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Abstract

Few models of sequence evolution incorporate parameters describing protein structure, despite its high conservation,
essential functional role and increasing availability. We present a structurally aware empirical substitution model for
amino acid sequence evolution in which proteins are expressed using an expanded alphabet that relays both amino acid
identity and structural information. Each character specifies an amino acid as well as information about the rotamer
configuration of its side-chain: the discrete geometric pattern of permitted side-chain atomic positions, as defined by the
dihedral angles between covalently linked atoms. By assigning rotamer states in 251,194 protein structures and iden-
tifying 4,508,390 substitutions between closely related sequences, we generate a 55-state “Dayhoff-like” model that shows
that the evolutionary properties of amino acids depend strongly upon side-chain geometry. The model performs as well
as or better than traditional 20-state models for divergence time estimation, tree inference, and ancestral state recon-
struction. We conclude that not only is rotamer configuration a valuable source of information for phylogenetic studies,
but that modeling the concomitant evolution of sequence and structure may have important implications for under-
standing protein folding and function.

Key words: molecular evolution, phylogenetic estimation, phylogenetics, protein evolution, protein structure,
rotamer, substitution model.

Introduction
The development of evolutionary models is a prerequisite
(albeit sometimes an implicit one) for many common bioin-
formatics tasks such as recognition of homologous sequences,
phylogenetic tree estimation, evolutionary hypothesis testing,
and protein structure prediction (Huelsenbeck and Rannala
1997; Felsenstein 2004; Koonin 2005; Ginalski 2006). Because
of this, the development and improvement of model-based
approaches to studying protein evolution is an area of re-
search where advances have wide-spread benefits.
Furthermore, high-resolution structural information from a
variety of techniques is now available for large numbers of
proteins and molecular assemblies (Milne et al. 2013; Carroni
and Saibil 2016; Venien-Bryan et al. 2017), improving our
understanding of how protein folding and residue function
change over time.

Empirical Models of Amino Acid Replacement
When studying the evolution of amino acid sequences, sub-
stitutions are usually described using a continuous-time
Markov model with the 20 amino acids as the states of the
chain (Li�o et al. 1998; Felsenstein 2004; Thorne and Goldman
2007; Perron et al. forthcoming). Models belonging to the

empirical class are built by analyzing large quantities of se-
quence data (typically hundreds of protein alignments) and
estimating relative substitution rates between all state (amino
acid) pairs under a time-reversible model. Empirical models
are typically assumed to be applicable to broad classes of
proteins with little further parameter optimization aside
from techniques that match amino acid frequencies to
what is observed in a specific data set under study and allow
for rate heterogeneity amongst sequence sites (Yang 1993).

The first empirical amino acid substitution model was in-
troduced by Dayhoff and coworker in 1966 (Eck and Dayhoff
1966) and updated regularly until 1978 (Dayhoff et al. 1978).
They compiled protein sequence alignments and tabulated
amino acid substitutions along branches on the phylogenetic
trees; from these data, an instantaneous rate matrix Q defin-
ing a continuous-time Markov model can be constructed
(Kosiol and Goldman 2005). Since then, a number of alterna-
tive Q-matrices for amino acid substitution have been
developed using similar approaches but taking advantage of
more powerful model estimation techniques, and larger or
more specific data sets. Examples include MTMAM (Yang
et al. 1998) for mammalian mitochondrial proteins and
GPCRtm for the transmembrane region of GPCRs (Rios
et al. 2015); WAG (Whelan and Goldman 2001) and LG
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(Le and Gascuel 2008) that were derived from larger, diverse
databases of sequence alignments; and LG4X (Le et al. 2012)
that aims to capture varying evolutionary dynamics at differ-
ent sequence sites.

Role of Structural Information in Understanding
Protein Evolution
Although considering particular proteins’ distinct amino acid
compositions and among-site rate variation improves a mod-
el’s statistical fit to the data indicating a better description of
evolutionary patterns, it seems clear, from considering protein
structure and function, that at least some variability in the
evolutionary process will be associated with the structural
environment of a site (Thorne and Goldman 2007; Perron
et al. forthcoming). For example, solvent-exposed residues
evolve more rapidly than those buried in the protein interior
(� �2) and exhibit different amino acid frequencies and
substitution patterns, due to less steric constraint and the
need to interact favorably with water. Similarly, secondary
structure also influences substitutions, for instance disfavor-
ing amino acids in a-helices that are incompatible with the
canonical a-helical conformation due to disrupting backbone
geometry or steric clashes arising from branching at the Cb

atom. Models that account for some of these differences, for
instance by using a separate 20-state model for different
structural environments, have resulted in improved fit over
those based on sequence alone (Goldman et al. 1998; Li�o et al.
1998; Overington et al. 2008).

The tertiary and quaternary structures of proteins provide
further constraints to evolution, in the form of natural selec-
tion operating on the specific interresidue interactions that
stabilize the fold of the protein, as well as the need to avoid
misfolding and aggregation (Overington et al. 1990;
Shakhnovich et al. 1996). Although attempts to model
some of these factors have been made (Bastolla et al. 2003,
2006; Robinson et al. 2003; Rodrigue et al. 2005, 2006; Arenas
et al. 2017), this has proven difficult due to the challenging
computational requirements of models that allow evolution
at one position to be dependent upon the sequence at other
positions. In addition to the difficulties that arise when site
independence can no longer be assumed, these models are
considerably more complex and require further assumptions
such as 1) a constant tertiary structure, 2) approximate func-
tions to map sequence to stability or misfolding propensity,
and 3) additional approximate functions to map stability or
misfolding propensity to rate effects. These approaches pro-
duce biologically plausible results and demonstrate the ben-
efits of introducing explicit structural constraints to the
evolutionary process. However, they are computationally de-
manding, difficult to use in an inference setting, and are not,
unlike our model, readily integrated into commonly used
software.

A substantially different approach to modeling how pro-
tein tertiary structure changes over evolutionary time was
proposed by Challis and Schmidler (2012). In their approach,
a protein’s structural information is summarized via its a-
carbon three-dimensional coordinates; the model then
employs a time-reversible, continuous-time, and

continuous-state Markov model to describe how the a-car-
bon coordinates constituting one protein can be transformed
during evolution into the a-carbon coordinates that consti-
tute a related protein. Implementations of the Challis–
Schmidler model for phylogenetic inference purposes
(Herman et al. 2014) are computationally tractable, at least
for data sets of limited size, and have shown improvements
over traditional models relying on sequence data alone.
Specifically, the inclusion of structural information signifi-
cantly reduced alignment and topology uncertainty and pro-
duced results that were more robust to the choice of data set.

One limitation of the Challis–Schmidler model is the as-
sumption that, at equilibrium, the spatial locations of con-
secutive amino acids in a protein sequence would be
independent of one another. In reality, such changes are cor-
related and constrained to specific torsional angles. Golden
et al. (2017) have proposed a model of structural evolution
that describes the evolution of protein tertiary structure using
a specialized stochastic process that operates in dihedral angle
space. The Golden model, although still quite different from
traditional amino acid substitution models, is comparatively
more realistic than previous stochastic models such as the
Challis–Schmidler model and provides insights into the rela-
tionship between sequence and structure evolution.

