosed to have grade II, III, and IV gliomas based on histo-
logical specimens, respectively (Table 1).

MR imaging
A 3-Tesla MRI (Magnetom Trio; Siemens, Erlangen, Germany) 
was used for DSC imaging. To minimize T1 effects of Gd 
leakage into the tumor tissue, half dose (0.05 mmol/kg) of 
Gd-DTPA was injected several minutes before DSC scan-
ning, which was performed using the gradient echo (GRE)- 
EPI sequence. The scan parameters included TR of 1400 ms, 
TE of 32 ms, FOV of 230 mm, imaging matrix of 128 × 128, 
slice thickness of 5 mm, 19 sections, and 50 phases. Five 
seconds after starting the GRE-EPI sequence, the remaining 
half dose of the same contrast agent was injected at a rate of 
3 mL/sec into the right antecubital vein, followed by saline 
chase of 20 mL at the same rate.

Table 1. Characteristics of patients

WHO 
grade

Pathology
Number 

of patients 
(male/female)

Age 
range

II oligodendroglioma 6 (3/3) 18–62

diffuse astrocytoma 3 (1/2) 23–46

III anaplastic oligodendroglioma 6 (2/4) 33–54

anaplastic astrocytoma 2 (0/2)   8–71

IV glioblastoma multiforme 18 (11/7) 12–91
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Table 2. List of software and algorithms

Manufacturer Software Analysis algorithm
AUC options

Baseline 
correction

Curve 
fitting

Infocom Dr.View/Linux R2.5.0  (1) AUC1 (type0) No No

 (2) AUC2 (type1) Yes No

GE FuncTool 8.2.02  (3) AUC (BrainStat GVF) No Yes

 (4) SVD (BrainStat AIF)

PMA Ver. 3.4  (5) AUC No No

 (6) bSVD

 (7) sSVD

Philips R.2.6.1  (8) AUC1 (model free) No No

 (9) AUC2 (gamma) No Yes

(10) SVD (AIF)

Siemens VB11 (11) SVD

AIF, arterial input function; AUC, area under the curve; bSVD, block-circulant SVD; SVD, singular value 
decomposition; sSVD, standard SVD.

Fig 1. CBV maps generated by using all algorithms. Representative cases with grade II, III, and IV tumors are shown. All CBV maps are dis-
played with identical color bar, in which the window width is set to ten times of CBV in the normal white matter, and window level is set to 
half window width. Grade III and IV tumors have higher CBV than grade II tumor for all algorithms. The degree of CBV increase in the tumors 
(not only high grade, but also grade II tumors) and the amount of image noise differs between some software and algorithms. CE-T1WI, 
contrast enhanced T1 weighted images; T2WI, T2 weighted images; AUC, area under the curve; SVD, singular value decomposition

The statistical software package R (The R Project for 
Statistical Computing; http://www.r-project.org/) was used 
for all statistical tests, and P value less than 0.05 was consid-
ered as statistically significant for all tests.

Results
Comparison of rCBV values
CBV maps were successfully obtained using all analysis 
algorithms (Fig. 1). After adjusting the window level and 
width for each map and using the same color scale, the 
overall CBV maps looked similar; however, the degree of 
CBV increase in the tumor (not only high grade, but also 
grade II tumors), conspicuity of large vessels, and image 
noise differed between algorithms.

For all algorithms, the rCBV value increased with 
increas ing tumor grade (Fig. 2). Significant differences in 
rCBV values were noted between grade III and IV and between 
low-grade (II) and high-grade (III and IV) tumors with all 
algorithms, while there were no significant differences 
between grade II and III tumors. As for the pairwise compar-
ison between algorithms, a large number of pairs showed sig-
nificant differences in rCBV especially for grade IV tumors 
(Table 3).

