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The SARS-CoV-2 pandemic has led to over 4.9 million deaths as of October 2021. One of the
main challenges of creating vaccines, treatment, or diagnostic tools for the virus is itsmutations
and emerging variants. A couple of variants were declared asmore virulent and infectious than
others. Some approacheswere used as nomenclature for SARS-CoV-2 variants and lineages.
One of the most used is the Pangolin nomenclature. In our study, we enrolled 35 confirmed
SARS-CoV-2 patients and sequenced the viral RNA in their samples. We also aimed to
highlight the hallmark mutations in the most frequent lineage. We identified a seven-mutation
signature for the SARS-CoV-2C36 lineage, detected in 56 countries and an emerging lineage
in Egypt. In addition, we identified onemutationwhichwas highly negatively correlatedwith the
lineage. On the other hand, we found no significant correlation between our clinical outcomes
and the C36 lineage. In conclusion, the C36 lineage is an emerging SARS-CoV-2 variant that
needs more investigation regarding its clinical outcomes compared to other strains. Our study
paves the way for easier diagnosis of variants of concern using mutation signatures.
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INTRODUCTION

The World Health Organization declared COVID-19 as a pandemic on 11 March 2020 since it
appeared as a cluster of pneumonia with unknown cause in Wuhan, Hubei Province, China, in
December 2019 (Huang et al., 2020) (Wu et al., 2020). The symptoms range from asymptomatic
presentations to dizziness, dry cough, fever, and shortness of breath (Mirzaei et al., 2020) and
peak at long-term damage in the lungs (Del Rio et al., 2020) and death in many cases.

The world has face huge economic losses due to lockdown restrictions (Verschuur et al., 2021).
Non-pharmaceutical interventions (NPI) against the coronavirus helped to reduce its incidences like
mask-wearing, personal hygiene (Cowling et al., 2020), and physical distancing (Huang et al., 2021).
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SARS-CoV-2 is a positive-sense RNA virus in the order
Nidovirales, family Coronaviridae with an approximately 30 kb
single-stranded RNA genome (Elena and Sanjuán, 2005) RNA
viruses possess a high mutation rate that is higher than their hosts
which impacts viral pathogenicity, infectivity, and
transmissibility. The SARS-CoV-2 RNA genome encodes
16 non-structural proteins (NSP) and at least 10 structural
proteins including spike (S), ORF3a, envelop (E), membrane
(M), open reading frame 6 (ORF6), ORF7a, ORF7b, ORF8,
nucleocapsid (N), and ORF10 (Cagliani et al., 2020; Yuan
et al., 2021).

The severe morbidity and mortality worldwide worried
medical and scientific societies and forced them to make
intense and rapid strategies for vaccine development (Zhou
et al., 2020). After the isolation and sequencing of the SARS-
CoV-2 genome, different genetic clades appeared in Hong Kong
in the first 2 months after the identification of SARS-CoV-2
including the V, S, and L clades (To et al., 2021), these
variants were thought to worsen vaccine potency (Mahase,
2021) and also cause reinfections (Zucman et al., 2021).

Baud et al. supported the hypothesis that the mortality of
SARS-CoV-2 changes depending on geographical regions as they
reported that the death rate incidence outside of China is three
times higher compared to death rates in China (Baud et al., 2020),
The different policies in each country influence the infection
rates, and herd immunity of different genetic populations is also
considered an important factor.

The persistence of COVID-19 accumulates mutations that
paralyze the drug development process albeit with the massive
efforts of pandemic trapping. Many studies reported specific
mutations related to geographical regions: Val483Ala and
Gly476Ser are primarily observed in samples from the
United States, whereas Val367Phe is found in samples from
China, Hong Kong Special Administrative Region, France, and
the Netherlands (Ou et al., 2021).

Varying patients’ responses to different variants of SARS-
CoV-2 revealed the need to trace the different variants of SARS-
CoV-2 and to study their transmissibility and virulence. For
instance, some variants were found to be more virulent and
transmissible such as Alpha, Delta, Gamma, Kappa, and Omicron
(Christie, 2021; Otto et al., 2021).

Identifying mutations and correlating between them help to
identify key features of different strains. Correlating significant
mutations and relating them to clinical findings aid in
highlighting variants of concern that exhibit more virulence
and resistance.

