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Simple Summary: Despite improvements in cancer therapy, cutaneous malignant melanoma often
remains unresponsive or quickly acquires drug resistance, proving fatal in advanced stages. Studies
have shown that non-coding RNA molecules play a role in treatment-resistance. In this paper,
we summarised the impact of miRNAs and lncRNAs on melanoma invasion and metastasis, pointing
out their interference with BRAF inhibitors and immunotherapy. Important candidates include
miR-28, miR-100, miR-125a, miR-125b, miR-200c, miR-211, SAMMSON, MELOE and HOTAIR.
We also highlighted the potential of ncRNAs as promising biomarkers and molecular therapeutic
targets for prospective clinical applications.

Abstract: Considered to be highly lethal if not diagnosed in early stages, cutaneous malignant
melanoma is among the most aggressive and treatment-resistant human cancers, and its incidence
continues to rise, largely due to ultraviolet radiation exposure, which is the main carcinogenic factor.
Over the years, researchers have started to unveil the molecular mechanisms by which malignant
melanoma can be triggered and sustained, in order to establish specific, reliable biomarkers that
could aid the prognosis and diagnosis of this fatal disease, and serve as targets for development of
novel efficient therapies. The high mutational burden and heterogeneous nature of melanoma shifted
the main focus from the genetic landscape to epigenetic and epitranscriptomic modifications, aiming
at elucidating the role of non-coding RNA molecules in the fine tuning of melanoma progression.
Here we review the contribution of microRNAs and lncRNAs to melanoma invasion, metastasis
and acquired drug resistance, highlighting their potential for clinical applications as biomarkers and
therapeutic targets.

Keywords: cutaneous melanoma; invasion; metastasis; miRNA; lncRNA; biomarkers; drug resistance;
targeted therapy; immunotherapy

1. Introduction

Malignant melanoma (MM) is considered one of the most aggressive and treatment-resistant
human cancers, frequently leading to metastasis and accounting for the majority of skin cancer-related
deaths worldwide [1,2]. Melanoma arises from the uncontrolled proliferation of melanocytes, a typically
low proliferative cell population derived from neural crest progenitors [3]. Exposure to ultraviolet (UV)
radiation induces the proliferation of melanocytes and the synthesis of melanin, the photoprotective
pigment that is distributed to neighbouring keratinocytes via large specific vesicles termed melanosomes.
Prolonged and intense exposure to UV is thought to be the main factor that determines melanomagenesis,
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as UV radiations can trigger oxidative stress and induce point mutations haphazardly across the
genome, which can lead to loss of cell cycle control and apoptosis escape [4,5]. Extensive data
from The Cancer Genome Atlas (TCGA) project partly defined the complex genetic landscape of
melanoma, disclosing the high occurrence of somatic mutations and the prevalent activation of the
mitogen-activated protein kinase (MAPK) pathway [6].

Classically, melanoma onset and progression has been depicted using the Clark model, which
is based on a stepwise evolution of morphological abnormalities accompanying cancer. This model
describes the linear progression of normal melanocytes through various precursor stages that ultimately
lead to metastatic melanoma [7,8]. Benign nevus formation, followed by development of dysplastic
phenotype, represent the primary events from which melanoma progression can occur. This stage
is characterized by the disruption of p16INK4a-retinoblastoma (Rb) cascade, mostly due to CDKN2A
mutation and subsequent inactivation [9]. Continuous and uncontrolled cell proliferation permits the
protrusion of abnormal melanocytes into the epidermal/dermal junction and within the dermis in a
horizontal manner, establishing the radial growth phase (RGP), at which point cells exhibit an immortal
phenotype, due to the activation of human telomerase reverse transcriptase (hTERT) [10]. Loss of
E-cadherin, coupled with the aberrant expression of N-cadherin and αVβ3 integrin seem to be crucial
for the progression of melanoma to the final cutaneous stage, characterised by a vertical growth phase
(VGP) into the dermis, where neoplastic melanocytes suffer mutations repressing apoptosis, in order to
survive in the absence of keratinocytes [11,12]. Further mutations lead to the upregulation of several
proteins that fuel the activity of various signalling pathways involved in cell proliferation and survival,
such as loss of PTEN, RAS over-expression and β-catenin activation [1,13]. Additionally, once present
in the dermal layer, melanoma cells can interact with other cell types (e.g., fibroblasts, immune cells,
etc.) and gain access to blood and lymphatic vessels, facilitating their potential future invasion [7,8].
In short, the linear progression model holds that metastasis ensues later in the process of tumorigenesis,
from relatively rare disseminating clones with metastatic competency, only after all previous steps
have been completed [14,15]. The accumulation of genetic changes is thought to drive transition
through these stages [12]. The Clark classification is still used for melanoma stadiation, and although it
likely depicts the evolution of some melanomas, observations from several pathologic, epidemiologic,
and experimental studies, including comparative sequencing of primary tumours and metastases,
argue in favour of a less linear and more complex progression model for melanoma [16–18]. Substantial
evidence favours the parallel progression model, akin to metastatic dormancy, which suggests that
MM can originate from each of the previously described phases, without necessarily passing through
all of them, as dissemination of precancerous or malignant cells to distant sites often occurs from early
transformed lesions, and acquisition of important genetic alterations is not exclusively confined to the
primary lesion, but rather takes place at the metastatic sites [8,17,19–21].

Regardless of the dilemma posed by melanoma progression, frequent functional mutations have
been found and used as molecular targets to develop specific inhibitors. Considering that around half
of melanomas harbour mutations in BRAF V600E, the first targeted therapies approved by the U.S.
Food and Drug Administration (FDA) were vemurafenib and dabrafenib, followed by BRAF/MEK
inhibitor pairing treatment [22]. Although they may initially provide remarkable tumour regression,
resistance to therapy occurs within a few months [23,24]. So far, the most promising therapy makes
use of immune checkpoint blockers (anti-PD-1 and anti-CTLA-4) that restore the function of cytotoxic
T cells, thereby reactivating immune recognition and elimination of melanoma cells [25,26]. Despite
a significantly prolonged progression-free and overall survival, most patients treated with immune
inhibitors do not have a durable response and develop resistance within a year [27].

