
fnins-14-00900 September 11, 2020 Time: 18:34 # 1

TECHNOLOGY AND CODE
published: 15 September 2020
doi: 10.3389/fnins.2020.00900

Edited by:
Alard Roebroeck,

Maastricht University, Netherlands

Reviewed by:
Shijie Zhao,

Northwestern Polytechnical University,
China

Mark S. Bolding,
The University of Alabama

at Birmingham, United States

*Correspondence:
Kathryn C. Dickerson

kathryn.dickerson@duke.edu

Specialty section:
This article was submitted to

Brain Imaging Methods,
a section of the journal

Frontiers in Neuroscience

Received: 20 January 2020
Accepted: 03 August 2020

Published: 15 September 2020

Citation:
MacInnes JJ, Adcock RA,

Stocco A, Prat CS, Rao RPN and
Dickerson KC (2020) Pyneal: Open

Source Real-Time fMRI Software.
Front. Neurosci. 14:900.

doi: 10.3389/fnins.2020.00900

Pyneal: Open Source Real-Time fMRI
Software
Jeff J. MacInnes1, R. Alison Adcock2, Andrea Stocco1,3, Chantel S. Prat1,3,
Rajesh P. N. Rao4 and Kathryn C. Dickerson2*

1 Institute for Learning and Brain Sciences, University of Washington, Seattle, WA, United States, 2 Department of Psychiatry
and Behavioral Sciences, Center for Cognitive Neuroscience, Duke Institute for Brain Sciences, Duke University, Durham,
NC, United States, 3 Department of Psychology, University of Washington, Seattle, WA, United States, 4 Department
of Computer Science and Engineering, Center for Neurotechnology, University of Washington, Seattle, WA, United States

Increasingly, neuroimaging researchers are exploring the use of real-time functional
magnetic resonance imaging (rt-fMRI) as a way to access a participant’s ongoing
brain function throughout a scan. This approach presents novel and exciting
experimental applications ranging from monitoring data quality in real time, to delivering
neurofeedback from a region of interest, to dynamically controlling experimental flow,
or interfacing with remote devices. Yet, for those interested in adopting this method,
the existing software options are few and limited in application. This presents a barrier
for new users, as well as hinders existing users from refining techniques and methods.
Here we introduce a free, open-source rt-fMRI package, the Pyneal toolkit, designed
to address this limitation. The Pyneal toolkit is python-based software that offers a
flexible and user friendly framework for rt-fMRI, is compatible with all three major
scanner manufacturers (GE, Siemens, Phillips), and, critically, allows fully customized
analysis pipelines. In this article, we provide a detailed overview of the architecture,
describe how to set up and run the Pyneal toolkit during an experimental session, offer
tutorials with scan data that demonstrate how data flows through the Pyneal toolkit
with example analyses, and highlight the advantages that the Pyneal toolkit offers to the
neuroimaging community.

Keywords: real-time, functional magnetic resonance imaging, neurofeedback, open source software, python
(programming language), neuroimaging methods, rt-fMRI

INTRODUCTION

Real-time functional magnetic resonance imaging (rt-fMRI) is an emerging technique that
expands the scope of research questions beyond what traditional neuroimaging methods can
offer (Sulzer et al., 2013a; Stoeckel et al., 2014; Sitaram et al., 2017; MacInnes and Dickerson,
2018). With traditional fMRI, brain activation is measured concurrently but independently from
the experiment. All analyses (e.g., correlating behavior or cognitive state with brain activations)

Frontiers in Neuroscience | www.frontiersin.org 1 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2020.00900
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fnins.2020.00900
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2020.00900&domain=pdf&date_stamp=2020-09-15
https://www.frontiersin.org/articles/10.3389/fnins.2020.00900/full
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 2

MacInnes et al. Pyneal: Real-Time fMRI Software

therefore, take place after the scan1 is completed, once the brain
images and behavioral data have been saved and transferred to
a shared location. In contrast, real-time fMRI is an approach
whereby MRI data is accessed and analyzed throughout an
ongoing scan, and can be incorporated directly into the
experiment. Technological advances over the last decade have
made it feasible to reconfigure an MRI environment to allow
researchers to access and analyze incoming data at a rate that
matches data acquisition. A few key advantages that rt-fMRI
provides over traditional fMRI include the ability to: (1) monitor
data quality in real time, thereby saving time and money, (2)
provide participants with feedback from a region or network
of regions in cognitive training paradigms, and (3) use ongoing
brain activation as an independent variable to dynamically
control the flow of an experimental task.