Next-generation sequencing (NGS) techniques are the
milestone that can easily identify new and virulent mutations
which may help in solving the massively widespread and rapid
mutation rates of the pandemic. In addition, NGS may help in
tracing the mutation rates and the evolutionary clock of the virus.
NGS tools also provide lower cost and unbiased methods for
detecting pathogens, with high-speed sequencing that can
sequence billions of nucleic acid fragments at once and aid in
vaccine and antiviral research, phylogenetic analysis, viral
transmission tracing, and pathogen evolution monitoring
(Udugama et al., 2020; John et al., 2021).

In this study, we aimed to correlate mutations with lineages to
identify the hallmarks of identified lineages. This identification
may lead to spotlighting the variants of concern. This method of
identification may lead to better treatments, vaccine
development, better viral diagnostic approaches, risk
categorization, and predict the possible future mutation
mechanisms in Egypt. In addition, we aimed to highlight the
virulence of viral lineages in Egypt by correlating them with our
clinical outcomes. This correlation may lead to a better prognosis
of specific viral lineages that may help in clinical decisions and
reduce the economic burden nationally and internationally.

MATERIALS AND METHODS

Ethics Statement
The study protocol was approved by the Ethical Committee of
Ain Shams University, approval number: (FMASU P17a/2020).
Samples used in this study were previously ethically approved
with informed patients’ consent in an ongoing project. Reports
from hospital records were also used.

Clinical Sample Collection and Processing
Between April 2020 and August 2020, nasopharyngeal (NP) and
oropharyngeal swabs were gathered from 35 patients positive for
SARS-CoV-2. Inclusion criteria included patients with symptoms
and those confirmed to be SARS-CoV-2-positive by real-time
PCR; weight ≥10 kg; and age ≥3 years old. Based on the fact that
all populations are susceptible to SARS-CoV-2 infection, only
individuals or family members who did not give consent to
participate were excluded. Also, non-Egyptian patients were
excluded. Patients inside every group were sub-grouped
according to the severity of symptoms: Mild, moderate, and
severe based on their criteria for patient selection including
age, sex, and the severity of the disease according to the
COVID-19 Treatment Guidelines Panel, National Institutes of
Health (COVID-19 Treatment Guidelines Panel, 2019). Fever,
cough, and weariness are common symptoms of mild infections.
Moderate individuals may suffer breathing difficulties or mild
pneumonia. Severe cases may experience severe pneumonia,
organ failure, and possible death (World Health Organization,
2021).

Oropharyngeal and nasopharyngeal swab samples were
collected from hospitalized patients from different places in
Egypt (Medany Hospital, Demerdash Hospital, Central Labs,
Qalyobeyyah, and Internal Medicine Hospital) as set out in
the guidelines of the Ministry of Health and Population in
Egypt. Patients had completed a questionnaire that covered
age, history of fever and/or respiratory symptoms, traveling
history, any underlying lung disease, history of chronic or
immune-compromised conditions, and outcome. The records
were used retrospectively to assess the patients’ clinical
characteristics and severity to categorize their cases into (mild,
moderate, or severe).

Samples placed in a centrifuge tube were labeled with the
patient unique ID and containing 2 ml of viral transport media
(VTM) were agitated vigorously for 10 s using a vortex mixer.
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VTM was split into two pre-labeled, sterile cryovials with the
correct patient ID. One cryovial was immediately placed in a
freezer (−80°C), while the other cryovial was used for molecular
studies at Medical Ain Shams Research Institute (MASRI)
Molecular Genomic Labs.

Viral RNA Extraction and SARS-Cov-2
Detection by QRT-PCR
Viral RNA isolation was performed using a MagMax viral/
pathogen nucleic acid isolation kit (ThermoFisher Scientific,
Waltham, MA, United States). Real-time reverse transcription-
polymerase chain reaction (RT-PCR) was used for simultaneous
amplification of four target genes, including nucleocapsid protein
(N), and open reading frame 1ab (ORF1ab), ORF3a, and S
proteins. COVID-19 detection was done using ProLab/CerTest
Biotech ViaSure SARS-CoV-2. The Real-time PCR detection Kit
(VS-NCO296T, CerTest Biotec, S.L, Spain, Catalogue number
VS-NCO213L) was used in an Applied Biosystems™ 7500 Fast
Real-Time PCR System following the cycling and fluorescence
acquisition parameters detailed in the manufacturer’s protocol.
Five microliters of RNA was isolated from clinical samples and
checked for quantity, purity, and quality by a Qubit® 2.0
Fluorometer (Qubit® RNA Assay Kit, Life Technologies, CA,
United States) High Sensitivity Kit (Invitrogen, Carlsbad, CA,
United States). The RNA was then used in each real-time PCR
reaction, with a final volume of 20 µl. Samples were processed
with appropriate negative, internal, and positive controls.
Samples were run in duplicate. Real-Time Detection Systems
analysis was done by Applied biosystem 7500 Real-Time PCR
Software v2.0. The cycle threshold value of [C t] below 34 was
considered to be positive. Compliance with the WHO-
recommended research protocol confirmatory laboratory
testing was carried out.