Non-coding RNAs (ncRNAs) have been observed to tamper with the efficiency of molecular
therapies, in addition to facilitating melanoma invasion and metastasis [28,29]. They represent
important epigenetic and epitranscriptomic regulators, classified and differentiated into long (lncRNAs)
and small (sncRNAs) molecules, according to their length which can be longer or smaller than 200 bps.
While multiple types of RNAs can be found in the small category, particular interest has been devoted to
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studying the deregulation of microRNAs (miRNAs/miR) in melanoma [30,31]. miRNAs can modulate
the gene expression at post-transcriptional level mostly by interfering with the 3′UTR region of mRNAs,
and substantial evidence points to their involvement in each stage of melanoma progression [28,31].
In contrast, the epigenetic control exerted by lncRNAs depends on the recruitment of regulatory
proteins at specific DNA target regions, to silence or activate gene promoters, and their role in malignant
melanoma is more elusive [32,33]. Some lncRNAs have been described to stand as decoys or sequesters
of miRNAs, while others play a role in stabilizing the translational ribosomal machinery [34].

In this paper, we review the contribution of miRNAs and lncRNAs in melanoma invasion and
metastasis, pointing out the interplay with the tumour microenvironment; we describe their role in
acquired resistance to targeted therapy and immunotherapy, and ultimately highlight their potential
as promising biomarkers and molecular targets for clinical applications.

2. MicroRNAs Modulate Melanoma Invasion and Metastasis

The role of miRNAs in melanoma progression is very tangled, therefore excellent reviews can be
consulted here: [28,35–37]. In principle, miRNAs influence the evolution of melanoma to secondary sites
mainly by: (A) regulating the expression of MITF-M, an essential melanocyte-and melanoma-specific
transcription factor that operates as a “switch” in the establishment of an invasive or proliferative
phenotype; (B) remodelling the extracellular matrix (ECM); (C) promoting epithelial-to-mesenchymal
transition (EMT) and its reverse, mesenchymal-to-epithelial transition (MET); and (D) preparing the
formation of the pre-metastatic niche [28,36,38–40] (Figure 1).

Reduced expression of MITF-M in melanoma cells determines the acquisition of an invasive
phenotype [39]. Several miRNAs have been found to regulate the activity of this lineage-restricted
gene at a post-transcriptional level, among them miR-182, miR-137, miR-211 and miR-107 [40–44].
Overexpression of miR-182 stimulates melanoma cell migration and invasion through the direct
downregulation of MITF and FOXO3 expression; studies on melanoma cell lines and tissue samples
have found that its expression increases gradually from primary to metastatic stage [42]. Similarly,
high levels of miR-137 expression have been correlated with poor survival in advanced melanoma
patients [45]. In contrast, decreased expression of miR-211 can be observed in highly invasive melanoma
cell lines [46]. Normally, miR-211 prevents the loss of cell adhesion through the negative modulation
of NUAK1 [47], thereby inhibiting the migratory and invasive capacity of melanoma cells [48].
Additionally, it has been proposed that miR-211 can transcriptionally repress POU3F2 (POU-domain
class 3 transcription factor 2), also known as BRN2 (brain-specific homeobox 2), which is a known
suppressor of MITF. As such, loss of miR-211 can increase the expression of BRN2, and therefore inhibit
MITF, ensuring that malignant melanocytes are kept in a pro-invasive, dedifferentiated state [43].
Recently, Zhao et al. reported the downregulation of miR-107, another tumour suppressor that inhibits
melanoma cell invasion by targeting POU3F2 [44]. In BRAF-mutant cells, overexpression of BRN2
contributes to cytoskeletal rearrangement and increased cell invasion [49].

Several miRNAs play a role in ECM remodelling [50]. In melanoma, loss of let-7a, which is a
negative regulator of ITGB3, leads to elevated levels of integrin α3 [51], while suppression of let-7b
indirectly enhances the production of matrix metalloproteinase (MMP)-9 [52], facilitating collagen
degradation and cell invasion. Meanwhile, miR-21 is thought to induce an invasive phenotype
in melanoma cells by targeting the mRNA of tissue inhibitor of metalloproteinases (TIMP)-3 [53].
Lastly, the increased expression of miR-30d/miR-30b cluster stimulates the invasive and metastatic
potential of melanoma cells, both in vitro and in vivo, potentially by silencing GALNT7 (polypeptide
N-acetylgalactosaminyltransferase 7), which strongly affects the O-glycosylation of membrane proteins,
and subsequent interaction with the ECM [54].
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Figure 1. The role of non-coding RNAs in melanoma invasion and metastasis: (A) Both miRNAs
and lncRNAs modulate the expression of MITF-M, directly or indirectly, therefore influencing the
switch towards an invasive or proliferative phenotype; (B) The deregulated expression of ncRNAs
facilitates ECM remodelling, by targeting integrins, increasing matrix metalloproteinases (MMPs)
and diminishing the metallopeptidase inhibitors (TIMPs), therefore promoting ECM degradation and
decreasing tumour cell-matrix adhesion; (C) Multiple miRNAs and lncRNAs favour the EMT-like
process of melanoma cells, which enhances their migratory capacity, mainly by affecting the expression
of specific adhesion molecules. Some ncRNAs also promote the MET-like process of malignant
melanocytes, which leads to enhanced proliferation and colony formation, thus favouring metastasis;
(D) The formation of a pre-metastatic niche at distant sites is mainly influenced by melanoma-derived
exosomes, enriched in miRNA cargo (e.g., miR-155, miR-210, miR-214). In sentinel lymph nodes,
they instigate microenvironmental changes that facilitate the recruitment, trapping and growth of
circulating tumour cells. They also prime bone-marrow-derived cells (BMDCs), which achieve a
vasculogenic, metastatic phenotype, and facilitate their recruitment to distant sites, where BMDCs
will contribute to the formation of a pre-metastatic niche. LncRNA HOTAIR is enriched in lymph
node metastases compared to primary tumours, which may suggest a role in the pre-metastatic niche
formation. POU3F2: POU-domain class 3 transcription factor 2; NEDD9: Neural precursor cell
expressed developmentally down-regulated protein 9; ZEB1: zinc finger E-box-binding homeobox 1.
Colour code: red for upregulation and green for downregulation. Figure created with BioRender.com.