While rt-fMRI has risen in popularity over the past decade
(Sulzer et al., 2013a), the majority of imaging centers around
the world remain unequipped to support this technique. In
the past, this was primarily due to the computational demands
exceeding scanner hardware capabilities [e.g., reconstructing and
analyzing datasets composed of >100 k voxels at a rate that
matched data acquisition was not feasible (Voyvodic, 1999)].
Excitingly, modern day scanners available from each of the
major MRI manufacturers – GE, Philips, and Siemens – are
now outfitted with multicore processors, capable of operating in
parallel to reconstruct imaging data and write files to disk while a
scan is ongoing.

The availability of fMRI data in real time presents
novel opportunities to design experiments that incorporate
information about ongoing brain activation. However, finding
the right software tool to read images across multiple data
formats, support flexible analyses, and integrate the results into
an ongoing experimental presentation is a challenge. To date, the
existing software options are limited for one or more reasons,
including: cost (requiring a commercial license or dependent
upon commercially licensed software such as Matlab) or a
constrained choice of analysis options [e.g., region of interest
(ROI) analysis only].

In this article, we describe the Pyneal toolkit, an open source
and freely available software package that was developed to
address these limitations and support real-time fMRI. It is written
entirely in Python, a programming language that offers flexibility
and performance, balanced with readability and widespread
support among the neuroimaging community. The Pyneal toolkit
was built using a modular architecture to support a variety
of different data formats, including those used across all three
major MRI scanner manufacturers – GE, Philips, and Siemens.
It offers built-in routines for basic data quality measures and
single ROI summary statistics, as well as a web-based dashboard
for monitoring the progress of ongoing scans. Its primary
advantage, however, is that it offers an easy-to-use scaffolding on
which users can design fully customized analyses to meet their
unique experimental needs (e.g., neurofeedback from multiple

1Throughout this article we use the term scan or run to refer to a single, discrete
4D acquisition, and the terms experimental session to refer to a collection of scans
that are administered to a particular participant in a continuous time window.

ROIs, dynamic experimental control, classification of brain states,
brain-computer interaction). This flexibility allows researchers
full control over which neural regions to include, which analyses
to carry out, and how the results of those analyses may be
incorporated into the overall experimental flow. Moreover,
computational and technological advances have ushered in new
and more sensitive approaches to fMRI analyses. As the field
continues to evolve, the ability to customize analyses within the
Pyneal toolkit will allow researchers to quickly adapt new analytic
methods to real-time experiments.

The Pyneal toolkit was designed to offer a powerful and
flexible tool to existing rt-fMRI practitioners as well as to lower
the burden of entry for new researchers or imaging centers
looking to add this capability to their facilities. Here we provide
an overview of the software architecture, describe how it is
used, offer tutorial data and analyses demonstrating how to use
the Pyneal toolkit, and discuss the advantages of the Pyneal
toolkit. We conclude by describing both limitations of and future
directions for the Pyneal toolkit.

METHOD

The Pyneal toolkit is available at https://github.com/
jeffmacinnes/pyneal and full documentation is online at
https://jeffmacinnes.github.io/pyneal-docs/.

Overview
The Pyneal toolkit was created as a flexible and open-source
option for researchers interested in pursuing real-time fMRI
methods. The entire codebase is written in Python 32 and
integrates commonly used neuroimaging libraries (e.g., Nipy,
NiBabel). For users developing customized real-time analyses,
Python has a low burden of entry (compared to languages like
Java or C++), while at the same time offers performance measures
that meet or exceed the needs of basic research applications, in
part due to backend numeric computing libraries (e.g., Numpy,
Scipy) that are wrapped on top of a fast, C-based architecture.

In order to support a wide range of data types and
computing environments, the software is divided into two
primary components: Pyneal Scanner and Pyneal3 (see Figure 1).
The two components communicate via TCP/IP connections,
allowing users the flexibility to run the components on the
same or different machines as required by their individual
scanning environments4. Internally, Pyneal uses ZeroMQ5, a
performant and reliable messaging framework, for all TCP/IP-
based communication among its core processes.