Viral Genome Sequencing for Positive
SARS-CoV-2 Samples by Targeted NGS
After viral RNA isolation, reverse transcription and cDNA
synthesis were completed. After RNA extraction and
assessment, RNA was reverse-transcribed using the
SuperScript™ VILO™ cDNA Synthesis Kit (Cat. No.11754050;
Invitrogen, Grand Island, United States), according to the
product protocol. Targets for sequencing were obtained based
on the Ion AmpliSeqTM SARS-CoV-2 Panel (ThermoFisher,
Waltham, MA, United States). Library preparation was made
using the Ion AmpliSeqTM Library Kit Plus (ThermoFisher,
Waltham, MA, United States) (Cat. Nos. 4488990). Primer
pool 1 and two target amplification reactions were combined
and amplicons were partially digested; barcode adapters were
ligated and purified using the Ion Xpress™ Barcode Adapters
1–96 Kit (Cat. No. 447451), then libraries were quantified using
the Ion Library TaqMan™ Quantitation Kit (Cat. No. 4468802),
the Ion 530™ Kit–Chef (Cat. No. A34461), according to the
user guide.

The libraries were sequenced on the Ion GeneStudio S5 Series
System platform with an Ion AmpliSeq SARS-CoV-2 Research

Panel (ThermoFisher Scientific, Waltham, MA, United States)
that contains two pools with amplicons ranging from 125 bp to
275 bp in length and includes >99% of the SARS-CoV-2 genome,
covering all serotypes. A complete genome (29,903 nucleotides)
was assembled, with 0.13% unique mutations to the other viral
genomes.

Bioinformatics Analysis
Using BLAST against the NCBI betacoronavirus database, the closest
matches were several sequences with a bit score of 33,479, including,
for example, isolate SARS-CoV-2/human/USA/VA-DCLS-0556/
2020 (99.9%), accession (MT739463). The assembled genome
along with the other SARS-CoV-2 genomes obtained and
clustered from GISAID was aligned using MAFFT (Katoh et al.,
2002).

We used Torrent Suite Software–provided with the Ion
AmpliSeq SARS-CoV-2 research panel–for generating de novo
full-length sequences from raw samples’ sequences. Sequence
genes’ annotations were carried out using the
COVID19AnnotateSnpEff plugin as instructed by the
provider’s manual.

Phylogenetic analysis was done on all 35 sequences using the
MAFFT (version 7) command-line tool (Katoh et al., 2002). The
unweighted pair groupmethodwith arithmetic mean (UPGMA)was
used for constructing the phylogenetic tree, and the iTOL (version 5)
online tool was used to visualize it (Letunic and Bork, 2021).

Correlation Analysis Between Mutations
The analysis was made using R (version 3.6.2). Missense
mutations were plotted as a matrix against samples. If a
mutation is present in a sample, it was given a value of 1. If
the sample matched the reference at a site of mutation, it was
given a zero value. Spearman’s correlation coefficients were
computed for network analysis using the qgraph R package
(version 1.6.9) (Epskamp et al., 2012).

Clustering Analysis and Grouping Samples
Samples were divided into two clusters based on the Euclidean
distance between samples. Clustering was plotted using
“heatmap.2” under the “gplots” R package (version 2.17.0).
Sample grouping was carried out based on the clusters formed
into two groups, A and B, based on the genetic variations.

Correlation Analysis Between Mutation
Clusters and Clinical Outcomes
Correlation analyses were made between clinical outcomes and
the two clusters. Shapiro-Wilk’s test was used for normality and
F-test for homogeneity for every outcome. The most appropriate
test was used for every outcome according to the previous
assumptions.