True EMT in melanoma is not possible as melanocytes are not epithelial cells, however some
miRNAs are implicated in an EMT-like process that promotes the invasion and metastasis of tumour
cells. One of them is the cluster miR-224/miR-452, which silences a metastatic suppressor that normally
inhibits E2F1, and which has been shown to facilitate the cytoskeletal rearrangement of less aggressive
cells, resulting in increased migratory and invasive propensity [55]. Also considered of particular
relevance, the miR-200 family (miR-200a, miR-200b, miR-200c, and miR-141) drives the EMT-like
process by upregulating the expression of Bmi-1 oncogene, which in turn promotes the activation
of PI3K/AKT and MAPK cascades. This negatively influences the expression of ZEB1 (zinc finger
E-box-binding homeobox 1) and E-Cadherin, at the same time stimulating N-Cadherin and vimentin
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expression [56]. High levels of miR-214 have also been associated with enhanced cell motility and
metastatic potential, as this specific miRNA indirectly downregulates the expression of some adhesion
molecules (MCAM, E-cadherin) and metallopeptidase inhibitors (TIMP1, TIMP2) [57].

The MET-like process of malignant melanocytes is favoured by miR-125b overexpression,
who directly targets a transcript of NEDD9 (neural precursor cell expressed developmentally
down-regulated protein 9) [58,59], and whose in vitro inhibition was found to decrease the invasive
potential of aggressive melanoma cells [58]. Other miRNAs (miR-34b, miR-34c, and miR-199a-3p) also
contribute to this mesenchymal movement by targeting the mRNA of tyrosine-protein kinase Met
(c-MET), whose increased expression facilitates melanoma cell migration and metastasis [60,61].

miRNAs also participate in the formation of a pre-metastatic niche at distant organs that will enable
the implantation and survival of tumour cells. Melanoma-derived exosomes, with their enriched miRNA
cargo (e.g., miR-155, miR-210, miR-214), are primarily involved in this intercellular communication
(for review: [62,63]). For instance, exosomes recruited into sentinel lymph nodes promote the
upregulation of proteases that degrade the ECM and enhance the expression of pro-angiogenic factors
(TNFα, VEGF, etc.) to facilitate the recruitment, trapping and growth of malignant melanocytes within
the metastatic niche [64,65]. They are also capable of priming bone-marrow-derived cells (BMDCs)
to achieve a vasculogenic, metastatic phenotype, and facilitate their recruitment to metastatic sites
where they will contribute to the establishment of a suitable microenvironment for trapping circulating
melanoma cells [66].

3. LncRNAs Modulate Melanoma Invasion and Metastasis

Despite the emerging interest and growing evidence of the contribution of lncRNAs in
cancer [67,68], little is known about the impact of deregulated expression of lncRNAs in the invasion
and metastasis of MM [29,69] (Figure 1).

The first lncRNA characterized was SPRY4-IT1, a transcript derived from an intron of the SPRY4
gene, whose expression is increased in melanoma [70]. It was identified as a regulator of several
processes, as suppression of SPRY4-IT1 resulted in abnormal cell growth, differentiation and apoptosis,
as well as decreased invasion capacity of melanoma cell lines [70,71]. Although the molecular
mechanisms that interfere with the invasion of MM are not clear, a study concerning non-small cell
lung carcinoma revealed a possible role in the activation of EMT by modulating both E-cadherin and
vimentin expression, leading to cell proliferation and metastasis [72]. Interestingly, another lncRNA
with a potential role in regulating EMT was discovered by Siena et al., while exploring the lncRNA
gene expression patterns across melanocytes, primary and metastatic melanoma cells. They found a
significant upregulation of ZEB1 antisense RNA 1 (ZEB1-AS1) in melanoma cells. Data analysis from
TCGA confirmed the increased expression of ZEB1-AS1 in metastatic melanoma and its association
with hotspot mutations in BRAF and RAS family genes. Additionally, enrichment analysis correlated
ZEB1-AS1 with the gene expression of zinc finger E-box binding homeobox 1 (ZEB1), an essential EMT
marker, suggesting a possible role in melanoma invasiveness and phenotype switching [73].

TCGA data analysis also confirmed the clinical relevance of SRA-like non-coding RNA1 (SLNCR1),
a lncRNA whose highly conserved sequence is strikingly similar to that of lncRNA steroid receptor
RNA activator 1 (SRA1), and whose increased expression is associated with shorter overall survival
in melanoma patients. Functional and mechanistic studies revealed SLNCR1 promotes melanoma
invasion through upregulation of MMP9 (involved in ECM degradation) in cooperation with the
brain-specific homeobox protein 3a (Brn3a) and the androgen receptor (AR) [74].

A screen of differentially expressed lncRNAs in BRAF V600E mutated melanoma cells has
led to the identification of BRAF-activated non-coding RNA (BANCR) as a putative regulator of
cell proliferation and motility. Overexpression of BANCR in MM promotes the activation of the
extracellular signal-regulated kinases 1/2 (ERK1/2) and c-Jun N-terminal kinase (JNK) components
of the MAPK pathway, while its knockdown affects the migratory capacity of tumour cells [75,76].
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A positive feedback mechanism with the V600E mutation is thought to induce BANCR overexpression,
subsequent upregulation of chemokines and increase in melanoma cell motility [76,77].

The oncogenic activity of antisense non-coding RNA in the INK4A locus (ANRIL) in melanoma
revolves around the regulation of its encoding locus that also harbours the tumour suppressor
genes INK4A and INK4B. In cutaneous melanoma tissue samples and cell lines, strong levels
of ANRIL negatively modulated the expression of CDKN2A/2B proteins [78,79]. In addition,
knockdown experiments managed to restore INK4A and INK4B expression, at the same time
suppressing in vitro colony formation and migration [80]. Meanwhile, the encoding gene of
survival associated mitochondrial melanoma-specific oncogenic lncRNA (SAMMSON) also harbours
the melanoma-specific oncogene MITF and it was demonstrated that SAMMSON is frequently
co-amplified with it [81]. As shown by functional assays, knockdown of this lineage-specific lncRNA
drastically affects cell proliferation and viability, even sensitizing melanoma to MAPK-targeted drugs.
Mechanistically, SAMMSON interacts with mitochondrial protein p32, a critical regulator of tumour
metabolism [81].

