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Abstract
Innovations are expanding the capabilities of experimental investigations of the
structural properties of membrane proteins. Traditionally, three-dimensional
structures have been determined by measuring x-ray diffraction using protein
crystals with a size of least 100 μm. For membrane proteins, achieving crystals
suitable for these measurements has been a significant challenge. The
availabilities of micro-focus x-ray beams and the new instrumentation of x-ray
free-electron lasers have opened up the possibility of using
submicrometer-sized crystals. In addition, advances in cryo-electron
microscopy have expanded the use of this technique for studies of protein
crystals as well as studies of individual proteins as single particles. Together,
these approaches provide unprecedented opportunities for the exploration of
structural properties of membrane proteins, including dynamical changes
during protein function.
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Introduction
Membrane proteins are essential components of cell membranes, 
playing key roles in a wide range of cellular processes.  
Membrane proteins are often composed of multiple protein  
subunits, with some regions being hydrophobic and buried  
within the cell membrane whereas others are hydrophilic and 
exposed to the solvent1 (Figure 1). Spanning the cell membrane 
is essential to their function, for example G protein–coupled  
receptors (GPCRs) sense alterations in the environment and  
transmit responses across cell membranes as part of signal trans-
duction pathways. In photosynthesis, reaction centers convert 
light energy into chemical energy through electron and proton  
transfer events, creating proton gradients across the membrane. 
The proton gradients, which are produced in photosynthesis 
and processes such as respiration, are used by ATP synthase to  
synthesize the energy-rich molecule ATP. Owing to their intrin-
sic roles in metabolism, membrane proteins with mutations 
and improper folding are associated with impaired metabolic 
processes, which often result in diseases. Thus, in addition to  
facilitating our understanding of the fundamental science, new 
structures of membrane proteins provide a platform for rational 
drug design2,3.

Since the 1950s, the technique of protein crystallography has 
been the primary choice for the determination of the structures of 
proteins. Initially, the resulting structures had been restricted to  
water-soluble proteins, excluding proteins that are embedded in 
cell membranes. Extraction of proteins from the cell membrane 
traditionally made use of detergents and the resulting protein– 
detergent complexes were regarded as being biochemically 
too difficult to crystallize. Electron microscopy provided an  
opportunity to perform structural studies on membrane proteins 
that formed two-dimensional crystals in membranes, allowing  
measurement of both image and diffraction data. These stud-
ies provided the initial structural information for membrane  
proteins, highlighted by the determination of the overall structure 

of bacteriorhodopsin and the presence of seven-transmembrane 
helices in 19754. In 1985, the landmark report of the structure of 
the reaction center from Rhodopseudomonas viridis, later renamed  
Blastochloris viridis, demonstrated the feasibility of obtain-
ing diffraction-quality crystals of membrane proteins, and the  
authors Deisenhofer, Michel, and Huber received the Nobel 
Prize in 19885. This work was followed by additional struc-
tures of other membrane proteins, including the reaction center 
from Rhodobacter sphaeroides in 19876. The reaction center  
structures established many aspects of membrane proteins, such 
as the prediction that the long regions of hydrophobic amino 
acid residues evident in their sequences formed long membrane- 
spanning helices (Figure 2). In addition to being very robust to 
genetic modifications, reaction centers after purification can be  
re-incorporated into membranes composed of a range of lipids 
and non-lipid polymer membranes (Figure 1). Of particular note, 
the structures showed an unexpected symmetrical arrangement of 
the bacteriochlorophylls and quinone cofactors in two branches7.  
The combination of structural and spectroscopic analysis  
established the role of the cofactor branches as electron trans-
fer pathways and enabled the development of detailed elec-
tron transfer mechanisms that validated the theoretical ideas of  
Marcus8, who won the Nobel Prize in 1992.

These efforts demonstrated the scientific benefit that could 
be gained from structural analysis of membrane proteins. 
Although the rewards were notable, significant technical obsta-
cles remained, such as limited expression of the proteins and 
poor diffraction quality of the crystals. The tenacity of many 
research groups produced additional structures, but the number 
remained small compared with the tens of thousands of membrane  
proteins that are present in cells9. This report reviews the  
exciting novel technical improvements in structural biology 
which are enhancing experimental research efforts to determine 
structures of membrane proteins and dynamical changes during  
catalysis.