An Evolutionary Model Based on Side-Chain Rotamer
States
In this article, we present an evolutionary model that intro-
duces structural information by accounting for the confor-
mational state of each residue based on the atomic positions
of its side-chain. Specifically, we split the traditional 20 amino
acid states into discrete substates based on the v1 rotamer
(short for “rotational isomer”) configuration of their side-
chains as defined in the Dunbrack rotamer library
(Shapovalov and Dunbrack 2011). In this classification, each
residue can adopt one of (typically) three discrete configura-
tions (fig. 1 and supplementary fig. 1, Supplementary Material
online) defined by the dihedral angle between the first two
covalently linked carbons in the side-chain (Ca and Cb). These
three stable rotamer configurations correspond to specific v1

dihedral angle values (�60�, ��180�, and ��60�) consis-
tently across all residues; this means that residues sharing the
same rotamer configuration (e.g., PHE1 and TRP1 in fig. 1)
have side-chains that are similarly oriented with respect to
the backbone. The adoption of one rotamer configuration
over another is determined by their relative stability, a com-
bination of the intrinsic stability of that state, local factors
such as the backbone geometry and the position of atoms
further along the side-chain, and the forces applied by the
surrounding residues and the requirement to pack alongside
them. Thus, they convey information about both the local
structure as well as the interactions of the residue within the
fold as a whole. As these states are discrete and finite, and
each residue in a protein structure adopts exactly one v1

configuration, they can be readily incorporated into an ex-
panded alphabet of amino acid states, maintaining the usual
assumption of sitewise independence. This produces a
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scalable model that can be used in the same way as a tradi-
tional 20-state substitution model.

By compiling a large set of homologous sequences for
which structural data are available, we develop a structurally
aware “Dayhoff-like” substitution model based on an instan-
taneous rate matrix that uses an expanded state set com-
posed of 55 states, each of which corresponds to the
combination of a residue and its v1 configuration (table 1).
Almost all amino acids show a significant, and often strong,
conformational dependence in their substitution patterns,
indicating that an amino acid can behave as a distinct entity
depending on the orientation of its side-chain. Thus, our 55-
state model (denoted “RAM55,” for Rotamer-Aware Model)
introduces valuable, biochemically plausible, structural infor-
mation while retaining a classic architecture that can be read-
ily implemented in widely used phylogenetic inference
software such as RAxML-NG (Stamatakis 2014; Kozlov et al.
2019). This model improves our understanding of the rela-
tionships between protein sequence, structure, and
evolution.

We further show that RAM55 results in a detectable im-
provement in model fit on simulated data, and on a number
of diverse empirical data sets. It produces reliable tree topol-
ogy and sequence divergence estimates. In addition, the
RAM55 model also allows structurally aware reconstruction
of both ancestral rotamer and amino acid states. This is of
relevance to ancestral sequence reconstruction/resurrection
used, for example, to investigate how the physical properties
of proteins shaped their evolutionary process (e.g., Harms and
Thornton 2013; Wheeler et al. 2016). We show that RAM55
can accurately reconstruct ancestral rotamer states from de-
scendant protein sequences of known structure; it is also able
to reconstruct ancestral amino acid states as well as or better
than traditional 20-state models. Reconstructed rotamer

states could help in resurrecting ancestral proteins by provid-
ing insight into their secondary structures as certain rotamer
configurations are only allowed within a specific backbone
geometry (Dunbrack and Cohen 1997; Lovell et al. 2000;
Dunbrack 2002).

FIG. 1. Illustration of the rotamer configurations of phenylalanine (PHE) and tryptophan (TRP). (a) In traditional amino acid replacement models,
their distinct v1 rotamer configurations are merged into a single amino acid state. (b) In our model, these states are split into three v1 config-
uration-specific states (1, 2, and 3) defined, as in the Dunbrack rotamer library, by the dihedral angle between the first two covalently linked
carbons in the side-chain (Ca and Cb; see also supplementary fig. 1, Supplementary Material online).

Table 1. Rotamer Configuration States.

Traditional State Expanded States

ALA ALA
ARG ARG1 ARG2 ARG3
ASN ASN1 ASN2 ASN3
ASP ASP1 ASP2 ASP3
CYS CYS1 CYS2 CYS3
GLN GLN1 GLN2 GLN3
GLU GLU1 GLU2 GLU3
GLY GLY
HIS HIS1 HIS2 HIS3
ILE ILE1 ILE2 ILE3
LEU LEU1 LEU2 LEU3
LYS LYS1 LYS2 LYS3
MET MET1 MET2 MET3
PHE PHE1 PHE2 PHE3
PRO PRO1 PRO2
SER SER1 SER2 SER3
THR THR1 THR2 THR3
TRP TRP1 TRP2 TRP3
TYR TYR1 TYR2 TYR3
VAL VAL1 VAL2 VAL3

NOTE.—Left: 20 traditional states correspond to the 20 amino acids. Right: our 55-
member expanded state set describes both the amino acid and v1 rotamer config-
uration for each constituent residue of a protein. Most amino acids have three
possible v1 configurations corresponding to specific v1 dihedral angle values (�60� ,
��180� , and ��60�) (see supplementary fig. 1, Supplementary Material online).
Alanine (ALA) and glycine (GLY) have no side-chain and therefore no v1 configu-
ration, whereas proline (PRO) only has two stable v1 configurations (�27� ,��25�)
because of steric requirements of its pyrrolidine ring.
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Results and Discussion

Rotamer State Exchange Rates
We first investigate how rotamer states exchange over evo-
lutionarily relevant time-spans by computing a replacement
rate matrix derived from counting changes in homologous
sites of proteins of known structure (see Materials and
Methods: Rotamer assignment and sequence alignments and
Tabulating substitution counts). Figure 2 shows these exchan-
geabilities in heat-map form for our 55-state model (RAM55),
and for a 20-state “rotamer-unaware” empirical model
(RUM20) we estimated from the same data set for compar-
ison purposes. Our exchange rates show evidence of v1 con-
figuration conservation, whereby the v1 configuration (R) is
frequently conserved when the identity of the amino acid (A)
changes (i.e., ðA; RÞ $ ðA0; RÞ with A0 6¼ A). This is visible in
figure 2 where higher exchange rates are observed on the
diagonal of many of the 3� 3 submatrices (corresponding
to changes in amino acid only) compared with the off-
diagonal elements (changes in amino acid and rotamer con-
figuration). This is particularly true of interchanges between
biochemically similar amino acids: submatrices corresponding
to aromatic–aromatic exchanges for example all have very
distinct diagonal patterns, as do the exchanges between as-
partic acid (ASP) and its derivative asparagine (ASN), and
between serine (SER) and threonine (THR).

Overall, 111 of the 136 independent 3� 3 submatrices
show significant association among the interchanging
states (see Rotamer state exchangeability analysis). To fur-
ther quantify the strength of these submatrix patterns, we
use Cram�er’s V (~V), a measure of association between two
categorical variables (here the v1 configurations of amino
acids A and A0). Existence of strong association does not
guarantee a diagonal pattern (rotameric state conserva-
tion); we therefore also consider the diagonal ratio for
each submatrix, indicating the tendency of rates to lie
on each 3� 3 submatrix’s diagonal. ~V and diagonal ratio
are shown in figure 3 for the 111 submatrices with signif-
icant associations.

All six aromatic–aromatic submatrices have high ~V values
and high diagonal ratios (fig. 3a, upper right), indicating a
strong preference for conserving side-chain orientation. This
exchange pattern might be capturing the effect of local con-
straints on how freely a bulky aromatic side-chain can be
positioned without displacing or clashing with those of neigh-
boring residues. A similarly strict configuration conservation
can be observed for negative–negative and positive–positive
exchanges; however, negative–positive exchanges have high
~V but somewhat lower diagonal ratios (fig. 3b). These sub-
matrices show significant association between specific config-
urations of the exchanging residues but no common pattern,
possibly arising from the competing pressures to retain com-
patible geometries upon substitution but also to displace the
charged moiety to a new location following a charge swap. It
is also interesting to note that leucine has high diagonal score
in exchanges with all the aromatics (aliphatic-aromatic com-
parisons, fig. 3b). In contrast, isoleucine and valine, both ali-
phatic and b-branched, have lower scores and show less

tendency to conserve their side-chain orientation when ex-
changing to aromatic residues.