Although the molecular mechanisms are currently unknown, HOX transcript antisense intergenic
RNA (HOTAIR) is perceived as a regulator of melanoma invasion and metastatic progression,
considering it was found particularly enriched in lymph-node metastases compared to primary lesions
and knockdown of HOTAIR in vitro suppressed melanoma cell motility and invasion [82]. In a similar
manner, a significantly higher expression of metastasis-associated lung adenocarcinoma transcript 1
(MALAT1) and urothelial carcinoma associated 1 (UCA1) was observed in advanced stages of MM,
than in early stages, suggesting the potential role of MALAT1 and UCA1 in melanoma invasion and
metastasis [83]. Moreover, a subsequent mechanistic study demonstrated that UCA1 can interact with
miR-507 and promote the inhibition of FOXM1 expression, leading to increased invasiveness and
clonogenic potential of melanoma cells [84].

Recently, the upregulated expression of X-inactive-specific transcript (XIST) in MM tissues and
resistant cell lines was reported, with XIST being proposed as a crucial regulator in melanoma
progression [85]. Through the use of bioinformatics, XIST was revealed to act as a molecular sponge
for miR-21, which targets PI3KR1, a regulatory subunit of PI3K. Functional studies concerning XIST
repressed PI3KR1 and AKT expression, leading to inhibition of melanoma cell proliferation and
migration, at the same time increasing sensitivity to oxaliplatin [85].

Lastly, lncRNAs can also act as tumour suppressors in melanoma, however only growth
arrest-specific transcript 5 (GAS5) and maternally expressed gene 3 (MEG3) have been reported
so far [86,87]. Lentiviral-mediated overexpression of GAS5 diminished the expression of MMP2,
a specific protein involved in ECM degradation, and reduced the migratory and invasive capacity of
human MM cells [88]. Interestingly, GAS5 seems to repress melanoma tumorigenesis via miR-137,
while MEG3 inhibits tumour growth and metastasis by modulating miR-21/E-cadherin axis [87,89].

4. Non-Coding RNAs and the Interplay with the Melanoma Microenvironment

The tumour microenvironment (TME) represents one of the hallmarks of cancer invasion and
metastasis. The crosstalk between melanoma cells and the complex network composed of soluble
factors, ECM and different types of cells, such as endothelial cells, fibroblasts and immune cells,
ensures malignant progression to eventual metastasis [28]. Specific ncRNAs, especially miRNAs,
can regulate the dynamic of melanoma microenvironment (MME), playing a role in: (A) surviving
hypoxia; (B) angiogenesis; (C) immune cell reprogramming; and (D) conversion of normal fibroblasts
into cancer-associated fibroblasts (CAFs) [90,91] (Figure 2).
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Figure 2. The interplay of non-coding RNAs with the melanoma microenvironment: (A) Melanoma cells
overcome oxygen deprivation. Downregulation of miR-211 elevates PDK4 (pyruvate dehydrogenase
kinase 4) levels, leading to the inhibition of PDH (pyruvate dehydrogenase) via phosphorylation,
which in turn limits oxidative phosphorylation as pyruvate is rerouted away from the TCA (tricarboxylic
acid cycle). Increased levels of HIF1α (hypoxia-inducible factor 1 alpha) lead to the upregulation
of several miRNAs that target BNIP3 (BCL2/adenovirus E1B interacting protein 3), stimulating
glutamine metabolism; (B) MicroRNAs promote neo-angiogenesis. Certain miRNAs are upregulated in
melanoma cells and distributed to endothelial cells via exosomes, in order to increase the migratory and
pro-angiogenic potential of said cells and recruit them to the MME, found either in the cutaneous tissue
or in lymph nodes; (C) Malignant melanocytes reprogramme immune cells to favour the establishment
of an immunosuppressive microenvironment. In principle, miRNAs (often transported via exosomes)
recruit and promote the expansion of MDSCs (myeloid-derived suppressor cells) and T-regs (regulatory
T cells), inhibit cytotoxic T cells and trick NK (natural killer) cells by shedding soluble ligands in order to
avoid tumour cell lysis. The role of HOTAIR in this case is uncertain, even though its overexpression was
observed in the plasma membrane of lymphocytes associated with the MME; (D) Melanoma-derived
melanosomes deliver miR-211 to normal fibroblasts, which inhibits the expression of IGFR2 (insulin-like
growth factor receptor 2) and activates MAPK signalling, to transform them into cancer-associated
fibroblasts (CAF) and prepare the dermis for future invasion. ApoE: Apolipoprotein E; PDGF-C:
Platelet-derived growth factor C; VEGF-C: Vascular endothelial growth factor C; NKG2D: natural killer
group 2, member D; ULBP2: UL16 binding protein 2. Figure created with BioRender.com.

Hypoxic conditions promote the invasive potential of malignant melanocytes [92] and increase
the amount of specific miRNAs in exosomes (e.g., miR-494, miR-513a, miR-4497, miR-6087) [93,94].
Hypoxia-inducible factor 1 alpha (HIF1α), key player in the cellular response to oxygen deprivation [95],
promotes the expression of several miRNAs (miR-210, miR-218, miR-224, and miR-452) that contribute
to tumour cell plasticity and aggressiveness, by targeting and increasing BNIP3 (BCL2/adenovirus
E1B interacting protein 3), associated with glutamine metabolism [96–98]. In addition, low expression
of miR-211 leads to the upregulation of the metabolic regulator PDK4, which triggers a decrease in
pyruvate dehydrogenase and subsequent oxidative phosphorylation [99].