Comparison of diagnostic performance
The ROC curves were shown in Fig. 3. The variability of Az 
values for comparison between grade II and III tumors were 
small (range 0.63–0.65), and there was no statistical differ-
ence between any pair of algorithms (Table 4). In contrast, 
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Fig 2. rCBV values using all algorithms for each tumor grade. rCBV 
increases with higher tumor grade for all algorithms. Significant 
differences are obtained between grade III and IV and between 
low-grade (II) and high-grade (III and IV) tumors by all algorithms. 
No significant differences are found between grade II and III. Note 
that the circles are outliers, which are defined by the distance 
greater than 1.5 times of interquartile range (between first and 
third quartile). AUC, area under the curve; SVD, singular value 
decomposition.

variations in the optimal cutoff values were noted among 
algorithms (range 3.48–5.62).

Az values for the comparison between grade III and IV 
tumors showed greater variability (range 0.75–0.83) com-
pared to the previous discrimination between grade II and III. 
Statistically significant differences were noted between 
PMA-AUC (0.81) and PMA-bSVD (0.78) (P = 0.044, Delong 
test). Optimal cutoff values also had considerable variability 
among algorithms (range 5.94–9.08).

For comparison between low- (II) and high-grade (III/
IV) tumors, variability of Az values was small (range 0.85–
0.87), and there were no statistical differences between any 
pair of algorithms. In contrast, the optimal cutoff values 
varied substantially among algorithms (range 4.18–6.53).

Overall, the average Az values were slightly larger for 
the AUC method than for the deconvolution. The difference 
was statistically significant only for the comparison between 
grade III and IV tumors (Fig. 4).

Discussion
A previous study reported substantial differences in perfusion 
maps generated with different software using identical source 

Table 3. P values of statistical comparison of rCBV between algorithms

WHO 
Grade

Algorithm

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Grade II

(1) 0.982 1.000 0.995 0.776 0.999 0.999 0.281 0.076 0.926 0.127

(2) - 0.992 1.000 0.055 1.000 0.458 0.003 <0.001 0.135 0.001

(3) - 0.999 0.486 1.000 0.982 0.090 0.011 0.698 0.030

(4) - 0.101 1.000 0.593 0.004 <0.001 0.146 0.001

(5) - 0.180 0.993 1.000 0.969 1.000 0.989

(6) - 0.689 0.008 <0.001 0.210 0.003

(7) - 0.822 0.341 1.000 0.583

(8) - 1.000 0.996 1.000

(9) - 0.832 1.000

(10) - 0.946

(11) -

Grade III

(1) 0.990 1.000 0.975 0.920 1.000 0.839 0.744 0.172 0.864 0.524

(2) - 1.000 1.000 0.151 0.998 0.236 0.093 0.001 0.177 0.027

(3) - 1.000 0.522 1.000 0.488 0.377 0.011 0.347 0.156

(4) - 0.348 0.996 0.268 0.194 0.018 0.172 0.096

(5) - 0.788 1.000 1.000 0.752 1.000 1.000

(6) - 0.786 0.549 0.093 0.825 0.341

(7) - 1.000 0.975 1.000 1.000

(8) - 0.889 1.000 1.000

Continued



133Vol. 16, No. 2

Comparison of DSC Perfusion of Gliomas

Table 3. P values of statistical comparison of rCBV between algorithms—Continued

WHO 
Grade

Algorithm

(2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

(9) - 0.996 0.991

(10) - 1.000

(11) -

Grade IV

(1) <0.001 0.490 0.478 0.861 0.204 0.464 0.052 <0.001 <0.001 0.961

(2) - <0.001 0.002 <0.001 0.045 <0.001 <0.001 <0.001 <0.001 <0.001

(3) - 1.000 0.006 1.000 0.001 <0.001 <0.001 <0.001 0.019

(4) - 0.008 1.000 <0.001 <0.001 <0.001 <0.001 0.046

(5) - 0.006 0.957 0.955 0.083 0.001 1.000

(6) - <0.001 <0.001 <0.001 <0.001 0.008

(7) - 1.000 0.992 0.728 0.815

(8) - 0.846 0.047 0.505

(9) - 0.926 0.007

(10) - <0.001

(11) -

Bold type indicates statistical significance at 0.05 level (Steel-Dwass nonparametric multiple comparison test).