Figure 1. Model of the bacterial reaction center buried within a membrane. Shown are the protein subunits of the reaction center from 
Rhodobacter sphaeroides (orange, green, purple subunits with blue cofactors) that are positioned within an artificial membrane (yellow 
carbon chains with white head groups) based upon a range of spectroscopic studies (modified from 1).
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Figure 2. Three-dimensional structures of reaction centers from Blastochloris viridis and Rhodobacter sphaeroides. The arrangement 
of the bacteriochlorophyll and quinone cofactors (red) is shown. The two core protein subunits—L (yellow) and M (cyan)—and the H subunit 
(green) are all conserved, whereas the tetraheme cytochrome subunit (orange) is found only in reaction centers from B. viridis. (PDB files 
1PRC and 4RCR5,6.)

Structural biology of membrane proteins
Using x-ray diffraction requires the organization of the membrane 
proteins into crystalline arrays10. The biochemical formation 
of crystals of membrane proteins remains a challenge, but new 
approaches are overcoming difficulties associated with crys-
tallization. In this review, strategies and protocols for crystal-
lization, including how membrane proteins can be modified 
to enhance their crystallization, are briefly described. Then an  
overview is provided concerning how small micron-sized  
crystals now can be used because of advances of micro-focus  
beams at synchrotrons and the introduction of x-ray free- 
electron lasers (XFELs) as an extremely bright source of  
x-rays. The enhanced capability of cryo-electron microscopy 
(cryo-EM) for structural measurements of protein crystals is  
presented along with consideration of the impact of such  
measurements on proteins as single particles.

Protein crystallization
Protein crystallization developed along with x-ray diffraction 
as a means to determine three-dimensional structures, and many 
reviews that describe crystallization protocols are available11,12.  
Membrane proteins are sparingly soluble in aqueous solutions 
and require the use of detergents to produce a soluble protein– 
detergent–lipid complex. Since crystallization remains, by and 
large, an empirical procedure, requiring testing of thousands 
of possible biochemical conditions, the additional parameters  
associated with the detergents and inclusion of amphiphilic 
molecules significantly amplify the number of conditions that 
are typically tested. Highly automated instrumentation can  
manipulate protein solutions on the nanoliter scale to test large 
numbers of conditions.

An effective alternative to the approach of crystallizing  
protein–detergent complexes is the use of lipids in place of  
detergents13,14. Via the lipid cubic phase or in meso method, the 
lipids phase-separate from the solution, forming a bicontinuous  
cubic phase, which contains bilayers into which the isolated 
proteins can be reconstituted. The addition of a precipitant  
triggers alteration of the mesophase properties, which can lead 
to enrichment of the protein and crystallization. Crystalliza-
tion screens are available using this approach, which has proven 
useful in the structure determination of hundreds of membrane  
proteins.

In addition to detergents and lipids, a wide range of solubiliz-
ing agents have been developed to extract proteins from the  
membranes while maintaining protein–lipid interactions.  
Examples include styrene maleic acid co-polymers that effi-
ciently liberate membrane proteins, including large unstable 
membrane proteins, into nanometer-sized bilayer discs that 
are suitable for structural analysis using cryo-EM and x-ray  
diffraction15–17.

Despite the fundamental role of GPCRs, progress in the elu-
cidation of their structures lagged. Persistence in establishing  
suitable crystallization conditions for rhodopsin, the site for 
primary conversion of light in the signaling pathway that  
leads to vision, demonstrated both the feasibility and difficulties 
of crystallizing these receptors18,19. For the human β

2
 adrenergic  

receptor, diffraction-quality crystals were obtained only after 
modifications of the protein20. Structures were independently  
obtained after the biochemical inclusion of a monoclonal  
antibody that binds at a surface loop and a genetic incorporation 
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of a small water-soluble protein, T4 lysozyme, to produce a new 
domain favoring protein–protein interactions (Figure 3)21,22. One of 
the authors of these papers, Kobilka, received the Nobel Prize in 
2012 with Lefkowitz for their studies of GPCRs.

Improvements in crystallization through the use of thermosta-
bilizing mutations, nanobodies, and novel fusion partners  
allow the crystallization of virtually any GPCR23. These improve-
ments have been accompanied by the development of x-ray  
beam lines at synchrotron sources24. These sources are signifi-
cantly more brilliant and more stable than previously available,  
providing a means to measure high-quality diffraction from 
crystals with sizes of tens of microns. The greater availability  
of these beams coupled with enhanced features, such as remote 
control of the instrumentation and remote data collection, is  
enabling new opportunities for structural studies.