In addition to the conservation of the v1 configuration
upon amino acid substitution, we also investigated the influ-
ence backbone geometry may have on the observed exchan-
geabilities. To do so we calculated, for each pair of rotamer
states, the overlap between the bivariate joint distributions of
their / and w backbone dihedral angles. These overlap values
correlate with the exchangeabilities, with a Spearman’s q of
0.29 (p ¼ 1:7� 10�28), indicating that rotamer states exhibit
a weak but highly significant preference to interchange with
other rotamer states that occupy similar regions of the
Ramachandran plot (see Overlap of backbone distributions).
In some cases, strong nondiagonal patterns in the

FIG. 2. Replacement models, with and without rotamer configuration
information. Exchangeabilities (sðA;RÞ;ðA0;R0Þ and sA;A0 ) are reported in
heat-map form for (a) our 55-state model (RAM55) and (b) a 20-state
model (RUM20) estimated from the same data set. Note that time-
reversibility of the models means the exchangeabilities are symmetric
(e.g., sðA;RÞ;ðA0;R0Þ ¼ sðA0;R0Þ;ðA;RÞ for ðA; RÞ 6¼ ðA0; R0Þ).
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exchageabilities of amino acid pairs correlate strongly with
the overlap values, for instance for the exchange of threonine
and leucine (q ¼ 0:85), and indeed 76% (115 out of 153) of
the 3� 3 and 2� 3 submatrices corresponding to changes in
amino acid have a positive Spearman’s q between overlap
and exchangeability (see supplementary fig. 2, Supplementary
Material online), indicating that for most amino acid pairs
there is a tendency for evolutionary exchanges to be between
side-chain geometries that accommodate similar backbone
geometries.

Aside from those discussed above, there are several highly
significant associations that have no obvious biochemical ex-
planation. Indeed, some cases exhibit a tendency to avoid
conserving v1 configurations during amino acid exchanges:
for example, see the isoleucine–valine interchanges in figures
2a and 3a. Nevertheless, the strength of these associations
indicates that our expanded state set incorporates valuable,
biochemically plausible, structural information into the
model. RAM55 (fig. 2a) can thus be considered a “high-reso-
lution” version of RUM20 (fig. 2b) generated from the same
data set. As we show in subsequent sections, this provides
additional inferential power from the ability to distinguish
states and state-interchanges according to v1 configuration.

Due to RAM55’s expanded state space, the probability of
observing any amino acid, given the initial state and a diver-
gence time t, is different in the 55-state model than it is in the
20-states model. For instance, a histidine residue is more likely
to be substituted with an asparigine when v1 � 60� than
when in one of the other v1 configurations. In the RUM20
model the three v1 configurations are merged, and thus the
amino acid probability distribution at time t corresponds to
the weighted average of the three rotamer states. Thus, for
each rotamer state, there is a divergence between the prob-
ability distributions of the amino acids states at time t using
the RAM55 model when compared with that when using
RUM20. Indeed, as RUM20 can be arrived at by merging
states in RAM55, this divergence constitutes a loss of infor-
mation regarding the amino acid probability distribution
when RAM55 is approximated using RUM20. This can be
quantified using the Kullback–Leibler (KL) divergence
(Kullback and Leibler 1951; see KL divergence). At t¼ 0, no
loss occurs due to the amino acid sequence being fully known
in both models. As t!1, both models tend toward the
equilibrium amino acid frequencies and the loss tends toward
zero. The differences between the two models manifest in
between these extremes. Figure 4 shows that average infor-
mation loss for one state peaks at 0.0002 bit per site after 0.4
amino acid substitutions per site have occurred on average,
although this can be much higher for certain rotamer states,
and moreover indicates that the difference is most pro-
nounced at the timescales at which evolutionary
models are commonly applied: up to t¼ 2.5 which corre-
sponds to �20% amino acid sequence identity.

Model Benchmarking: Simulation
Here, we use simulated alignments to assess whether or not
typical protein sequence data sets contain enough informa-
tion to permit identification of the true generating model, in
the case that the data were generated by the RAM55 rotamer
state-aware model. We also investigate whether RAM55
affects our ability to infer phylogenies compared with models
using the traditional 20-state space.

To examine our ability to detect v1 configuration-
influenced evolution, we assessed our 55-state model’s
goodness-of-fit when analyzing alignments simulated using
the model itself. These simulations use a variety of phyloge-
netic trees and branch scaling factors, to allow evaluation of
model detection over a wide range of realistic conditions (see

FIG. 3. Strength of association and diagonal ratio. Plots show pairs of
residues whose 3� 3 submatrices within the RAM55 Q-matrix
achieve significant v2 statistic values. Pairs are labeled according to
their component residues’ biochemical properties. (a) Strength of
association (Cram�er’s V, ~V) between the v1 configurations of residues
composing each pair and diagonal ratio (measuring propensity to
conserve v1 configuration). (b) Box plots show diagonal ratio values
and medians for exchanges between pairs of residues grouped
according to biochemical similarities.
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Tree generation and alignment simulation). From these simu-
lated alignments we then infer the corresponding phylogenies
by maximum likelihood (ML) using RAM55 or other models
that are widely used for phylogenetic analysis of amino acid
sequences (see Likelihood calculation and maximization over
phylogenies). Figure 5a compares Akaike Information
Criterion (AIC) scores (Akaike 1974) or state-corrected AIC
scores (see Log-likelihood comparison across models) of the
inferred tree across multiple models. RAM55 consistently
shows detectably better fit for the simulated data regardless
of sequence divergence. Moreover, for most branch lengths
and number of taxa, RAM55 has a lower AIC score than all
other models for 100% of the simulations (see supplementary
table 1, Supplementary Material online). At the extreme of
trees with large tree lengths and low taxa number, the
RUM20 model occasionally has a lower AIC score.

It is also interesting to note how LGexp, our version of the
20-state LG model “uniformly expanded” to 55 states but
incorporating no structural information (see Log-likelihood
comparison across models), fits the data worse than its
“frequency-aware” counterpart (LGbyfreq-exp) whose AIC
values are comparable with those of RUM20 and LG. This
illustrates how adding noninformative complexity to a 20-
state model penalizes its performance, while being correctly
informed about each rotamer state’s frequency but not

specifically about its exchange rates still produces a worse
fit than the full RAM55 model. These results confirm that,
when the more complex RAM55 model matches the under-
lying process generating the input alignments, it is possible to
detect an improvement in fit over simpler models.

As a further performance test, we also evaluated whether
ML trees inferred under the RAM55 model are closer to the
reference phylogeny used during the simulation process than
those inferred with other models. For these comparisons we
considered both 1) the Euclidean distance (Felsenstein 2004),
a metric that accounts for both topological differences be-
tween trees and differences in branch lengths and 2) the
lengths of individual branches. Under the former measure,
RAM55 infers trees that are at least as close or closer to the
reference phylogenies than those inferred by amino acid re-
placement models such as our RUM20 model or LG. Figure 5b
compares the distributions of Euclidean distances between
inferred and reference trees, estimated using the RAM55,
RUM20, and LG models in simulations of 1,000 sites on a
64-taxon phylogeny. Shifts toward lower values for RAM55
indicate greater accuracy of trees inferred using this model.
Similar results are obtained for other alignment lengths and
numbers of taxa in model phylogenies, as well as when sim-
ulating over a larger, empirical tree (see supplementary figs.
3–5, Supplementary Material online).
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FIG. 4. KL divergence measures the amount of information lost when the structure-free RUM20 model is used to approximate the 55-state model,
RAM55. KL divergence is computed for every pair of amino acid state and corresponding rotamer state as a function of evolutionary time t
(expressed as expected number of amino acid substitutions). The overall information loss, computed by averaging over all state pairs’ KL
divergences and weighted by the rotamer state equilibrium frequencies, is shown in red.
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Estimates of individual branch lengths can be unbiased, or
can be consistently over- or under-estimated depending on
their location within a phylogeny. Nevertheless, RAM55 tends
to more accurately estimate the correct evolutionary distance
between sequences regardless of tree size (number of taxa),
length of the examined branch or branch positioning in the
tree. Figure 6—highlighting one internal branch for each of
four topologies—illustrates this with branch length estimates
from RAM55 having smaller variances and medians nearer to
the reference values than estimates from LG; these results are
representative of those obtained for other branches (results
not shown). The additional v1 configuration information con-
tained in RAM55 is thus allowing us to infer more-reliable
phylogenies from alignments simulated under the 55-state
model itself than does any of the 20-state models
investigated.