BioRender.com
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Another mechanism that favours melanoma cell proliferation and survival in oxygen deprived
environments is neo-angiogenesis [100]. It has been reported that miR-1908 and miR-199a negatively
regulate the expression of ApoE, a known suppressor of angiogenesis and cell invasion [60,101].
Moreover, melanoma cells with high levels of miR-1908 and miR-199a are more capable of recruiting
endothelial cells in vitro and in vivo [60]. Furthermore, the transfer of miR-9 from malignant
melanocytes to endothelial cells via exosomes stimulates their migratory and pro-angiogenic potential
through the activation of the JAK-STAT pathway [102]. Meanwhile, miR-214 is associated with
increased expression of VEGF-C and PDGF-C, which facilitate angiogenesis in lymph nodes, either by
inducing the proliferation of lymphatic endothelial cells, or by serving as a chemoattractant for CAFs
and blood endothelial cells [103,104].

Melanoma-derived miRNAs closely interact with immune cells to facilitate the escape of tumour
cells from immune surveillance, and thus contribute to melanoma progression [105]. For instance,
miR-210 impairs the cytotoxic activity of T cells by down-regulating TNF-α, IL-6, and IFN-β [106],
while miR-30c, miR-23a and miR-4299 selectively modulate the expression of CD30 in regulatory
T cells (T-regs) and myeloid-derived suppressor cells (MDSCs), facilitating the development of an
immunosuppressive milieu [28]. Additionally, high expression of miR-30d, coupled with low levels
of GALNT7, stimulates the secretion of IL-10, reducing the activation and recruitment of immune
cells. Interestingly, overexpression of miR-30d is also associated with an upsurge of FOXP3-positive
lymphocytes, diminution of CD3+ T cells recruitment and induction of T-regs [54]. Furthermore,
by targeting suppressor of cytokine signalling 1 (SOCS1), miR-155 is able to promote the recruitment of
MDSCs to the MME [107]. On top of that, the exosomal transfer of miR-20a-5p, miR-24-3p, miR-106a-5p,
miR-891a and miR-1908 stimulates expansion of T-regs and MDSCs, at the same time promoting the
Th1-polarization of CD4+ cells [108].

Natural Killer (NK) cells play an important role in cancer immune surveillance through the
interaction between the NKG2D (natural killer group 2, member D) receptor and its ligands (NKG2DL),
which enables them to identify and destroy tumour cells [109]. However, malignant melanocytes
can slip under the radar of NK cells due to miR-34a/miR-34c overexpression [110]. The cluster binds
the 3′UTR region of ULBP2 (UL16 binding protein 2), a stress-induced ligand of NKG2D, promoting
immune escape by enhancing its shedding from melanoma cells [110], which are detectable in serum
samples from melanoma patients [111].

Although most studies have focused on the miRNA cargo of exosomes and their influence on the
MME, a new concept has been put forth: the dermal niche formation for prospective invasion mediated
by miRNAs transported via melanosomes, a melanocyte-specific class of large vesicles (~500 nm)
originated from the endosomal system [91]. The role of melanosomes in melanoma progression has been
questioned because neoplastic melanocytes retain their ability to synthesize and transfer melanosomes
to nearby cells. Dror et al. discovered that melanoma melanosomes reprogram dermal fibroblasts into
CAFs, capable of increased cell proliferation, migration and secretion of pro-inflammatory cytokines.
The molecular mechanism behind this transformation seems to be associated with the transfer of
miR-211, which targets and silences the tumour suppressor IGFR2 (insulin-like growth factor receptor
2), whose downregulation enhances the activity of MAPK signalling pathway. These findings suggest
that melanoma cells shape the stromal niche early in the disease by manipulating dermal fibroblasts [91].
Studies on other tumour cell-related vesicles, specifically exosomes, have revealed that they enter the
lymphatic vessels and accumulate in sentinel lymph nodes, through interaction with lymphocytes,
where they promote cell proliferation, ECM remodelling, angiogenesis and pro-tumorigenic humoral
immunity, which facilitates the subsequent trapping and growth of melanoma cells [64,65,112,113].
The role of melanosomes in this context is as yet unknown.

Hardly any data is available for the influence of lncRNAs on the MME. In this regard, aberrant
expression of HOTAIR was detected in lymphocytes surrounding metastatic tumour cells in melanoma
patients [114]. The study highlighted the enriched expression of HOTAIR on the plasma membrane of
immune cells within TME, which would appear to be associated with specific “vesicle-like” membrane
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projections [115]. Even so, it is unclear whether the presence of this lncRNA on the surface of
intra-tumour lymphocytes is associated with endogenous production or it represents the outcome of a
signal transmission between melanoma cells and the cells of TME [116].

5. Non-Coding RNAs in Drug Resistance

Continuous treatment with target-based therapies remains unsuccessful and leads to melanoma
relapse due to acquisition of drug resistance. Even though BRAF monotherapy (BRAFi), or its
combination with MEK inhibitors (MAPKi) instigate a profound regression in patients with
BRAF-mutated metastatic melanoma, their effect is only temporary [23,24]. The same issue arises with
the use of immunotherapy [27]. The role of ncRNAs in the development of melanoma drug resistance
has been questioned and while the contribution of miRNAs is well studied [37], the role of lncRNAs in
such resistance is still largely unknown.

5.1. Resistance to BRAF or MAPK Inhibitors

The deregulated expression of several miRNAs, namely upregulation of onco-miRNAs and
downregulation of oncosuppressors, has been shown to contribute to the acquisition of drug resistance
to BRAFi or MAPKi-based therapy in melanoma (Table 1). For example, overexpression of miR-31a,
miR-100 and miR-125b stimulates tumour cell proliferation and apoptosis escape, decreasing drug
sensitivity in patients treated with vemurafenib. Their expression is associated with the chemokine
monocyte chemoattractant protein-1 (CCL2), which promotes melanoma progression in BRAFi-resistant
cells [117]. Inhibition of miR-125a leads to the partial drug resensitization of melanoma in a subset of
BRAFi-resistant cell lines [118]. Also, it has been concluded that miR-204 and miR-211 facilitate the
emergence of resistance to vemurafenib, as higher expression levels were found in resistant melanoma
cells compared to their drug-naïve counterparts [119,120]. Another miRNA involved in the modulation
of BRAFi sensitivity is miR-514a, which reportedly inhibits the tumour suppressor NF1, resulting in
increased survival to therapy [121].