X-ray free-electron lasers
In 2000, Neutze et al. wrote a provocative theoretical paper  
describing a new technique for the measurement of diffraction 
from individual proteins25. Rather than using x-ray beams from  
synchrotrons, they proposed to use x-ray beams produced using 
free-electron lasers that are more than 10 orders of magnitude 
brighter than the beams at synchrotrons. Such bright beams 
would quickly result in the destruction of the proteins, but they  
calculated that there would be a very short period of time, a 
few femtoseconds, when diffraction could be measured from  
nano-sized protein crystals. Since the crystals are destroyed  
immediately after measurement, only one still diffraction  
pattern could be recorded from each protein crystal. Obtaining 
the complete diffraction pattern would require measurement of  
diffraction from thousands of individual crystals that are each 
randomly oriented in the beam, which then are combined to  
generate the full diffraction data set. In 2009 and 2011, XFEL 

lines became available at x-ray facilities in the US and Japan,  
respectively, and experimental work soon thereafter clearly  
demonstrated the observation of diffraction that could be  
analyzed to produce full diffraction data sets for membrane  
proteins such as photosystem II26–28. Research continues to 
make rapid advances concerning many technical issues, such 
as methods for delivering nano-crystals to the beam and  
computational analysis of the large data sets, and the planned  
openings of new XFEL facilities promise increasing use of this  
technique29.

Cryo-electron microscopy
A new era in structural biology studies of membrane complexes 
is being ushered in by technical developments in cryo-EM. 
Images obtained from adenovirus by Dubochet’s laboratory  
demonstrated the possibility of measuring frozen unstained  
samples and obtaining images with a high level of detail30. The 
structural work in Henderson’s laboratory on crystalline arrays of 
bacteriorhodopsin embedded in membrane sheets demonstrated 
the utility of cryo-EM for membrane proteins4,31. For their work 
in developing this field, Dubochet, Henderson, and Frank, who 
developed processing methods to sharpen the images, received 
the Nobel Prize in 2017. Since then, a number of advances,  
including improved methods for sample preparation, increasingly 
sensitive direct electron detectors, and advancements in image 
processing software, have helped overcome several challenges 
in its use32. In crystallization experiments of conditions to grow 
protein crystals, they often only reach a very thin size (<400 nm)  
that is too small for traditional diffraction measurements.  
However, high-quality diffraction now can be obtained by using 
micro-electron diffraction (MicroED)33.

When suitable crystals are not available, a new opportunity is 
available for structural analysis of membrane proteins using  
cryo-EM as improvements in instrumentation and image 
processing algorithms now allow structures to be obtained by  
single-particle analysis of images but without the need of  
crystals34. The transient receptor potential (TRP) ion channel 
superfamily plays critical physiological roles and consequently 
is a drug target35. Attempts to crystallize even small domains  
were unsuccessful, but the elucidation of several structures has  
been achieved by single-particle cryo-EM, revealing the 
arrangement of the protein in the membrane and providing 
insight into their roles in sensing heat and activating pain  
pathways36–39.

The structure of ATP synthase serves as another excel-
lent example of how cryo-EM can provide detailed structural  
information concerning large membrane-bound protein  
complexes. ATP synthase is essential to all of life as it produces 
the key molecule ATP using the energy stored in the form of a 
proton gradient across the cell membrane. This enzyme has two  
domains: a hydrophilic F

1
 domain that contains the catalytic sites 

and a membrane-embedded F
0
 domain. The structures of the 

intact complexes at atomic detail reveal how these domains are  
connected by additional protein components, termed the rotor 
and stalk, in analogy to mechanical rotary motion40,41 (Figure 4). 
During catalysis, the transfer of protons through the F

0
 domain 

Figure 3. Three-dimensional structure of the human β2 adrenergic 
receptor (cyan) showing the presence of seven-transmembrane 
helices that are conserved among G protein–coupled receptors 
surrounding the agonist carazolol (red). For crystallization, 
a lysozyme domain (wheat) was added, replacing one of the 
connecting loops (PDB file 2RH121).
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Figure 4. Three-dimensional structure of ATP synthase. The 
backbones of the 14 protein subunits are shown (and each protein 
subunit is colored differently). During catalysis, the hydrophilic F1 
domain rotates relative to the domain that is embedded in the cell 
membrane. This rotation modifies the protein environment of the 
catalytic site, resulting in the production of ATP. The complex can 
be considered to be a rotary motor with a stator and rotor rotation 
that is powered by a transfer of protons across the cell membrane 
(PDB file 6CP641).

drives the rotation of the F
1
 domain relative to the F

0
 domain. This  

mechanical motion is coupled with structural changes at the 
catalytic sites that drive the synthesis of ATP. Together, these  
examples show the potential of cryo-EM to be a game changer for 
structural studies of large membrane proteins.