2https://docs.python.org/3.6
3Throughout this article we will use the phrase “Pyneal toolkit” when referring to
the overall toolkit and “Pyneal” when referencing the specific software component
comprising Pyneal (as opposed to Pyneal Scanner for example).
4The Pyneal toolkit documentation, and the figures shown throughout this section,
use the terms “Scanner Computer” and “Analysis Computer” to refer to the
machines that are running Pyneal Scanner and Pyneal, respectively. However, it
is important to note that these terms refer to functional roles: there is no conflict
in having the Pyneal Scanner and Pyneal running on the same physical machine.
5ZeroMQ, a powerful open source library for messaging, is available at https://
zeromq.org/ and https://github.com/zeromq.

Frontiers in Neuroscience | www.frontiersin.org 2 September 2020 | Volume 14 | Article 900

https://github.com/jeffmacinnes/pyneal
https://github.com/jeffmacinnes/pyneal
https://jeffmacinnes.github.io/pyneal-docs/
https://docs.python.org/3.6
https://zeromq.org/
https://zeromq.org/
https://github.com/zeromq
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 3

MacInnes et al. Pyneal: Real-Time fMRI Software

FIGURE 1 | Overview of the Pyneal toolkit. The Pyneal toolkit consists of two modules: Pyneal Scanner and Pyneal. Pyneal Scanner receives the raw data and
transforms it into a standardized format for Pyneal to use. Pyneal analyzes the data in real time and makes it available for subsequent use (e.g., by a remote End
User for experimental display). Pyneal Scanner and Pyneal can operate on the same computer (e.g., dedicated analysis computer) or separate computers (as
required by the specific scanning environment).

During a scan, Pyneal Scanner is responsible for converting
data into a standardized format and passing it along to Pyneal
(see Figure 2). Pyneal receives incoming data, carries out the
specified preprocessing and analysis steps, and stores the results
of the analysis on a locally running server. Throughout the
scan, any remote End User (e.g., a workstation running the
experimental task) can retrieve analysis results from Pyneal at
any point. Each of these components is discussed in greater
detail below.

Pyneal Scanner
Given the range of potential input data formats, depending
on the scanning environment, we aimed to standardize the
incoming data in a way that allows subsequent processing
steps to be environment agnostic. Thus we divided the overall
Pyneal toolkit architecture into two components that operate
independently, enabling one component, Pyneal Scanner, to
adapt to the idiosyncrasies of the local scanning environment

without affecting the downstream processing and analysis stages
of the Pyneal component (see Figure 2).

Architecturally, Pyneal Scanner uses a multithreaded design
with one thread monitoring for the appearance of new image data,
and a second thread processing image data as it appears. This
design allows Pyneal Scanner to efficiently process incoming scan
data with minimal latency (in practice, under typical scanning
conditions, the latency between when new image data arrives and
is processed is on the order of tens of milliseconds). Throughout
a scan, new images that appear from the scanner are placed into
a queue. The processing thread pulls individual files from that
queue and converts the data to a standardized format. In addition,
header information from the first images to arrive is processed to
determine key metadata about the current scan, including total
volume dimensions, voxel spacing, total number of expected time
points, and the affine transformation needed to reorient the data
to RAS+ format (axes increase from left to right, posterior to
anterior, inferior to superior).

Frontiers in Neuroscience | www.frontiersin.org 3 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 4

MacInnes et al. Pyneal: Real-Time fMRI Software

FIGURE 2 | Process flow diagram illustrating the multi-threaded nature of the Pyneal toolkit. Pyneal Scanner has two sub-modules: a scan watcher and scan
processor. The scan watcher monitors and adds all new raw images to a queue. The scan processor receives all new raw images from the queue, extracts the
image data, transforms it to a standardized format, and sends it to Pyneal for analysis. Pyneal operates as an independent, multi-threaded component and has three
sub-modules: scan receiver, scan processor, and results server. The scan receiver receives formatted data from Pyneal Scanner and sends it to the scan processor,
which completes the specified analyses and sends them to the results server. The results server listens to incoming requests from End Users (e.g., experimental task).