Samples Classification and Correlated
Mutations Effects
We used the Phylogenetic Assignment of Named Global
Outbreak Lineages (Pangolin) (version 3.1.5) command-line
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tool to classify our samples (Rambaut et al., 2020). We used the
Sorting Intolerant from Tolerant (SIFT) web server (version
6.2.1) to predict the effect of correlated mutations on the
protein function (Sim et al., 2012).

RESULTS

A total of 35 samples were selected based on quality checks
comprising 15 men and 20 women during the early months of the
pandemic (Table 1).

Patients’ severity of symptoms was termed mild, moderate, or
severe (Table 1) based on their age, sex, and the severity of the
disease.

In total, 160 modifications were recorded and distributed
across four genomic regions; ORF1ab comprises the longest
SARS-CoV-2 gene (approximately 24 kb), corresponding to a
polyprotein made up of 16 non-structural proteins (NSP1-16), we
found that over 56% of all mutations were recorded in this
ORF1ab specifically in positions 2,841, 10,097, 11,083, 17,766,
4,002, 12,534, and 13,536, this was followed by the spike (S)
protein in positions 23,403 and 23,593 and nucleocapsid (N)
protein in positions 28,881 and 28,908 with the lowest number of
variants found in ORF3a coding genes in position 25,563 as

represented in Table 2. Moreover, c.2576C > T (p. Asp614Gly) in
S was the most abundant missense mutation among samples,
found in 29 samples (Table 2).

Phylogenetic analysis revealed the distinction of the C36
lineage from other lineages forming a clade of 16 leaves
(Figure 1).

Correlation Analysis Between Mutations
The most frequent mutations were from cytosine or guanine to
thymidine in all samples (Figure 2A) that represented more than
56% of mutations in all samples with a frequency of 302
mutations (Figure 2C). About 56% of mutations appeared in
ORF1ab (Figure 2B).

Clusters Analysis and Grouping Samples
Network analysis showed a high positive correlation between
seven mutations in Nucleoprotein, spike, and ORF1ab genes,
and a high negative correlation between the seven mutations
and one mutation in the ORF3a gene (Figure 3). The
dendrogram (Figure 4) showed two clades of samples; a
clade that carried the 7 correlated mutations was composed
of 16 samples (group A); the second clade was composed of 19
samples carrying the negatively correlated mutation
(Gln57His) (group B).

TABLE 1 | Group classifications according to gender, severity, and age with clinical outcomes of patients.

Group A N = 16 Group B N = 19 Test of significance

Sex
Male: N = 15 (43%) 7 (44%) 8 (42%) X2 = 0.0667
Female: N = 20 (57%) 9 (56%) 11 (58%) P = 0.7963

Severity
Mild 2 1 W = 194
Moderate 5 2 P = 0.0827

Severe 9 16
Comorbidities
Diabetes mellitus (DM) 7 5 X2 = 0.33

P = 0.56
Hypertension (HTN) 7 5 X2 = 0.33

P = 0.56
DM + HTN 4 3 X2 = 0

P = 1
Bronchial asthma 2 2 X2 = 0

P = 1
Mean ±SD Standard error Mean ±SD Standard error Test of Sig.

Age/years 35.73 27.61 7.13 18.68 22.67 5.20 W = 85
P = 0.0476

TLC (thousands/cmm3) 9.93 4.39 1.098 14.14 18.53 4.25 W = 152
P = 1

Hemoglobin (g/dl) 10.23 1.76 0.44 10.45 2.32 0.534 W = 130
P = 0.47

Platelets (thousands/cmm) 249.06 133.21 30.56 253.36 85.66 21.41 T test = 0.1153
0.9089

Ferritin (mg/L) 394.71 245.47 61.36 334.07 401.67 92.15 W = 110.5
P = 0.1744

Lactate dehydrogenase (LDH) (U/L) 412.71 188.47 47.11 395.68 189.68 43.51 t test = -0.266
P = 0.7923

D-dimer(mg/L) 1.40 1.40 0.35 2.84 5.54 1.27 W = 131
P = 0.497

Total leukocyte count (TLC) (thousands/cmm3), hemoglobin (g/dl), platelets (thousands/cmm3), ferritin (mg/L), and lactate dehydrogenase (LDH) (U/L). X2: Chi-square test, W:
Mann–Whitney U test, P: p-value, and T-test: Student t-test.
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TABLE 2 | Frequent nucleotide and amino acid modifications in analyzed genomes.