Upregulation of oncosuppressor miR-7 negatively impacts the expression of target genes EGFR,
IGF-1R and CRAF in vemurafenib-resistant cells of in vitro melanoma models or xenograft mice,
which in turn inhibits the activation of MAPK and PI3K/AKT pathways, in this manner reversing
melanoma cell resistance to BRAFi [122]. Another oncosuppressor miRNA that indirectly targets
the previously mentioned cascades by repressing the expression of myeloid cell leukemia 1 (MCL-1),
and therefore potentiates sensitivity to BRAFi therapies, is miR-32. It has been speculated that
inhibition of MCL-1 through miR-32 may represent an efficient therapy for melanoma, regardless
of its mutational status (NRAS, BRAF or PTEN), as it was discovered to exhibit synergistic effects
with vemurafenib [123]. Furthermore, miR-200c prevents the establishment of drug resistance by
targeting several transcriptional repressors involved in EMT, and as such this specific miRNA is
significantly downregulated in resistant melanoma cells [124]. On top of that, low levels of miR-579-3p
can affect not only the BRAF/MAPK signalling pathway, but also the MDM2/p53 pathway, causing
uncontrolled cell proliferation and migration, coupled with inhibition of apoptosis, thus contributing
to the development of MAPKi resistance [125]. Of note, overexpression of miR-579-3p was able to
prevent colony formation in cells exposed to vemurafenib and impair the growth of BRAFi-resistant
melanoma cells in combination with the MEK inhibitor (MEKi) trametinib [125].

Recently, Sanlorenzo et al. identified MIRAT (MAPK Inhibitor Resistance Associated Transcript),
a novel cytoplasmic lncRNA, which is significantly overexpressed in melanoma cells with acquired
resistance to MAPKi, and modulates MAPK signalling by binding to the MEK scaffold protein
IQGAP1 [126]. Knockdown of SAMMSON was shown to sensitize melanoma to MAPK-targeting
therapeutics as well, but its underlying mechanism is unknown [81]. Meanwhile, Joung et al. performed
a genome-scale activation screen and found EMICERI (EQTN MOB3B IFNK C9orf72 enhancer RNA I),
a novel lncRNA that confers resistance to vemurafenib through upregulation of MOB3B and subsequent
activation of the Hippo signalling pathway [127].
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Table 1. Non-coding RNAs that contribute to resistance or sensitivity to targeted therapy with BRAF
or MAPK inhibitors.

Induced Effect Overexpression of
ncRNAs Target(s) Drugs References

Drug resistance

miR-34a, miR-100 and
miR-125b CCL-2

Vemurafenib

[117]

miR-125a BAK1, MLK3 [118]

miR-204 and miR-211 NUAK1/ARK5, IGFBP5,
TGF-bRII, Slug, CHD5 [119,120]

miR-514a NF1 [121]

MIRAT IQGAP1/MAPK signalling Trametinib (MEKi) and
PLX4720 (BRAFi) [126]

SAMMSON p32 mitochondrial protein Vemurafenib and
pimasertib (MEKi) [81]

EMICERI MOB3B/LATS1/Hippo
signalling axis Vemurafenib [127]

Drug sensitivity

miR-7 EGFR/IGF-1R/CRAF
Vemurafenib

[122]

miR-32 MCL-1 [123]

miR-200c Bmi-1 Vemurafenib or analog
PLX4720 [124]

miR-579-3p BRAF, MDM2 Vemurafenib and
trametinib [125]

5.2. Resistance to Immunotherapy

To date, results regarding the effect of ncRNAs on melanoma response to immune checkpoint
blockers are sparse [128,129]. In order for studies to gain momentum in this area, some suggested
the use of single-cell RNAseq approach to distinguish between the expression of cancer cells and
that of the immune components [90]. Nevertheless, some miRNAs have been recognised as being
involved in the conversion of monocytes into immunosuppressive MDSCs (let-7e, miR-99b, miR-100,
miR-125a, miR-125b, miR-146a, miR-146b, miR-155) [130], while some interfere with PD-1 (miR-28) or
PD-L1 (miR-17-5p) at a post-transcriptional level [131,132], facilitating resistance to immunotherapy
(Table 2). LncRNAs have also been identified as potential modulators of myeloid cell differentiation
towards an immunosuppressive phenotype (olfr29-ps1, lnc-chop) [133,134], however it seems that one
particular polycistronic lncRNA, namely melanoma-overexpressed antigen (MELOE), can unexpectedly
improve antigen presentation after being translated into short polypeptides, potentially increasing
melanoma immunotherapy efficiency [135] (Table 2). The highly specific melanoma antigens MELOE-1
and MELOE-2 are involved in T cell immunosurveillance and might prove valuable as T cell targets for
immunotherapy [135]. Interestingly, adoptive transfer of tumour-infiltrating T lymphocytes able to
recognize MELOE-1 contributed to the relapse-free survival of melanoma patients over an extended
period of time [136].

Table 2. Non-coding RNAs that interfere with immunotherapy in a negative or positive manner.

Name of ncRNAs Function Immune Response References

miR-28
Blocks immune checkpoint

Silences PD-1 by binding to its
3′UTR region

Negative [131]

miR-17-5p
Blocks immune checkpoint ligand
Binds to PD-L1 and contributes to

melanoma resistance
Negative [132]
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Table 2. Cont.

Name of ncRNAs Function Immune Response References

Let-7e, miR-99b,
miR-100, miR-125a,

miR-125b, miR-146a,
miR-146b, miR-155

Control of MDSC
Favours myeloid cell differentiation

and polarization towards an
immunosuppressive phenotype

Negative [130]

Olfr29-ps1

Control of MDSC
Promotes MDSCs’ differentiation

and function via de m6A-modified
Olfr29-ps1/miR-214-3p/MyD88

regulatory network

Negative [133]

Lnc-chop
Control of MDSC

Promotes the differentiation and
function of MDSCs

Negative [134]

MELOE

Antigen presentation
Produces immunogenic antigens

(MELOE-1 and -2) that are
recognized by cytotoxic T cells

Positive [135]

6. Clinical Applications of Non-Coding RNA Molecules in Melanoma Management

The clinical utilities and implications of ncRNAs in melanoma management are not fully established
and future investigations are needed to clarify this aspect [29,90], however some promising results
that recommend miRNAs and lncRNAs as tools for diagnosing, monitoring and treating cutaneous
melanoma are presented in the following sections.