Pyneal Scanner is initialized through a simple configuration
text file specifying the scanner type and paths to where data
files are expected to appear throughout a scan. Users can
create this file manually, or follow the command line prompts
when first launching; in either case, once Pyneal Scanner is
configured at the start of a session, it does not need to be
modified, unless the scanning environment itself is modified.
In that case, users can update Pyneal Scanner without having
to add any additional modifications to downstream processes
in Pyneal. Regardless of how and where the data arrives from
the scanner, as long as Pyneal Scanner continues to output data
in the expected format, subsequent stages in the pipeline will
proceed unaffected. This is a significant advantage that provides
researchers the necessary latitude to customize the installation to
their unique environment.

Pyneal Scanner has built-in routines for handling common
data formats used in GE (e.g., 2D dicom slice files), Siemens
(e.g., 3D dicom mosaic files), and Philips scanners (e.g., PAR/REC
files), and is easily extensible to incorporate additional formats
that may emerge in the future.

As soon as a complete volume (i.e., 3D array of voxel values
from a single time point) has arrived, it is passed along to Pyneal
via a dedicated TCP/IP socket interface. This arrangement allows
Pyneal Scanner and Pyneal to run on separate machines or
as separate processes on the same machine, depending on the
particular requirements of the local scanning environment. For
instance, if newly arriving images are only accessible from the
scanner console itself, Pyneal Scanner can run on that machine,

monitoring the local directory where new images appear, and
then transferring processed volumes to Pyneal running on a
separate dedicated machine. Alternatively, the scanner network
configuration may be such that it is possible to remotely mount
the directory where new images appear, allowing Pyneal Scanner
and Pyneal to run concurrently on the same machine.

Each transmitted volume from Pyneal Scanner to Pyneal
occurs in two waves: First, Pyneal Scanner sends a JSON-
formatted header that contains relevant metadata about the
current volume, including the time point index and volume
dimensions. Second, it sends the numeric array representing the
volume data itself. Pyneal uses the information from the header
to reconstruct the incoming array, store it as a memory- and
computation-efficient Numpy array, and index the volume in a
way to facilitate subsequent processing and analysis steps.

Pyneal
Pyneal is divided up into three distinct submodules that operate
efficiently in a multithreaded configuration: submodule 1: the
scan receiver, accepts incoming data from Pyneal Scanner;
submodule 2: the processing module, oversees the preprocessing
and analysis stages on each incoming volume, and submodule 3:
the results server fields requests for data from remote End Users
throughout the scan (see Figure 2).

As described above, throughout a scan Pyneal’s submodule 1
(scan receiver) receives re-formatted data from Pyneal Scanner.
Each new data point is represented as a 3D matrix of voxel values
corresponding to a single sample (i.e., one TR). The JSON header

Frontiers in Neuroscience | www.frontiersin.org 4 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 5

MacInnes et al. Pyneal: Real-Time fMRI Software

that Pyneal Scanner provides with every transmission allows
Pyneal to reconstruct the 3D volume with the correct dimensions,
as well as assign it the proper index location in time. Each new
volume is passed to the proper location of a preallocated 4D
matrix that incrementally fills in throughout the scan.

Submodule 2 (processing module) accepts each 3D volume
and submits it through preprocessing and analysis stages.
The preprocessing stage estimates motion using a histogram
registration algorithm and yields mean displacement in
millimeters relative to a fixed reference volume from the start of
the run (absolute motion), as well as relative to the previous time
point (relative motion) (Jenkinson, 2000).

The analysis stage takes the preprocessed volume and runs
the specified analyses or computations on the volume. Users
have the option of selecting from built-in analysis routines
(including calculating a weighted or unweighted mean signal
within a supplied ROI mask), or, importantly, can generate and
include their own custom analysis script (written in Python)
that will be executed on each volume. The ability to design and
execute customized analyses in real-time provides researchers the
freedom to measure and use ongoing brain activations however
they desire. See Using Pyneal below for more details on selecting
an analysis or building a custom analysis script.

The analysis stage is capable of computing and returning
multiple results on each volume (e.g., mean signal from multiple
distinct ROIs). The computed results are tagged with the
corresponding volume index, and passed along to the third
submodule: the results server.