Model Benchmarking: Empirical Alignments
We assessed RAM55’s performance on three empirical amino
acid alignments—with 13, 82, and 46 taxa, respectively—
for which we can obtain corresponding structural infor-
mation (see Empirical alignments), and compared
goodness-of-fit and inferred phylogenies across models.
RAM55 was used in ML analyses, and results compared

with those derived using structure-free models such as
the 20-state models LG, WAG, and our own RUM20,
and the 55-state LGbyfreq-exp model which recognizes
the frequencies of the 55 states but not their structural
information content (see Log-likelihood comparison
across models, Likelihood calculation and maximization
over phylogenies).

Figure 7 shows the goodness-of-fit (measured by AIC val-
ues, see Log-likelihood comparison across models) for each
empirical amino acid alignment under a variety of models.
In all cases, RAM55 is a better fit for the data than all the other
models used, indicated by the lower AIC values. Since our
model is implemented in RAxML-NG (Kozlov et al. 2019), it
was also straightforward to incorporate a discrete gamma
model of rate heterogeneity (Yang 1993), ML estimation of
equilibrium frequencies from the observed data, or both in
combination (see Likelihood calculation and maximization
over phylogenies). The corresponding models, denoted
RAM55þG, RAM55þF and RAM55þGþF, resulted in fur-
ther improvements in the model’s fit, with RAM55þGþF
performing best for all data sets. This empirical benchmark
shows that RAM55 fits well when tested on three diverse data
sets, and thus appears to be a valuable model of protein
sequence evolution.

FIG. 5. (a) AIC values for competing models. Each data point corresponds to the mean AIC value of trees inferred from 100 simulated alignments.
(b) Comparison of the RAM55 model (blue bars) against LG (green bars) and against our RUM20 model (orange bars) in terms of Euclidean
distance of inferred trees from the reference phylogeny used to simulate the alignment. Box plots illustrate distance distribution and median
(horizontal lines); scatter plot points represent individual distance values. Tree inference is performed on alignment data sets (1,000 sites, 64 taxa,
and 100 replicates per scaling) simulated using RAM55 and a randomly generated reference phylogeny, scaled according to the factors on the x axis.
Note the different y axis scales.
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Ancestral State Reconstruction
Having established RAM55’s ability to infer reliable phyloge-
nies when structural information is available, we evaluate
whether it can be used for two further tasks. The first is the
reconstruction of ancestral amino acid states, which can also
be achieved using a standard substitution model in which
side-chain configurations are not modeled. Second, we try to
reconstruct the rotamer sequence in addition to the amino
acid sequence, a capability which is unique to our model. We
evaluated the performance on these tasks using both joint
(Pupko et al. 2000) and marginal (Yang et al. 1995) recon-
struction algorithms. The (55-state) RAM55 model can be
applied to reconstruct plain (20-state) ancestral amino acid
sequences, when present-day crystallography data are avail-
able, by first reconstructing ancestral rotasequences, and then
simply masking the rotamer configuration information. The
resulting ancestral amino acid sequences can then be com-
pared with the known (masked) ancestor sequences in our
simulations. We perform simulations as before under RAM55
using an 8-taxa reference topology, and then reconstruct an-
cestral amino acid states using RAM55 or LG and the joint

reconstruction method (Pupko et al. 2000). Terminal amino
acid sequences (fig. 8, nodes A and B) were also reconstructed
in order to validate our “leave-leaves-out” (LLO) approach
that serves as a proxy for ancestral sequence reconstruction
when lacking a reference (see Ancestral state reconstruction).
As shown in figure 8, it is possible to estimate terminal
sequences with reasonable accuracy with this strategy (see
also supplementary figs. 6 and 7, Supplementary Material
online), suggesting this is a viable method to evaluate recon-
struction accuracy on empirical alignments, where ancestral
reference sequences (and structures) are unlikely to be avail-
able. Figure 8 shows that our model performs equally or
slightly better than LG in terms of amino acid state recon-
struction accuracy, particularly at longer evolutionary distan-
ces (see also supplementary fig. 7 and table 2, Supplementary
Material online). Very similar results are achieved using the
marginal reconstruction approach (supplementary figs. 6 and
8 and table 2, Supplementary Material online). These show
that, in addition to exploiting information about v1 configu-
ration evolution to assist with model selection and phylogeny
inference, RAM55 can be used to reconstruct ancestral

FIG. 6. Examples of individual branch length inferences illustrate the tendency for RAM55 to give estimates closer to the reference value. Trees
inferred using RAM55 (blue) or LG (green), analyzing alignments (200 sites, 100 replicates per scaling) simulated using RAM55 and reference
phylogenies of 8, 16, 32, and 64 taxa, scaled according to the factors displayed along the x axis. Highlighted internal branches (indicated in red) have
true lengths indicated by the solid lines; distributions of inferred lengths are shown as box plots (evenly distributed horizontally and displaced for
clarity).
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sequences as well as a 20-state model, whereas as the same
time providing information about the side-chain conforma-
tion which is not possible by any other method.

We thus assessed our models’ accuracy when joint recon-
structing ancestral rotamer states simulated under the model
itself and our 8-taxa phylogeny. Figure 9 shows that RAM55 is
able to infer the correct ancestral side-chain configuration for
residues belonging to internal sequences in almost all cases
when the ancestral amino acid state is accurately recon-
structed (as shown in fig. 8). Similar results are obtained for
other alignment lengths and numbers of taxa in reference
phylogenies (data not shown). These reconstructed ancestral
rotamer states could be used to predict side-chain geometry
for homology modeling of ancestral proteins, to assess which
configuration better fits the evolutionary data.

Conclusions
We have created a Dayhoff-like continuous-time Markov
model that accounts for structural constraints on protein
evolution by employing an expanded state set where each
state corresponds to an amino acid along with its side-chain’s
v1 configuration. The exchange rates of our 55-state model,
RAM55, clearly capture effects of local steric constraints, for
example those dictating how an aromatic side-chain can be
positioned without displacing or clashing with neighboring
residues. Other highly significant rotamer state exchange pat-
terns, while still carrying valuable information for our model,
have no obvious biochemical explanation and in some cases
exhibit a tendency to avoid conserving v1 configurations dur-
ing amino acid exchanges. These exchange patterns deserve
further exploration, perhaps by relating 3D molecular descrip-
tors to the exchange rates as has been attempted for amino

acid exchange rates and 1D biochemical properties
(Grantham 1974; Dayhoff et al. 1978; Zoller and Schneider
2013).

Using simulated data, we confirmed that our 55-state
model captures enough information to detect the v1

configuration-aware expanded state space, and observed
that it consistently offers detectably better fit to data com-
pared with models that use the traditional 20-state space
such as LG, WAG, and our RUM20. Further, RAM55 appears
to infer equally or more reliable phylogenies than any of the
20-state models. This argues in favor of its consideration for
phylogenetic analysis of protein sequences. Moreover, when
applied to empirical data, the model provided a better fit
than any of the traditional models evaluated.