Gene change Position Gene Protein change Counts

c.2576C > T 2,841 ORF1ab p.Ala859Val 4
c.608_610delGGGinsAAC 28,881 N p.ArgGly203LysArg 15
c.1841A > G 23,403 S p.Asp614Gly 29
c.171G > T 25,563 ORF3a p.Gln57His 14
c.2031G > T 23,593 S p.Gln677His 14
c.635G > T 28,908 N p.Gly212Val 18
c.9832G > A 10,097 ORF1ab p.Gly3278Ser 16
c.10818G > T 11,083 ORF1ab p.Leu3606Phe 4
c.17501C > T 17,766 ORF1ab p.Ser5834Phe 4
c.3737C > T 4,002 ORF1ab p.Thr1246Ile 14
c.12269C > T 12,534 ORF1ab p.Thr4090Ile 13
c.13271C > T 13,536 ORF1ab p.Thr4424Ile 15

FIGURE 1 | Phylogenetic tree for the 35 samples revealing the C36 clade and its distance from other lineages.
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Correlation Analysis Between Patient
Groups and Clinical Outcomes
Patients presented with comorbidities such as diabetes
mellitus, hypertension, or both were reported. Previously
diagnosed asthmatic patients were reported as having a
comorbidity as well. Cough was reported in all samples,

analyzed using Mann-Whitney’s U test, and no statistically
significant difference was observed between the two groups
(p-value = 0.4783). The severity of symptoms was reported in
all samples (Figure 5), and Mann-Whitney’s U test was used.
The two groups showed no statistical significance in the
severity outcome (W = 194, p-value = 0.08277), Laboratory

FIGURE 2 | The figure represents statistics of mutation frequencies in all samples. (A) Bar plot represents frequencies of nucleotide mutations where the x-axis
lower row represents reference nucleotide while the x-axis upper row represents the mutated nucleotide in samples. Frequency is represented on the y-axis. (B) Pie-
chart represents mutations’ total frequencies in genes in all samples. (C) Bar plot represents mutations’ total frequencies per mutation type.
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outcomes were reported such as (TLC, hemoglobin, platelets,
ferritin, lactate dehydrogenase, D-dimer); statistical tests were
chosen after testing assumptions such as normality (using
Shapiro-Wilk’s test) and homogeneity of variance (using F-test).
Based on the prior assumptions, Mann-Whitney U, Student t, and
Chi-square tests were used as in Table 1. No statistical significance
was found between group A and group B (Table 1).

Samples Classification and Correlated
Mutations Effects
Phylogenetic analysis revealed 16 sequences under the same clade
that were identified as C36 lineages using further analysis
(Figure 1).

Group A samples were all classified as lineageC36 according to
Pangolin. Group B samples were classified underA and B lineages
and their sub-lineages. In group B, the Gln57His mutation at
ORF3a was predicted to affect the function of the protein with a
high score (0.00). In group A, the Gly204Arg mutation in the
nucleocapsid protein and Thr1246Ile and Thr4090Ile mutations
in ORF1ab were predicted to affect their proteins with scores of
0.02, 0.00, and 0.00, respectively. However, other correlated
mutations on protein function were tolerated according to the
SIFT algorithm.

Data Availability Statement
All sequenced data were submitted into the SARS-CoV-2 Global
Initiative on Sharing All Influenza Data (GISAID) database as

shown in Table 3. In all figures, we used the corresponding
abbreviations (Table 3) throughout the study.

DISCUSSION

Sequencing using NGS techniques revealed the blurry areas in
the SARS-CoV-2 genome that helped us to make panoramic
insights about mutation patterns and explain the mounting
infectivity of the virus all over the world. Moreover, these
techniques helped us to put forward the right explanation of
population re-infection and antigenic consequences (Li et al.,
2005).

We analyzed the genomic variants of 35 Egyptian patients
during the first wave of the pandemic and divided them into
two groups after phylogenetic analysis. The first group (B)
included all lineages except C36 lineage. While group (A)
included only sequences that were classified as the C36
lineage. According to Pangolin, the C36 lineage first
appeared in the United States on 13 March, 2020.
However, the highest incidence according to the GISAID
database is in the Egyptian population. The C36 lineage has
been detected in at least 56 countries worldwide (Anderson
et al., 2021).