Submodule 3, (the results server), listens for and responds
to incoming requests for specific results from an End User
throughout the scan. An End User is anything that may wish
to access real-time results throughout an on-going scan (e.g.,
experimental presentation software that will present results as
neurofeedback to the participant in the scanner). To request
results, the End User sends a specific volume index to the results
server via a TCP/IP socket interface. The result server receives the
request and checks to see if the requested volume has arrived and
been analyzed. Responses are sent as a JSON-formatted reply to
the End User. If the requested volume has not been processed yet,
the reply message from the Result Server will contain the entry
foundResults: False; if the requested volume exists, the Results
Server retrieves the requested results for that volume, and sends
a reply message to the End User that contains foundResults:
True as well as the full set of results for that volume. The End
User can then parse and make use of the results as needed
(e.g., update a graphical display showing mean percent signal
change in an ROI).

At the completion of each run, Pyneal creates a unique output
directory for the current scan. The scan data is written to this
directory as a 4D NIFTI image, along with a JSON file containing
all computed results as well as log files.

Using Pyneal
Once installed, users can interact with and customize Pyneal
via configuration files and graphical user interfaces (GUIs). At
the start of a new scan, the user needs to launch both Pyneal
Scanner and Pyneal.

Launching Pyneal Scanner is done via the command line.
Pyneal Scanner uses a configuration text file to obtain parameters
specific to the current computing environment, including the
scanner make and the directory path where new incoming data
is expected to appear (see example in the Full Pipeline tutorial
below, section “Pyneal Toolkit – Full Pipeline Tutorial”). Users
can manually create this configuration file ahead of time, or, if
no file exists, the user will be prompted to specify the parameters
via the command line when launching. Parameters specified
via the command line will be written into the configuration
file and saved to disk. Pyneal Scanner will automatically read
this configuration file at the start of every scan. Thus, Pyneal
Scanner needs to be configured only once at the beginning of each
experimental session.

Launching Pyneal is also done via the command line. Upon
launching Pyneal at the start of each scan (run), the user is
presented with a setup GUI for configuring Pyneal to the current
scan (see Figure 3). The setup GUI includes sections for socket
communication parameters (e.g., IP address), selecting an input
mask, setting preprocessing parameters, choosing analyses, and
specifying an output directory. Some parameters, like the socket
communication host address and ports, are unlikely to change
from experimental session to session, while other parameters,
most notably the input mask and output directory, will be specific
to experimental session and/or each individual scan. The GUI
is populated with the last used settings to minimize set-up time,
however, the GUI must be launched before each scan.

The setup GUI asks users to specify the path to an input mask,
which will be used during the analysis stage of a scan. If the
user selects one of the built-in analysis options (i.e., calculate
an average or median), the mask will define which voxels are
included in the calculation. Alternatively, if the user chooses to
use a custom analysis, a reference to this mask will be passed into
the custom analysis script, which the user is free to use or ignore
as needed. In addition, the mask panel also allows users to specify
whether or not to use voxel values from the mask as weights in
subsequent analyses.

All analyses in Pyneal take place in the native functional space
of the current scan, and as such, this mask is required to match
the dimensions and orientation of the incoming functional data.
For cases where the user wishes to use an existing anatomical
mask in a different imaging space (e.g., MNI space), the Pyneal
toolkit includes a Create Mask tool (utils/createMask.py) for
transforming masks to the functional space of the current subject
[see Figure 4; Note that this functionality requires FSL (Jenkinson
et al., 2012) to be installed].

Pyneal includes built-in analysis options for calculating
the average and median activation levels across all voxels
in the supplied mask. For experiments that wish to present
neurofeedback from a single ROI, these options may be
appropriate. However, one of Pyneal’s primary advantages is the
ability to run fully customized analyses. By selecting “custom” in
the analysis panel, the user will be prompted to choose a python-
based analysis script they have composed. Pyneal requires that
a custom script contain certain functions in order to integrate
with the rest of the Pyneal pipeline throughout a scan. However,
beyond that basic structure, there are few limitations on what

Frontiers in Neuroscience | www.frontiersin.org 5 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 6

MacInnes et al. Pyneal: Real-Time fMRI Software

FIGURE 3 | Pyneal Graphical User Interface (GUI). The Pyneal GUI contains
the following sections: (1) Communication: allows Pyneal to communicate with
Pyneal Scanner and any End Users. This includes the IP address of the
computer running Pyneal as well as the port numbers for Pyneal Scanner and
End Users to communicate with Pyneal. (2) Mask: users have the option of
loading a mask to use during real-time fMRI runs (weighted or unweighted). (3)
Preprocessing: users specify the number of timepoints (volumes) in the run.
(4) Analysis: users may choose between one of the default options (calculating
the average or median of a mask) or importantly can upload a custom analysis
script (e.g., correlation between two regions). (5) Output: users specify a
location where the output files are saved.