Our model can also be applied to perform structurally
aware reconstruction of ancestral sequences. Both amino
acid and structural configuration states can be reliably in-
ferred. Although there is little improvement in amino acid
sequence reconstruction over traditional 20-state models,
RAM55 could improve ancestral protein resurrection by 1)
providing better phylogenies, which are valuable in them-
selves but also help toward 2) obtaining reconstructions of
structural information, that is, v1 configurations, that are sim-
ply not possible by any other method.

More generally, inferred rotamer states could be used to
predict side-chain geometry for homology modeling, to assess
which configuration better fits the evolutionary data. In this
article, we apply our model to empirical data where both
amino acid sequences and the corresponding high-quality
atomic coordinates are available. Although an increasingly
large number of protein sequences can be associated with
reliable X-ray crystallography data, and recent advances in
cryo-electron microscopy promise to improve the resolutions

FIG. 7. A comparison of RAM55 variants against other models in terms of AIC on three empirical rotasequence alignments: PF00514 (b-catenin-like
repeat), PF07714 (tyrosine kinase) and rubisco. “þG” models use a discrete gamma model of rate heterogeneity with four categories; “þF” models
use ML-estimated state frequencies estimated from the observed data.
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that can be achieved for complex, dynamic molecular assem-
blies in their native state (Milne et al. 2013; Carroni and Saibil
2016; Venien-Bryan et al. 2017), many real-world applications
of our approach might rely on data with a mixture of amino
acid sequences and rotasequences, or amino acid sequences
alone. Our model could be applied to this type of data by
treating ambiguity regarding the rotameric state in the same
manner in which sequencing errors and other forms of am-
biguity are handled (Huelsenbeck 2002; Felsenstein 2004)
thus allowing the information gained by accounting for the
distinct evolutionary signatures of the rotamer states to be
applied to all bioinformatics tasks relying on evolutionary
modeling, as well as opening potential applications such as
the prediction of side-chain geometries from amino acid
sequences in the absence of other structural information.

In turn, rotamer information can find use in protein struc-
ture modeling. Two ways in which this could be achieved can
be illustrated using the Rosetta modeling process (Leaver-Fay
et al. 2011). During the conformational search, rotamer states
are sampled, scored using an energy function, and accepted
or rejected using Monte Carlo methods (Leaver-Fay et al.
2011). These states could be preferentially sampled according
to their likelihood according to our RAM55 model.
Alternatively, the scoring function could be adjusted by re-
placement of the rotamer probability term (which favors
generally more-prevalent rotamer states) by a site-specific
rotamer probability that also depends on the evolutionary
context of that amino acid (Alford et al. 2017). Such an ap-
proach could also complement artificial intelligence-based
developments in the exploitation of residue coevolution in

FIG. 8. Amino acid reconstruction accuracy. Amino acid states inferred using joint reconstruction from rotasequence alignments (200 sites)
simulated under RAM55 using our 8-taxon reference phylogeny and scaling its branches according to the factors reported on the x axis (note the
nonlinear scale used for clarity). The joint reconstruction algorithm is then employed along with RAM55 and the true phylogeny to reconstruct
rotasequences at various internal (C) or terminal (A, B) nodes. The y axis indicates the proportion of amino acid states (i.e., masked rotasequence
states) correctly reconstructed for each inferred sequence. Plain box plots indicate the distribution of percentages of sites correctly reconstructed
(y axis) by this method; the same procedure is then repeated using LG on masked alignments (hatched box plots). Each box plot contains results
from 100 simulation replicates for a given node.
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modeling the protein backbone (Wang et al. 2017; Liu et al.
2018; Service 2018; Xu 2018).

We believe that future models of protein evolution will
benefit from being informed about multiple structural con-
straints, and will do so by integrating a number of structural
features. These will include some of the ones previously pro-
posed by others, and we propose v1 configuration, with its
implementation and computational advantages, as another
candidate. The process of exploring the best combinations,
and indeed devising practical algorithms and computational
strategies to implement them, is for future studies.

Materials and Methods

Rotamer Assignment and Sequence Alignments
In order to tabulate substitution events, a data set of aligned
amino acid sequences annotated with their v1 rotamer state
was required. This was obtained from the Pfam database

(Finn et al. 2014) by first selecting those aligned sequences
that are mapped to a high-resolution crystal structure
(<2.5 Å) in the Protein Data Bank in Europe (Velankar
et al. 2010) to ensure we only retrieve those structures that
are likely to be reliable. For each amino acid in each sequence,
we assigned a v1 rotamer configuration based on atomic
coordinates, as defined in the Dunbrack rotamer library
(Shapovalov and Dunbrack 2011). We removed residues
with an average B-factor (Trueblood et al. 1996) >30 for
the four atoms defining v1 (N, Ca, Cb, and Cc for most amino
acids), to ensure that rotamer state assignments were based
on unambiguous electron densities and not modeling
artefacts.

Factors such as thermal fluctuations, crystal packing forces
and ligand binding might confound our model by creating
differences between the structures of homologous proteins
that are not due to evolution. Our B-factor filtering also
addresses these. In a study of 63 pairs of structures of the

FIG. 9. Rotamer state reconstruction accuracy. Rotamer states inferred using joint reconstruction from rotasequences (8 taxa, 200 sites) simulated
under RAM55 using our 8-taxon reference phylogeny and scaling its branches according to the factors reported on the x axis (note the nonlinear
scale used for clarity). The joint reconstruction algorithm is then employed along with RAM55 and the true phylogeny to reconstruct rotase-
quences at various internal (ROOT, C, D) or terminal (A, B) nodes. The y axis indicates the proportion of rotamer states correctly reconstructed for
each inferred sequence. Box plots indicate the distribution of percentages of sites correctly reconstructed (y axis) by this method. Each box plot
contains results from 100 simulation replicates for a given node.
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same protein, one in the apo state the other in the holo state,
95% of side-chains did not change rotamer (Zavodszky and
Kuhn 2005). Of the residues which did change rotameric
state, the majority adopted the same v1 configuration, indi-
cating that thermal motions are concentrated away from the
backbone. Similarly, Najmanovich et al. (2000) investigated
221 bound/unbound pairs and found that 94% of residues
retained their rotameric configuration, with 40% of proteins
having no residues with altered v1 state. Furthermore in a
study of 123 pairs of structures, of the residues that did alter
their v1 state, most were solvent exposed and thus not re-
stricted by the need to pack into the protein interior (Zhao
et al. 2001). These residues are characterized by diffuse elec-
tron densities and high thermal B-factors, which we remove
with the above filter. Neither Najmanovich et al. (2000) nor
Clark et al. (2019) found a correlation between side-chain
conformational change and backbone conformational
change. Collectively, these studies indicate that although
side-chain movement is important when comparing struc-
tures of identical sequence, especially with respect to ligand
binding, these movements tend to be within-rotamer
changes, concentrated away from the backbone, and in
surface-exposed residues which are removed by the B-factor
filtering. Thus, the effects of thermal motion and variations in
crystallization conditions are negligible with regard to the
substitution rates presented herein.

We also removed nonstandard residues, disordered resi-
dues and those with peptide bonds exceeding 1.8 Å, the last
to ensure a continuous polypeptide. In this study we consider
only v1 configurations, and not those of rotable bonds further
along the side-chain, for a number of reasons: v1 is present
across all residues with the exception of glycine and alanine; it
is closest to the backbone and thus usually better resolved in
terms of atom positions; it conveys the most information
about side-chain atom positions as all other side-chain atoms
depend upon it; it gives us a manageable number of states;
and it always connects two sp3 hybridized atoms, and thus is
strictly rotameric and has exactly three conformational states
(Dunbrack 2002) although one is inaccessible in proline.
These quality filtering steps resulted in alignments from
3,646 Pfam families, including 31,801 unique Uniprot entries,
251,194 PDBe structures, and 81,523, 991 residues.