Cryo-EM has been used for the structure determination of  
biological complexes with molecular masses up to megadaltons, 
but lower molecular masses represent a technical challenge42.  
The use of volta phase plates43 has recently opened new possi-
bilities in cryo-EM for the structure determination of membrane  
proteins that have molecular weights of only 110 to 120 kDa. 
This has revolutionized the field of GPCR research, where in 
the last two years nine structures of GPCRs coupled to heterot-
rimeric G proteins have been determined; by comparison, only  
one structure was determined by x-ray crystallography over the  
previous eight years44.

Membrane protein dynamics
Biochemical reactions typically occur on a millisecond times-
cale, requiring specific strategies for the experimental identifi-
cation of any intermediates during the processes. Formation of  
intermediate configurations facilitates catalytic reactions, and 
identification of these rearrangements is needed to validate  
specific chemical mechanisms. Förster resonance energy trans-
fer provides an experimental means to characterize dynamical  
changes of proteins in solution. In this technique, the proteins 
are typically labeled with dyes at specific locations, and the  

extent of energy transfer between the dyes is measured by 
using optical spectroscopy. Because the energy transfer has a  
pronounced dependence on the distance between the dyes, any  
conformational changes of the protein are revealed as altera-
tions of the extent of energy transfer. While measurements of the  
average properties of proteins in solutions can be revealing, the 
ability to examine single molecules has paved the way to not 
only resolve features such as structural alterations upon ligand  
binding but also investigate interactions involving membrane 
proteins as occurs in fundamental cellular processes such as 
membrane transport and the rotation of ATP synthase during  
catalysis45.

The emerging capabilities for cryo-EM and x-ray diffraction are 
providing new strategies to map dynamical changes46. Tradition-
ally, protein crystallography has been used to probe such changes 
by trapping proteins in different functional states. The ability 
to measure very small crystals potentially opens the door to the  
examination of dynamical changes after the substrate has been 
introduced into suspensions containing nano-crystals of an  
enzyme47. While this technique is undergoing experimental 
developments, time dependences of configurations involving  
intermediate catalytic configurations have been observed48,49. 
The power of time-resolved XFEL measurements has been 
demonstrated on proteins that can be optically triggered. As an  
example, the bacterium Halobacterium halobium grows in salty 
waters such as the Dead Sea with a distinctive purple color due 
to high concentrations of the membrane protein bacteriorho-
dopsin. This protein contains a retinal cofactor that undergoes a  
conformation change after light absorption, and the struc-
tural changes result in the transfer of a proton across the mem-
brane in a few milliseconds. Whereas some conformational 
changes of this process have been identified by trapping experi-
ments, the time dependence of the progression of conforma-
tions was measured using XFEL, showing how the motions are  
choreographed to achieve proton transfer (Figure 5)50,51.

Another exciting direction for structural studies of membrane 
proteins is the dynamical interactions between proteins and lip-
ids in cell membranes. Cell membranes have a multitude of  
different lipids that can flow within the membrane and form 
small microdomains containing enriched amounts of membrane 
proteins52. Some membrane proteins depend upon interactions 
with specific lipids that can bind tightly to the protein, and  
interfacial lipids have both transient and stable interactions that  
stabilize membrane proteins, including GPCRs53,54.

Concluding thoughts
Structural biology is evolving and new experimental avenues 
are becoming available for obtaining molecular information  
about membrane protein complexes. The techniques are  
continuing to be improved and new facilities are coming online,  
allowing structures to be determined from crystals that are 
increasingly small. These emerging innovations are promising 
for future research efforts and should have a major impact on 

Page 6 of 9

F1000Research 2019, 8(F1000 Faculty Rev):211 Last updated: 22 FEB 2019



Figure 5. Three-dimensional structures of bacteriorhodopsin at different periods of time following illumination. Absorption of light 
by the retinal results in a trans-cis isomerization, which starts the process of proton transfer. Structural changes are evident on very fast 
timescales. The structures are shown for the retinal and a few surrounding residues, Leu 93, Thr 178, Trp 182, Lys 216, and Phe 219 at the 
initial time (red), 760 ns after excitation (green), and 1.7 ms after excitation (cyan). (PDB files 5B6V, 5B6X, and 5B6Z50.)

our understanding of membrane proteins and their functions in  
cells.

Abbreviations
Cryo-EM, cryo-electron microscopy; GPCR, G protein–coupled 
receptor; XFEL, x-ray free-electron laser.
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