users may wish to include. To assist users in designing a custom
analysis script, we include a basic template file6 with the required
named functions and input/output variable names that users can
expand upon as needed. The benefit of this approach is that it
liberates users to design analysis approaches that are best suited

6https://github.com/jeffmacinnes/pyneal/blob/master/utils/customAnalyses/
customAnalysisTemplate.py

FIGURE 4 | Create Mask GUI. This GUI assists users in making a mask that
can be used in analysis during the real-time fMRI runs. Users can choose
between making a whole brain mask or a mask from a pre-specified MNI
template (e.g., amygdala ROI). Users must load an example functional data
file for both mask types. When creating a mask from an MNI template, users
must additionally load an anatomical data file, specify the path to the MNI
standard brain file, the MNI mask file, and specify the new file name (output
prefix). Note, this tool requires FSL.

to their experimental questions, all while fully integrating into the
existing Pyneal pipeline.

Lastly, users are able to specify an output directory for the
current experimental session. During an experimental session,
the output from each scan will be saved to its own unique
subdirectory within this output directory. The saved output from
each scan includes a log file showing all settings and messages
recorded throughout the scan, a JSON file containing all of the
computed analysis results, and a 4D NIFTI image containing the
functional data as received by Pyneal.

Once the user hits “submit,” Pyneal will establish
communication with Pyneal Scanner, launch the results
server, and wait for the scan to start and data to appear.

Web-Based Dashboard
Once the scan begins, users are presented with a web-based
dashboard (see Figure 5) viewable in an internet browser.
The dashboard updates in real-time allowing users to view
the progress of the scan, and monitor the status via four
separate components. A plot in the top-left displays on-
going head motion estimates expressed in millimeters relative

Frontiers in Neuroscience | www.frontiersin.org 6 September 2020 | Volume 14 | Article 900

https://github.com/jeffmacinnes/pyneal/blob/master/utils/customAnalyses/customAnalysisTemplate.py
https://github.com/jeffmacinnes/pyneal/blob/master/utils/customAnalyses/customAnalysisTemplate.py
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 7

MacInnes et al. Pyneal: Real-Time fMRI Software

FIGURE 5 | Pyneal Dashboard. This web-based dashboard allows users to monitor analysis and progress during real-time runs. The current volume is displayed
along with basic information about the scan (e.g., mask, analysis, etc.). Two plots indicate: (1) head motion (top left) – both relative (compared to previous volume)
and absolute (compared to the start of the scan) and (2) processing time for each volume (top right). Two log windows display: (1) messages from Pyneal Scanner
(bottom left) and (2) communication between Pyneal and the End User (bottom right).

to both a fixed reference volume (absolute displacement)
and the previous volume (relative displacement). In the top-
right, a separate plot shows the processing time for each
volume. By monitoring this plot, users can ensure that all
analyses are completing at a rate that keeps pace with data
acquisition. At the bottom, two log windows allow users to
watch incoming messages from Pyneal Scanner (bottom left)
and communication between Pyneal’s results server and any End
User (bottom right).

RESULTS

Here we present two complementary tutorials and results using
real fMRI data. Section “Pyneal Toolkit – Full Pipeline Tutorial”

details how to set up and use the Pyneal toolkit. It demonstrates
the full pipeline of data flow throughout the Pyneal Toolkit.
Section “Pyneal Analysis Tutorial” describes in more detail
how to run two example analyses in Pyneal – one using the
default built-in ROI-averaging tool in the toolkit and the second
using a custom analysis script. Please see: https://github.com/
jeffmacinnes/pyneal-tutorial for full access to the data and scripts
for both tutorials.