Tabulating Substitution Counts
We combined the amino acid sequences and rotamer state
sequences to produce sequences in an expanded alphabet
(see table 1), which we refer to as “rotasequences.” Each
rotasequence consists of symbol pairs (A, R), each of which
specifies a state comprising the amino acid A (as employed by
traditional 20-state models) and a v1 rotamer configuration R
(1, 2, or 3). For each family (see supplementary files,
Supplementary Material online), we then performed a se-
quence alignment-guided pairwise comparison of rotase-
quences. We used Pfam’s original domain alignment to
construct a NJ phylogenetic tree (Saitou and Nei 1987) using
MAFFT (Katoh and Standley 2013), and then iteratively tab-
ulated differences between pairs of rotasequences by taking a
circular tour through the NJ tree using an algorithm

analogous to the one described by Korostensky and
Gonnet (2000). Although comparing pairs of rotasequences,
we omitted those with a rotasequence identity < 75%, to
minimize the risk of multiple substitution events at the same
site being tabulated as a single observed difference. This ap-
proach results in an efficient set of pairwise comparisons us-
ing all leaves of the trees with each observed difference
counted at most twice. We tabulated 30,439,912 counts, cor-
responding to 4,508,390 rotamer state substitutions and
25,931,520 instances of rotamer state conservation.

We then computed the observed number of occurrences
of sites in all aligned sequence pairs with rotamer states (A, R)
in one sequence and ðA0; R0Þ in the other as nðA;RÞ;ðA0;R0Þ.
Although these counts could be used directly to calculate
an instantaneous rate matrix (IRM), this would result in biases
arising from the filtering procedures described above. For ex-
ample, because alanine and glycine can never be filtered out
by B-factor, these residues are overrepresented. Further, some
amino acids, such as those commonly well packed into the
core of the protein, are better resolved and have lower B-
factors than those more commonly found at the protein
surface, and are thus also overrepresented (supplementary
fig. 9, Supplementary Material online). To account for this,
we also compute substitution event counts (nA;A0 ) for a
Dayhoff-like 20-state empirical model (RUM20) using the
same Pfam-based data set, but ignoring v1 configurations
and without performing B-factor filtering. Our normalized
rotamer state exchange count matrix N̂, recovering the actual
observed residue frequencies, then becomes

bnðA;RÞ;ðA0;R0Þ ¼ nA;A0X
r2RA;

r02RA0

nðA;rÞ;ðA0;r0Þ
:nðA;RÞ;ðA0;R0Þ

; (1)

where RA ¼ fR : ðA; RÞ 2 S55g is the set of rotamer config-
urations R such that the corresponding pair (A, R) is a mem-
ber of S55, the set of all 55 possible combinations shown in
table 1.

The 55-state IRM Q̂ is computed from these normalized
counts as described by Kosiol and Goldman (2005): the in-
stantaneous rate of change of (A, R) into ðA0; R0Þ (with
ðA; RÞ 6¼ ðA0; R0Þ) is given by the number of such events as
a proportion of all observations of (A, R):

bqðA;RÞ;ðA0;R0Þ ¼ bnðA;RÞ;ðA0;R0ÞX
ða;rÞ2S55

bnðA;RÞ;ða;rÞ : (2)

As usual, diagonal elements q̂ðA;RÞ;ðA0;R0Þ are set so that row
sums of the IRM equal 0 (Kosiol and Goldman 2005). The 20-
state RUM20 IRM was similarly obtained from the unfiltered
20-state counts nA;A0 , for comparative purposes.

Rate Scaling
Times and branch lengths are typically measured as
the expected number of substitutions per site
(Felsenstein 2004). Our rates were therefore first scaled
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according to q so that, at equilibrium, they will result on
average in one rotamer state (ðA; RÞ ! ðA0; R0Þ with
fðA; RÞ; ðA0; R0Þg 2 S55) substitution per unit of time (Li�o
and Goldman 1998):

Q̂
� ¼ 1

q
Q̂ (3)

with

q ¼
X
ðA;RÞ2S55

pðA;RÞbqðA;RÞ;ðA;RÞ; (4)

where pðA;RÞ is the equilibrium frequency of rotamer state
(A, R) obtained from the normalized counts (N̂). Because
we have an expanded state set, Q̂

�
results in one rotamer

state substitution per unit time but less than one amino
acid state substitution. We therefore perform a further
scaling step in order to allow direct comparison of branch
lengths estimated with our 55-state model and any 20-
state model, that is, in terms of number of amino acid
state substitutions. This additional scaling factor q� is
defined as

q� ¼
X
ðA;RÞ2S55

pðA;RÞ
X

ðA0;R0Þ2S55

A0 6¼A

q�ðA;RÞ;ðA0;R0Þ
(5)

and corresponds to the proportion of rotamer state changes
where the amino acid changes, irrespective of v1 configura-
tion. Then the “superscaled” IRM is given by

Q̂
�� ¼ 1

q�
Q̂
�
: (6)

This matrix, at equilibrium, has on average 1=q� ¼ 1:79
state changes per unit time, consisting of 1 amino acid state
substitution plus 0.79 (i.e., ð1� q�Þ=q�) v1 configuration
changes that are invisible to traditional 20� 20 models.
This means that branch lengths are directly comparable to
those under 20-state structure-free models that can only de-
tect amino acid changes. RAxML-NG’s implementation of
RAM55 provides output in these superscaled time units
(comparable to traditional amino acid distances) and also
in the units of equation (3).

From Q̂
��

, final scaled exchangeabilities (available in sup-
plementary files, Supplementary Material online) were
obtained as

sðA;RÞ;ðA0;R0Þ ¼
q̂��ðA;RÞ;ðA0;R0Þ

pðA0;R0Þ
(7)

(Li�o et al. 1998; Whelan and Goldman 2001). Exchangeabilities
computed from a general data set can be combined with
state frequencies estimated from any particular data set un-
der study, and a data set-specific IRM can thus be obtained by
inverting equation (7). This hybrid parametrization proce-
dure, denoted by adding “þF” to a model name, can produce
a significant improvement in model fit (Thorne and Goldman
2007; Perron et al. forthcoming).

Rotamer State Exchangeability Analysis
Each pair of different amino acids corresponds to a 3� 3
submatrix (with the exception of pairs including alanine, gly-
cine and proline) in N̂. Since N̂ is symmetric there are 136
unique 3� 3 submatrices. For each of these, we computed
the Pearson’s v2 statistic and P value (with Bonferroni cor-
rection) for the hypothesis test of independence of the ob-
served v1 rotamer configuration change frequencies, where
the expected frequencies are computed based on the mar-
ginal sums under the assumption of independence. Pairs of
residues with Bonferroni P value<0.05 show significant asso-
ciation among their rotamer states; only these are considered
for further analysis (e.g., fig. 3).

We assessed the strength of association between the v1

rotamer configurations of each pair of residues using Cram�er’s
V (~V) with bias correction (Bergsma 2013). We also computed
the proportion of counts that lie on each 3� 3 submatrix’s
diagonal (“diagonal ratio”). The latter is a measure of the
tendency of a pair of exchanging residues to conserve their
v1 rotamer configuration. To better assess trends in diagonal
ratio and ~V, residues with three available v1 rotamer config-
urations (excluding methionine) are then classified into six
groups depending on the biochemical properties of their side-
chains: aliphatic (isoleucine, leucine, valine), aromatic (phe-
nylalanine, tryptophan, tyrosine), positive (arginine, lysine,
histidine), carboxylamine (asparagine, glutamine), negative
(aspartic acid, glutamic acid), and hydroxyl (serine, threo-
nine). While this is an imperfect classification, as residues
do not fit unambiguously into distinct, discrete groups and
have multiple salient features, it nonetheless helps up to bet-
ter visualize how side-chain properties influence exchange
rates.