Fig 3. ROC curves for the differentiation of tumor grades. Curves for the different tumor grades appear similar for all algorithms. Variability 
of Az values differs substantially between tumor grades. Low Az variability is observed for the discrimination between grade II and III 
tumors and between low-grade (II) and high-grade (III/IV) tumors, whereas Az values are highly variable for discriminating between grade 
III and IV.
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Table 4. Az and cutoff values for ROC analysis

Algorithm
II vs. III III vs. IV

Low (II) vs. 
High (III/IV)

Az Cutoff Az Cutoff Az Cutoff

(1) 0.64 4.70 0.82 7.17 0.86 5.05

(2) 0.65 3.48 0.81 6.58 0.86 4.77

(3) 0.63 4.80 0.81 7.29 0.86 4.80

(4) 0.63 4.05 0.79 6.00 0.86 4.40

(5) 0.64 5.62 0.81 6.95 0.86 5.62

(6) 0.64 4.18 0.78 5.94 0.85 4.18

(7) 0.65 5.42 0.75 6.69 0.86 5.30

(8) 0.63 4.46 0.83 8.79 0.86 5.20

(9) 0.65 4.65 0.77 8.27 0.87 6.53

(10) 0.64 4.84 0.79 9.08 0.86 4.84

(11) 0.64 4.63 0.78 7.14 0.85 5.66

data from patients with acute stroke.12 In that study, CBV 
maps of acute stroke were found to be less variable than CBF 
and MTT maps; however, only a few studies have examined 
variation in CBV values for cerebral tumors. In this study on 
patients with intracranial gliomas, we demonstrated that rCBV 
values differed depending on the software packages. Since the 

Fig 4. Average Az values of AUC and SVD algorithms for each 
tumor grade. Average Az values for AUC algorithms are slightly 
larger than for deconvolution. Significant differences are only 
observed in the comparison between grade III and IV tumors.

rCBV values were calculated relative to the values for the 
contralateral, normal white matter, the values were always 
normalized within each patient. Nonetheless, rCBV values 
differed considerably even when using the same software or 
different software using the same type of algorithm (such as 
AUC or SVD), which indicates that the detailed implementa-
tion of a specific analysis might vary among software. Tumor 
blood flow (TBF) and MTT were not analyzed in this study, as 
these are not generally used for the diagnosis of gliomas.

Compared to grade II and III, grade IV tumors had more 
variations in rCBV values across algorithms. Although 
smaller than high-grade tumors, grade II tumors also have 
slight variations. Conspicuity of large vessels and image 
noise were different among algorithms on visual assessment; 
therefore, the source of the difference might due to the differ-
ence in CBV value in highly perfused area. In addition, spe-
cific denoising procedures might differ between applications, 
and some software might have a ceiling threshold for CBV. 
Although the actual implementation of each perfusion anal-
ysis is often unknown, especially for commercial software, 
those differences in denoising steps possibly affect the sensi-
tivity of smoothing effect in AUC and SVD, etc. In addition, 
the variations might be caused by the AIF determination in 
SVD, as CBV calculation is sensitive to AIF. This could be 
happened even in grade II tumors without contrast leakage.

Another possible source of variation among software 
may be baseline correction and curve fitting. Although pre-
injection of Gd was used in this study, a baseline shift might 
have occurred due to contrast leakage during the first bolus. 
In fact, one software provided algorithms with and without 
baseline correction for contrast leakage (algorithm (1) and 
(2) in Table 2), and there was a significant difference in 
rCBV in only grade IV tumors between these two algorithms. 
As the high-grade tumors tend to have contrast leakage, 
baseline correction significantly affected the rCBV value in 
grade IV tumors in this study.