6.1. Non-Coding RNAs as Circulating Biomarkers for Cutaneous Melanoma

Even though lots of therapeutic progress has been made throughout the past years in finding
alternative options for melanoma prognosis, it still remains challenging to find minimal invasive
methods to follow up cancer progression and metastasis. Thus, liquid biopsies rise as a useful tool for
the detection of circulating cancer biomarkers, among them ncRNAs [137–139].

Up to date lots of effort and work has been put in identifying a landscape of miRNAs as circulating
biomarkers for melanoma diagnosis and prognosis (Table 3). Among the first to address this matter,
Leidinger et al. have performed high throughput methods to validate a spectrum of 16-miRNAs
which could be identified only in melanoma positive patients [140]. Several studies have indicated an
increased level of multiple miRNAs, such as miR-19a, miR-149 and miR-126, in the plasma of metastatic
melanoma patients as compared to healthy controls, suggesting these molecules to be actively involved
in melanoma progression [141–143]. Interestingly, the co-detection of miR-185 and miR-1246 in liquid
samples could offer an accurate identification of patients with metastatic melanoma, which could allow
an early cancer diagnosis [144]. Additionally, Van Laar et al. have proposed a 38-miRNA signature
(MEL38) in order to designate melanoma from normal plasma samples and an 18-miRNA signature
(MEL18) which has the means to differentiate non-metastatic (stage I/II) and metastatic (stage III/IV)
melanoma subjects [145]. A study done by Li et al. has detected miR-221 in serums samples from
cutaneous MM patients, making this molecule a potential biomarker for melanoma evolution [146].
Another 4 miRNAs molecules (miR-30d, miR-15b, miR-150 and miR-425) have been proposed as
potential biomarkers in order to discriminate between low and high-risk cases of recurrence [147].
Furthermore, Stark et al. indicated a 7-miRNA panel (MELmiR-7) including miR-16, miR-509-5p,
miR-4706 and miR-211-5p which could be successfully implemented in the prediction of melanoma
growth and recurrence, thus having a significant impact on melanoma prognosis and diagnosis [148].
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Table 3. Promising results that recommend non-coding RNAs as circulating biomarkers for potential
clinical applications.

Potential Role Non-Coding RNAs Sample Type References

Circulating biomarkers
for prognosis
and diagnosis

16 miRNA panel (among them miR-30d
and miR-17) Blood [140]

miR-19a
miR-126
miR-149

Plasma

[141–143]

miR-185
miR-1246 [144]

18 miRNA panel (among them
miR-199b-5p and let-7e) [145]

miR-221

Serum

[146]

miR-15b
miR-30d
miR-150
miR-425

[147]

7 miRNA panel
(among them miR-16, miR-211-5p,

miR-4706 and miR-509)
[148]

SPRY4-IT Plasma [149]

HOTAIR Serum [82,114]

In a similar manner, lncRNA molecules have also been identified as potential circulating biomarkers
for melanoma (Table 3). In this context, it has been demonstrated that plasma lncRNA SPRY4-IT is
significantly higher in tumour samples as compared to healthy controls [149]. Furthermore, Tang et al.
observed the overexpression of HOTAIR in melanoma serum samples in comparison to non-cancer
probes [82], while Cantile et al. found a significantly higher expression of HOTAIR in serum samples
taken from patients with advanced melanoma [114]. These promising reports support the fact that
HOTAIR has strong implications in the carcinogenesis of melanoma, making it a potential prognostic
and diagnostic marker for MM.

6.2. Non-Coding RNAs as Targets for Promising Therapeutic Strategies

The potential of targeting ncRNAs to develop novel anticancer therapeutic strategies or to increase
the efficacy of already existing ones has been pointed out in several studies [90,150,151].

A number of ways in which miRNAs could be used have already been analysed, among which
(1) synthetic miRNA mimetic agents, that could replace lost miRNA, (2) small-molecule inhibitors
of miRNA, used for suppressing miRNA biogenesis or interaction with its target, (3) anti-miRNA
oligomers, which are competitive inhibitors of miRNAs, leading to an upregulation of the target
mRNA, or even (4) directly targeting miRNAs in the course of their transport within the tumour milieu
or to other sites [152]. For example, miR-200c has been described as a potential therapeutic target for
overcoming resistance to BRAFi therapy. In BRAFi-resistant cell lines and more importantly in clinical
samples, low levels of miR-200c are correlated with acquired resistance. Restoration of miR-200c
expression or knockdown of its molecular target favours the effect of inhibitory drugs and impairs
the establishment of resistance [124] (Table 4). However, the use of miRNAs in therapy is hampered
by their poor intracellular uptake, as well as rapid degradation in biological fluids. Strategies to
deliver tumour-suppressive miRNAs or interfere with tumour-promoting miRNAs are still under
development [153]. For instance, Fattore et al. developed lipid nanoparticles to encapsulate miR-204-5p
and miR-199b-5p, either individually or in combination, and tested them on in vitro drug resistant
models. Their results showed that these lipid nanoparticles loaded with oncosuppressor miRNAs are
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highly efficient in impairing melanoma cell proliferation and viability, affecting key signalling cascades
involved in cell survival, in addition to positively influencing the efficacy of BRAF and MEK inhibitory
drugs [154] (Table 4).

Table 4. Promising results that recommend non-coding RNAs as therapeutic targets for potential
clinical applications.