Overlap of Backbone Distributions
The global structure of a protein is determined largely by the
configuration of the peptide backbone onto which the side-
chains are bonded, which can be characterized by the dihe-
dral angle of the two rotatable bonds, / and w, of each amino
acid. Steric effects determine which combinations of / and w
are allowed, and which are favored, as commonly visualized
using a Ramachandran plot, which shows permitted regions
and observed distributions over / and w (Ramachandran
et al. 1963). As these steric effects arise, in part, from the
side-chain, and the rotameric states of the side-chain are
influenced by the conformation of the backbone, each
rotamer state has its own probability distribution on the
Ramachandran plot (Dunbrack and Karplus 1993). To test
the hypothesis that rotamer states preferentially exchange
with other rotamer states with similar backbone dependen-
cies, we calculated the overlap between the (/;w) distribu-
tions of pairs of rotamer states (i; j 2 S55) from their
probability density functions, f•ð/;wÞ, as estimated from
rotamer counts in the Dunbrack backbone-dependant
rotamer library Shapovalov and Dunbrack (2011), using the
equation:
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Oij ¼
ðp
�p

ðp
�p

minffið/;wÞ; fjð/;wÞgd/ dw : (8)

KL Divergence
We measured the amount of information lost, regarding the
amino acid sequence, when a 20-state model is used to ap-
proximate our 55-state model by computing the KL diver-
gence in bits (Kullback and Leibler 1951) for each rotamer
state (A, R) and its corresponding amino acid state A. This
metric measures the divergence between the amino acid
probability distribution at time t, when starting with rotamer
state (A, R), between the RAM55 model in which both A and
R and considered and the RUM20 model in which only A is
used. The KL divergence is computed as a function of evolu-
tionary time t using:

DKLðPRAM55ðt; ðA; RÞÞjjPRUM20ðt;AÞÞ

¼
P
a2S20

�P
r2Ra

PRAM55ðt; ðA; RÞ; ða; rÞÞ log 2

P
r2Ra

PRAM55ðt; ðA; RÞ; ða; rÞÞ

PRUM20ðt;A; aÞ

� (9)

with S55 and S20 being the 55- and 20-state spaces, Ra the v1

configurations of amino acid a, PRUM20ðtÞ and PRAM55ðtÞ the
probability matrices of the respective models at time t (see
eq. 10 below), and for example, PRAM55ðt; ðA; RÞ; ða; rÞÞ the
ððA; RÞ; ða; rÞÞ element of PRAM55ðtÞ.

Likelihood Calculation and Maximization over
Phylogenies
We implement our models using ML methods applied to
multiple sequence alignments (Felsenstein 2004). This stan-
dard approach searches for the tree T that maximizes the
likelihood function with substitutions being modeled by a
Markov process. Markovian state substitutions over time t
are described by a probability matrix defined by

PðtÞ ¼ etQ ; (10)

where Q is the IRM of the Markov process. The likelihood of T
(including tree topology and branch lengths) given data
(alignment) X and IRM Q can then be computed as

LðTjQ; XÞ ¼
Q

i

LðTjQ; XiÞ ; (11)

where LðTjQ; XiÞ corresponds to the likelihood of T given the
states observed at site i of X (site independence assumption).
LðTjQ; XiÞ is computed by applying equation (10) to each
tree branch and using the pruning algorithm (Felsenstein
1981). Maximizing L over T provides estimates T̂ and thus
the most likely phylogeny given the observed data and the
current substitution model. The “þF” approach to matching
the model’s state frequencies to the observed data can be
implemented by simultaneously maximizing L over these
frequencies.

It is also generally acknowledged that sites do not evolve at
the same rate, due to various evolutionary constraints. The
most common way of accounting for this heterogeneity is to
assume that rates across sites follow a discretized gamma
distribution (Yang 1994). The shape parameter of the gamma
distribution, a, is usually estimated by ML along with T as it is
considered specific to each data set. Models using the gamma
distribution to model rate heterogeneity are denoted “þG.”

In this study, all ML tree inferences were performed using
RAxML-NG (Kozlov et al. 2019) which, following the needs of
this study, now has functionality allowing custom state spaces
and rate matrices of any size, permitting us to use our 55-state
model RAM55 to infer tree topology, branch lengths and
likelihoods that can be used for model fitting and compar-
isons. It also permits theþF andþG variants of substitution
models through its “þFO” and “þG” options. Our expanded
state space has some inevitable repercussions for CPU time,
not least because 20-state models benefit from a highly op-
timized likelihood computation in RAxML-NG, whereas the
RAM55 model currently works with general kernels that are
less efficient. Nevertheless, computation times remain accept-
able, tending to be 5–10 times longer than using 20-state
models (supplementary fig. 10, Supplementary Material
online).

Tree Generation and Alignment Simulation
We simulated sequence alignments under RAM55 using four
randomly generated trees (8, 16, 32, or 64 taxa; branch lengths
2 ½0:01; 0:5�; see supplementary fig. 11 and supplementary
files, Supplementary Material online) as guide and a substitu-
tion simulation approach based on Method 1 of Fletcher and
Yang (2009), modified for our expanded state set.
Additionally, a pruned (mammals) and scaled version of
the Ensembl-compara species tree (Herrero et al. 2016; see
supplementary files, Supplementary Material online) was also
used. To allow investigation of a realistic range of sequence
divergences (around 10–85%) while maintaining consistent
tree topologies, all branches of our trees were scaled accord-
ing to a set of 10 scaling factors: {0.1, 0.2, 0.5, 0.7, 1.2, 1.5, 1.7, 2,
2.5, 3} for model benchmarking simulations, or {0.001, 0.01,
0.1, 0.2, 0.5, 1, 1.5, 2, 3, 5} for ancestral reconstruction simu-
lations. For each scaled tree, we generated 100 rotasequence
alignments of a realistic length (200 or 1,000 sites) using the
strategy detailed above. These combinations of simulation
parameters were designed to generate a broad range of evo-
lutionary scenarios that might be encountered in empirical
studies.

Under 55-state models, simulated alignments were ana-
lyzed in this form; their constituent rotasequences were con-
verted into amino acid sequences for inference under 20-state
models by masking the rotamer configuration component of
their rotamer states (i.e., ðA; RÞ ! A).

Log-Likelihood Comparison across Models
When selecting the best fitting model for a specific data set,
an information-theoretic score such as the AIC is frequently
used (Akaike 1974; Sullivan and Joyce 2005). This approach
fits well with our comparison where many models of interest
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are nonnested and, in cases, have different state spaces. The
AIC score is defined as

AIC ¼ 2k� 2 log L̂ ; (12)

where k is the number of estimated parameters in the model
and L̂ is the maximized value of the likelihood function of
equation (11). However, the likelihood function depends
upon a model’s state space (Anderson and Burnham 2002):
20-state models of amino acid substitution cannot be directly
compared with our 55-state model as they exist in different
state spaces. Whelan and colleagues have developed a gen-
eralized “correction” allowing the comparison of likelihoods
between state spaces (Whelan et al. 2015). This strategy is
applicable to any two state spaces (D, C) providing that 1)
each state in D maps to a single state in C and each state in C
maps to a unique set of states in D and 2) both likelihoods are
obtained from the same original alignments, XC and XD, with
XC being the “compounded” version of XD following the state
mapping. The corrected likelihood of the distinct model (D)
can then be expressed in terms of the compound model (C)
likelihood and an adapter function as

LðXDjhCÞ ¼ LðXCjhCÞ
P

taxa p

P
sites q

pD
dðp;qÞ

pC
cðp;qÞ

; (13)

where hC and hD represent the totality of parameters from C
and D; d(p, q) and c(p, q) are the distinct and compound
states observed for taxon p at site q; and pD

dðp;qÞ and pC
cðp;qÞ are

these states’ equilibrium frequencies in their respective sub-
stitution models. In our application of this approach, the
distinct model D corresponds to RAM55, whose states can
be uniquely compounded into amino acid states (e.g., TRP3
! TRP), and the compound model C corresponds to a 20-
state amino acid model (e.g., WAG, LG or our RUM20) whose
states can be mapped to a unique set of rotamer states (e.g.,
TRP! {TRP1, TRP2, TRP3}).