The C36 lineage compromises 34% of all sequenced variants
in Egypt, 11% of sequenced variants in Germany, 10% of
sequenced variants in the United Kingdom, 7% of
sequenced variants in the United States, and 6% of

FIGURE 2 | Continued.
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sequenced variants in Denmark until January 2022 according
to Pangolin.

Roshdy et al. confirmed the presence of theC36 lineage early in
the pandemic and its evolution into several sub-lineages,
including C.36.1, C.36.3, and C.36.3.1, circulating across the
Egyptian patients’ genome. They also discovered that
mutations in this lineage show potential fitness and
pathogenicity in the same manner that mutations in Alpha,
Beta, Gamma, Delta, and Omicron (variants of concern) do
(Roshdy et al., 2022). The spike mutation related to C36
lineage Gln677His in position 23,593 which emerged firstly in
the United States confers an advantage in spreading and
transmissibility through its position in the S1/S2 boundary
upstream furin cleavage site (Hodcroft et al., 2021).

Among the 35 genomes, more than 56% of mutations were
missense mutations with a frequency of 302 mutations followed
by synonymous mutations with a frequency of 140 mutations and
frameshifts with a frequency of 16 mutations (Figure 2C). C > T
transitions may be interfered with by cytosine deaminases (Lyons
and Lauring, 2017). G > T transversions are more likely to be

introduced by oxo-guanine from reactive oxygen species (Li et al.,
2006).

Approximately 56% of mutations appeared in ORF1ab, which
represents more than two-thirds of the genome, controls viral
replication, and consequently, these mutations might affect the
replication speed of the virus (Yin, 2020).

The most common variant located in the ORF1ab region was
the missense mutation c.9832G > A in region 10,097 that changed
glycine amino acid into serine p.Gly3278Ser in 16 of our samples.
In group (B), Thr1246Ile and Thr4090Ile mutations in ORF1ab
were predicted to affect their proteins with scores of 0.00 and 0.00,
respectively, and were considered influential parameters that
could be possibly linked to the virus’s speed replication and
infectivity that contribute to patient severity status.

The S protein of SARS-CoV-1 and SARS-CoV-2 forms homo-
trimers protruding in the viral surface that facilitates viral entry
into the host cells via interacting with angiotensin-converting
enzyme 2 (ACE2) which is their main receptor expressed in lower
respiratory tract cells (Letko et al., 2020) (Bakhshandeh et al.,
2021).

FIGURE 3 | Network plotted based on Spearman’s correlation matrix between mutations. Green edges represent a positive correlation coefficient while red edges
represent a negative correlation. Intense color represents a higher correlation while the color fades when correlation falls to zero.
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Variants in the spike protein domain showed strong evidence
of reducing the neutralization sensitivity to convalescent sera and
monoclonal antibodies. These variants potentially lessened the
protection afforded by the current vaccines that target the spike
region. Asn439Lys emerged in Scotland in the spike region and
was found to enhance the binding affinity for the ACE2 receptor
and reduce the neutralizing activity of some monoclonal
antibodies (Thomson et al., 2021) (Greaney et al., 2021)
(Wibmer et al., 2021) (Gaebler et al., 2021) (Collier et al., 2021).

We reported that the most frequent modified nucleotides were
recorded at position 23,403 in the spike protein c.1841A > G, this
missense mutation changed aspartic acid into glycine
p.Asp614Gly found in 29 samples (Table 2) (Alouane et al.,
2020) (Lobiuc et al., 2021). The p.Asp614Gly mutation firstly
appeared in late January in China and rapidly emerged in the

global population within a mere 3 months, studies illustrated that
the p.Asp614Glymutation confers a moderate advantage for virus
transmissibility, infectivity, replication, and elevated fitness; it
may explain the high frequency of infections in the Egyptian
population (Hou et al., 2020) (Yurkovetskiy et al., 2020).