Potential Role Functional Studies Research Model Therapeutic Effect(s) References

Targets for promising
therapeutic strategies

Lentiviral overexpression of
miR-200c

BRAFi-resistant
cell lines

Restores sensitivity to
BRAFi therapies [124]

Lipid nanoparticles loaded
with miR-204-5p and/or

miR-199b-5p

In vitro drug
resistant models

Impair melanoma cell
proliferation and viability

Positively influence the
effect of MAPKi

[154]

siRNA-mediated
knockdown of SPRY4-IT1

Malignant
melanoma
cell lines

Prevents tumour cell growth
and limits invasion [70,71]

siRNA-mediated
knockdown of HOTAIR

Inhibits cell motility and
decreases invasion [82]

siRNA-mediated
knockdown of UCA1

Inhibits cell proliferation
and invasion

Induces cell cycle arrest
[84]

siRNA-mediated
knockdown of MALAT1

Impairs melanoma
cell migration [83]

siRNA-mediated
knockdown of ANRIL

Diminishes colony
formation and

metastatic ability
[80]

siRNA-mediated
knockdown of SLNCR1

Decreases invasiveness of
melanoma cells [74]

Lentiviral overexpression of
GAS5

In vitro and
in vivo models

Inhibits melanoma growth
and cell migration [86]

SAMMSON-specific
antisense oligonucleotide

Patient- derived
xenograft

Induces apoptosis
Exerts a synergistic
anti-tumour effect
with dabrafenib

[81]

The involvement of lncRNAs in melanoma has promising therapeutic implications and selective
knockdown of specific lncRNAs could lead to the development of reliable therapeutic strategies
(Table 4). Out of the current methods available for studying lncRNAs, small interference RNA
(siRNA)-dependent knockdown is used the most [155]. For instance, siRNA-mediated knockdown of
SPRY4-IT1 in melanoma cell lines prevented tumour cell growth and limited invasion [70,71]. Similar
results were obtained for knockdown of HOTAIR and UCA1, including inhibition of cell motility
and invasive capacity [82,84]. MALAT1 knockdown was followed by a decrease in melanoma cell
migration [83], whereas colony formation and metastatic ability of cancer cells were diminished in
the absence of ANRIL [80]. Knockdown of SLNCR1 decreased the invasiveness of melanoma cells,
although cell proliferation and motility were not affected [74]. Administration of GAS5, a tumour
suppressor lncRNA, to nude mice inhibited melanoma growth, however further studies focused on
the therapeutic value of GAS5 are needed [86].

The combination of a SAMMSON-specific antisense oligonucleotide with the BRAFi dabrafenib
exerted a synergistic anti-tumour effect and induced apoptosis in a patient derived tumour xenograft
preclinical model, whereas dabrafenib could only restrain melanoma growth (Table 4). Moreover,
no significant difference was found between the toxicity levels of administrating SAMMSON-specific
antisense oligonucleotide with BRAF inhibitors in comparison to administration of BRAF or MEK
inhibitors alone [81].
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7. Conclusions

Research concerning the molecular landscape of malignant melanoma has brought impressive
results in terms of patients’ overall survival in metastatic disease, due to its contribution to the
development of targeted-based drugs and immunotherapy. Nevertheless, acquired resistance to
therapy still remains a challenge, reflecting upon the poor prognosis of a significant number of
patients. In this regard, therapeutic strategies aimed to modulate ncRNAs in combination with targeted
agents and/or immunotherapy may represent a more efficient solution, considering that miRNAs and
lncRNAs are not only involved in melanoma invasion and metastasis, but also facilitate resistance
against currently available molecular therapeutic approaches. Important candidates include miR-28,
miR-100, miR-125a, miR-125b, miR-200c, miR-211, SAMMSON, MELOE and HOTAIR. The first miRNA
mentioned silences an essential immune checkpoint of cytotoxic T cells (PD-1), contributing to the
immune escape of malignant melanocytes and to acquired resistance to immunotherapy [131]. miR-100,
miR-125a and miR-125b also impair immunotherapy by favouring myeloid cell differentiation and
polarization towards an immunosuppressive phenotype [130]. Furthermore, these miRNAs decrease
drug sensitivity to BRAF inhibitors [117,118], promoting tumour cell proliferation, survival and
invasion [58,117]. In BRAFi-resistant melanoma cell lines, the expression of miR-200c is significantly
decreased, however its restoration prevents the establishment of drug resistance by targeting several
transcriptional repressors involved in EMT [124]. Another strong potential therapeutic target is
miR-211, whose downregulated expression indirectly ensures the inhibition of MITF and subsequent
highly invasive phenotype of melanoma cells [43,46]. Low levels of miR-211 also aid malignant
melanocytes in overcoming hypoxia [99], while delivery of this particular miRNA by melanoma-derived
melanosomes to normal fibroblasts promotes their conversion into CAFs, priming the dermis for future
invasion [91]. Remarkably, higher expression of miR-211 facilitates the emergence of resistance to
vemurafenib [119,120], and its presence in liquid biopsies was found to predict melanoma growth
and recurrence [148], marking it not only as a therapeutic target but also as a potential diagnostic and
prognostic biomarker. Concerning lncRNA candidates, knockdown of SAMMSON drastically affects
tumour cell proliferation and viability, even sensitizing melanoma to dabrafenib and MAPK-targeted
drugs [81]. MELOE is of particular interest for immunotherapy, considering that it can be translated
into highly specific melanoma antigens (MELOE-1 and -2), that facilitate the recognition of tumour
cells by cytotoxic T cells [135]. Although the role of HOTAIR in acquired drug resistance is currently
unknown, it could represent a promising therapeutic target for MM, considering it was found
particularly enriched in lymph-node metastases and its knockdown suppressed melanoma cell motility,
significantly decreasing invasion [82]. Higher HOTAIR expression was also detected in serum samples
from patients with advanced melanoma, which suggests that this specific lncRNA may also serve as a
prognostic and diagnostic marker for MM [114]. Strategies to deliver tumour-suppressive ncRNAs or
interfere with tumour-promoting ncRNAs are searched for and future directions for the development
of innovative treatment modalities include the use of intelligent nanocarriers loaded with ncRNAs
for selective gene therapy. Although miRNAs and lncRNAs seem very promising biomarkers, their
translation into the clinical area requires further studies and future investigative clinical trials.
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