Although rCBV values varied across software, ROC 
analysis revealed that the diagnostic performance (Az values) 
for tumor grading did not differ significantly between soft-
ware, although some differences were noted when discrimi-
nating between grade III and IV tumors. Previous studies 
have reported varying Az values for discrimination between 
low- (II) and high-grade (III and IV) tumors. For example, 
Hilario et al.9 reported an Az of 0.72 using a commercial soft-
ware provided by an MR manufacturer, while Shin et al.18 
reported an Az of 0.864 using an in-house software. To our 
knowledge, the highest Az of 0.97 was reported by Server 
et al.19 who used a third-party software. Our Az results (range 
0.85–0.87) were intermediate. As overall differences between 
software packages were small in our study, the variations 
between previous reports are likely due to the patient popula-
tion and glioma type, as the Az has been reported to be 
smaller (0.682) if only non-enhancing gliomas were studied.20

Further, we found that compared to the SVD method, the 
AUC method, which is simpler, had a significantly higher Az 
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value for discriminating grade III and IV gliomas, although 
no significant differences were observed in discriminating 
grade II and III, and low-grade (II) and high-grade (III and 
IV) gliomas. The AUC method might have better diagnostic 
performance than SVD method, probably because the AUC 
method is simpler than SVD, or, SVD method might be sus-
ceptible to image noise and AIF determination, resulting in 
inferior diagnostic performance in glioma grading.

Although all software packages demonstrated similar 
diagnostic performances, the cutoff values for discrimination 
of different grades varied, probably because of the differ-
ences in rCBV values. Therefore, optimal cutoff values 
should be used for each software. Clinicians and academics 
should be careful when referring to cutoff values from other 
reports because different software might have been used for 
the analysis. In fact, cutoff values of previous reports often 
show considerable variability. For example, a cutoff values 
of 1.74 and 2.93 were reported for a commercial9 and in-house 
software, respectively.18 

Again, in addition to the difference in the software, varia-
tions in tumor type may explain these differences in previous 
studies since rCBV of oligodendroglial tumors is higher than 
that of astrocytic tumors for low-grade tumors, and conversely, 
glioblastomas with an oligodendroglial component have lower 
rCBV than those without the component.5,21 Thus the ratio of 
astrocytic and oligodendroglial tumors might affect the cutoff 
values. Our results, which are based on identical source data, 
suggest that cutoff values varied substantially between software 
or algorithms. Our cutoff values (4.18–6.53) were higher than 
those reported previously, probably due to differences in soft-
ware and methods for ROI measurement. 

Another reason might be that we did not use vascular 
masking, which potentially increases rCBV values for high-
grade tumors. Although we carefully positioned the ROI to 
exclude vascular pixels, tumor vessels might have been 
included in the ROI, increasing the cutoff value. In addition, 
CBV measurement critically depends on the number and size 
of ROIs. We averaged the maximum CBV for several smaller 
ROIs, usually more than 10 in each tumor. Therefore, the 
maximum CBV tended to be larger. We also pre-injected Gd 
to minimize T1 effects of contrast leakage. As most of the 
previous studies did not use pre-injection, CBV decreased in 
the enhancement area due to signal increase and decrease in 
estimated concentration of Gd.

This study has some limitations. First, the number of 
patients was relatively small. Previous studies reporting 
rCBV of cerebral glioma used higher number of patients. 
However, most of these studies were retrospective. Since we 
aimed to examine software differences, we conducted a pro-
spective study to minimize sources of variation other than 
software differences, which limited the number of potential 
patients. Second, glial tumors with an oligodendroglial com-
ponent should be discussed separately as rCBV values are 
different. However, this could not be achieved because of 
the small number of patients. Third, this study used ROI 

analysis, and not histogram analysis, which might have been 
superior to ROI analysis, as it decreases operator-dependent 
biases.22

Conclusion
rCBV values of tumor and cutoff values for discriminating 
low- and high-grade gliomas differed between software 
packages, suggesting that optimal software-specific cutoff 
values should be used for diagnosis of high-grade gliomas.
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