Cong et al. studied the N protein and its impact on the
coronaviral life cycle by the contribution to helical
ribonucleoproteins formation during RNA genome
packaging, modulating viral RNA synthesis during
replication and transcription, and modifying metabolism in
infected people (Cong et al., 2020). Studies showed that N
genes are more conserved and stable, with 90% amino acid
homology and fewer mutation frequencies throughout time
(Dutta et al., 2020). Changes in theN protein charge resulted in
enhanced virus replication and ultimately increased infectivity

FIGURE 4 |Heatmap representing missense mutations on the x-axis and samples on the y-axis. A yellow color indicates the absence of the mutation in the sample
while a red color indicates the presence of the mutation. Two clades appear, a blue clade which we considered as a group (A), and a red clade as group (B).

Frontiers in Molecular Biosciences | www.frontiersin.org March 2022 | Volume 9 | Article 8177359

Agwa et al. SARS-CoV-2 Mutation Hallmarks

https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles


and fitness (Wu et al., 2021). The missense mutation in
nucleocapsid phosphoprotein (N) in position 28,881 p.
ArgGly203LysArg found in 15 of our patients is already
observed in 1,573 samples out of 10,022 SARS-CoV-2
genomes studied from the US, United Kingdom, and
Australia (Koyama et al., 2020). The statistical analysis
found that the Gly204Arg mutation in nucleocapsid protein
which was found in group B in position 28,881 appeared to
influence protein with a score of 0.02. Studies showed that
Arg203Lys and Gly204Arg are concomitant mutations in the N
protein, which are quickly rising in frequency and may be
linked to the virus’s infectivity (Zhu et al., 2021). These
mutations are found commonly in lineages B.1.1.7 (Alpha)
(Caserta et al., 2021; Wu et al., 2021) and P.1 (Gamma) (Faria
et al., 2021; Wu et al., 2021). Another mutation p. Gly212Val in
position 28,908 was also found in N protein and repeated
18 times.

ORF3a, although it is considered an accessory protein, has a
vital role in cell surface localization and allows viral entry
within the host and possesses immunogenic properties (Zhong
et al., 2003) (Liu et al., 2014). Moreover, ORF3a is involved in
ion channel formation and modulates the release of the virus
from the host cell (Liu et al., 2014). Majumdar et al. extensively
studied the emerged mutations that appeared in the ORF3a
protein in silico and related these mutations with high

mortality rates for SARS-CoV-2 infection through host
immune evasion and extreme cytokine storm through JAK-
STAT, chemokine, and cytokine-related pathways (Majumdar
and Niyogi, 2020).

Interestingly, our data revealed that the Gln57His mutation at
ORF3a affected the function of the protein with a high score (0.00) in
group B. Our findings are supported by a study that reports that
ORF3amutation Gln57His leads to a major truncation of the ORF3b
protein (Chu et al., 2021).

Zekri et al. previously identified 204 distinct mutations of the
Egyptian strains classified under clade B lineage and its sub-lineages,
distributed onORF1ab, S,N,ORF3a,ORF7a,ORF8,M, E, andORF6.
In addition, they found that Asp614Gly was the most frequent
mutation appearing in all their samples. Interestingly Asp614Gly
also appeared in 83% of our samples (Zekri et al., 2021).

Our data showed no statistical significance in the severity
outcome between the studied groups (p-value = 0.08277).

The laboratory tests investigated in this study included
LDH, PLT, Hb, D-dimer, serum ferritin, and platelet
counts. Other studies reported the influence of SARS-CoV-2
on those parameters. For instance, LDH was reported to
increase in severely symptomatic patients to reach 6-fold its
normal values (Henry et al., 2020). Serum ferritin and D-dimer
were significantly increased in COVID patients and elevated in
more virulent cases (Cheng et al., 2020; Hussein et al., 2021).

FIGURE 5 | The histogram represents severity; the y-axis represents the frequency percentage in each group; the x-axis represents severity as numbers: 1, 2, and
3 for mild, moderate, and severe, respectively.
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Platelets and total leucocytes declined in COVID patients as
reported by Wool and Miller (Wool and Miller, 2021).
However, our study reported no significant correlation
between the C36 mutation signature and clinical outcomes.

CONCLUSION

Our study highlights the mutation signature for the C36 lineage
over other lineages. The mutation signature proposes seven
positively correlated mutations and one negatively correlated
mutation. On the other hand, our study reported no
significantly correlated clinical outcomes or predisposing
comorbidities that hallmark the C36 lineage. Interestingly, C36

tends to affect older patients. However, our clinical findings need
more investigation using a larger sample size.
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