As an independent approach to test the contribution of
knowledge of rotameric configuration-state substitutions, we
generated 55-state models that were expanded versions of
the 20-state LG model (Le and Gascuel 2008). Likelihoods are
directly comparable to RAM55’s since they share the same
state space. This model expansion operation was performed
with the introduction of no information about the additional
states (LGexp model) or, alternatively, by accounting for just
the observed frequencies of these additional states in our data
set (LGbyfreq-exp). In each case, we started from LG’s exchan-
geabilities and reconstructed a raw substitution count matrix
by reversing 20-state versions of equations (7) and (2). For
LGexp, this reconstructed counts matrix N was then ex-
panded into a 55-state counts matrix (�N) according to

�nðA;RÞ;ðA0;R0Þ ¼
nA;A0

jRAj:jRA0 j ; (14)

where jRAj:jRA0 j is the product of the dimensions of a sub-
matrix in �N corresponding to a single cell of N. Equations (2)
and (7) are then applied to �N to derive the IRM for the LGexp
model. This expanded model represents the “most-

uninformed” expression of a 20-state model in a 55-state
space, introducing rotamer states but no information about
their relative frequencies or replacement rates.

Alternatively, for LGbyfreq-exp, N was expanded according
to

�nðA;RÞ;ðA0;R0Þ ¼ pðA;RÞpðA0;R0ÞnA;A0 ; (15)

where pðA;RÞpðA0;R0Þ is the product of RAM55’s equilibrium
frequencies for states (A, R) and ðA0; R0Þ. The LGbyfreq-exp
expanded model’s rates are therefore informed about each
rotamer state’s frequency, but not the relative rates of re-
placement between them observed in real protein sequences.
We can thus compare all our models in term of their fit for a
specific data set using equation (12) with the likelihood term
corresponding either simply to L̂ for 55-state models (RAM55,
LGexp, LGbyfreq-exp) or to the state-corrected likelihood
obtained from equation (13) for 20-state models (RUM20,
LG, WAG). The latter is referred to as a “state-corrected AIC
score.”

Empirical Alignments
We assessed RAM55’s goodness-of-fit and performance on
empirical data using rotasequence alignments (available in
supplementary files, Supplementary Material online) that
can be masked by removing the rotamer configuration infor-
mation in order to convert then to amino acid sequences for
comparison inferences with 20-state models. Alignments
PF00514 and PF07714 correspond to two Pfam family align-
ments and their corresponding structural information from
PDBe: b-catenin-like repeat and tyrosine kinase, respectively.
We followed the same procedure previously used (see Rotamer
assignment and sequence alignments) to assign rotamer states,
using Pfam’s domain alignment and mapping of sites to PDBe
residues. These alignments are relatively short—13 taxa and
334 sites for PF0054, 82 taxa and 345 sites for PF07714—as they
only include those portions of sequences Pfam recognizes as
part of that family’s domain. The third alignment was obtained
by querying Uniprot (UniProt Consortium 2017) with the term
“rubisco” and obtaining the corresponding PDBe entries with
no reliance on Pfam domain alignments. Rotamer states were
then assigned as described when estimating RAM55; however,
in this case we did not limit ourselves to Pfam’s definition of a
family domain and this results in a longer alignment (46 taxa,
681 sites).

Ancestral State Reconstruction
There are two broad categories of approaches to the problem
of ancestral sequence reconstruction. Marginal reconstruc-
tion assigns the most likely state to each ancestral sequence
at a given site independently of the states reconstructed for
other ancestral sequences at that site. Joint reconstruction
instead finds an assignment of ancestral states throughout
the tree that jointly maximizes the likelihood of the observed
data at that site (Yang et al. 1995; Yang 2007). We used both
the marginal reconstruction algorithm (Yang et al. 1995) and
Pupko et al.’s implementation of the joint reconstruction
algorithm (Pupko et al. 2000) to infer ancestral rotamer and
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amino acid sequences; we adapted both algorithms to fit our
expanded state space.

To test whether our RAM55 model allowed us to correctly
infer unobserved ancestral states starting from data simulated
under the model itself, rotasequence alignments were simu-
lated using RAM55, trees with fixed topology (supplementary
fig. 11, Supplementary Material online) and branch lengths
scaled, in turn, according to a set of factors: {0.001, 0.01, 0.1,
0.2, 0.5, 1, 1.5, 2, 3, 5}. For each scaled tree, 100 replicate
alignments were generated: These included internal node
rotasequences to be used as references against which infer-
ence accuracy was assessed. Masked versions of all sequences
were also created, to allow 20-state model inference (i.e., in-
ference of ancestral amino acid sequence alone) using LG. The
phylogenies from these simulations were then employed
alongside RAM55 or LG to reconstruct ancestral states.
Finally, reconstructed rotasequences or amino acid sequences
were compared position-by-position against the simulated
reference sequences and the results reported in terms of per-
cent sequence identity (percent correct inference).

We then investigated RAM55’s performance when recon-
structing ancestral rotasequences or amino acid sequences
from empirical rotasequences. Ideally, this would be per-
formed by comparison of inferred ancestral rotasequences
with known ancestral structures. Although an increasing
number of resurrected ancestral protein structures have
been resolved (e.g., Konno et al. 2011; Ingles-Prieto et al.
2013; Hart et al. 2014; Risso et al. 2014; Clifton et al. 2018),
their rarity, combined with the fact that most of these studies
reconstruct ancestral amino acid sequences from alignment
of present-day proteins that in many cases lack high-quality
structural information, do not allow a systematic comparison
of our reconstructed rotasequences with reference ancestral
rotasequences obtained from deposited structures. To over-
come this, we employed a LLOapproach (supplementary fig.
12, Supplementary Material online) in which we remove a
pair of terminal sibling nodes from the alignment and pro-
ceed to reconstruct all internal nodes including one of the
aforementioned pair of taxa according to the marginal or
joint algorithms. (Pairs of sibling terminal nodes (A, B), as
opposed to single terminal nodes (A), were removed as oth-
erwise a remaining close neighbor of A could allow for easy
reconstruction of A’s sequence.) LLO allows us to compare
the inferred terminal sequence against the known original, as
a proxy for the desired comparison. This approach was first
validated on terminal sequences simulated under RAM55
and then used on empirical sequences from the PF00514
alignment; in this case the phylogeny inferred using
RAxML-NG and RAM55 is used for the reconstruction pro-
cess along with RAM55 or LG.

Code Availability
Code used to generate random trees and simulate substitu-
tions along their branches (see Tree generation and alignment
simulation) is available at: https://bitbucket.org/uperron/
ram55; Last accessed 22nd May 2019. This repository also
includes our implementations of the joint and marginal re-
construction algorithms (see Ancestral state reconstruction),

as modified for our expanded state set. In addition, we pro-
vide an example of how to obtain a rotasequence alignment,
suitable for tree inference with RAxML-NG and RAM55, using
a user-submitted set of Uniprot IDs and the PDBe API.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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