Both tutorials assume the user has downloaded and installed
the Pyneal toolkit and the Pyneal Tutorial repositories in their
local folder. If so, the following directories should be located in
the user’s home directory:

∼/pyneal
∼/pyneal-tutorial

Frontiers in Neuroscience | www.frontiersin.org 7 September 2020 | Volume 14 | Article 900

https://github.com/jeffmacinnes/pyneal-tutorial
https://github.com/jeffmacinnes/pyneal-tutorial
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 8

MacInnes et al. Pyneal: Real-Time fMRI Software

Pyneal Toolkit – Full Pipeline Tutorial
The goal of this tutorial is to test the Pyneal toolkit’s complete
pipeline using conditions similar to what is available at the three
major scanner manufacturers. This tutorial uses the Scanner
Simulator command line tool that comes with the Pyneal toolkit.
This tool mimics the behavior of an actual scanner by writing
image data to an output directory at a steady rate (directory and
rate specified by the user). The source data (included) are actual
scan images from GE, Philips, and Siemens scanners. These data
are meant to simulate the format and directory structure typical
of each of these platforms. This tutorial allows users to test the
complete Pyneal toolkit’s pipeline on any of these platforms prior
to actual data collection.

Regardless of scanner type, each platform follows the same
general steps:

• Set up the Scan Simulator.
• Set up Pyneal Scanner.
• Set up Pyneal.

Below we provide a complete example using the Siemens’
scanner setup. Please see https://github.com/jeffmacinnes/
pyneal-tutorial for source data and information for all scanner
types, including examples using GE and Philips scanners.

Siemens Full Pipeline Tutorial:
Inside the Siemens_demo folder, there is a directory

named scanner. This directory serves as the mock
scanner for this tutorial, and follows a structure similar
to what is observed on actual Siemens scanners. There’s
a single session directory (data) that contains all of
the dicom files for two functional series (000013,
000015) and an anatomical series (for more source
data detail, see Appendix: Siemens source data within:
https://github.com/jeffmacinnes/pyneal-tutorial/blob/master/
FullPipelineTutorial.md).

We will use the Scanner Simulator tool to simulate a new
functional series, using 000013 as our source data. The new series
will appear in the session directory alongside the existing series
files, and dicom files will contain the series name 000014.

To perform this tutorial the following steps are required:

I. Launch Siemens_sim.py with the desired input data
• Open a new terminal window and navigate to the

Scanner Simulator tool: cd ∼ /pyneal/pyneal_
scanner/simulation/scannerSimulators

• launch Siemens_sim.py, specifying paths to the
source directory (∼/pyneal-tutorial/Siemens_
demo/scanner/data) and series numbers (000013).
The user can also specify the new series number
(-n 000014), and TR (-t 1000) if desired.
python Siemens_sim.py ∼/pyneal-
tutorial/Siemens_demo/scanner/data
000013 -t 1000 -n 000014

The user should see details about the current scan, and an
option to press ENTER to begin the scan:

————————

Source dir: ∼/pyneal-tutorial/Siemens_
demo/scanner/data
Total Mosaics Found: 60
TR: 1000
Press ENTER to begin the “scan”

Before starting the simulator, first complete the following two
steps: setting up Pyneal Scanner and Pyneal.

II. Configure Pyneal Scanner to watch for new scan data in the
session directory for the Siemens mock scanner.

• open a second terminal window, and navigate to Pyneal
Scanner:
cd ∼/pyneal/pyneal_scanner

• create (or edit the existing) scannerConfig.yaml file in
this directory to set the scannerMake to Siemens and the
scannerBaseDir to the mock scanner folder. The contents
of the scannerConfig.yaml file should be:
pynealSocketHost: 127.0.0.1
pynealSocketPort: ‘5555’
scannerBaseDir: ∼/pyneal-tutorial/
Siemens_demo/scanner/data
scannerMake: Siemens

• launch Pyneal Scanner:
python pynealScanner.py

The user should see details about the current session, and an
indication that Pyneal Scanner is attempting to connect to Pyneal:

================
Session Dir:
∼/pyneal-tutorial/Siemens_demo/scanner/
data
Unique Series:

000013 60 files 1113170 min, 51 s ago
000015 60 files 1113170 min, 51 s ago
000017 52 files 1113170 min, 51 s ago

MainThread - Connecting to
pynealSocket...

There is nothing more to do in this terminal window. Once
Pyneal is set up and the Scan Simulator tool starts, Pyneal Scanner
will begin processing new images as they appear and sending the
data to Pyneal. The user can monitor the progress via the log
messages that appear in this terminal.

III. Configure and launch Pyneal
• Open a third terminal window, navigate to

and launch Pyneal.
cd ∼/pyneal
python pyneal.py

• Configure Pyneal for the Siemens tutorial demo:

◦ Communication: Set the Pyneal Host IP to
127.0.0.1, the Pyneal-Scanner Port to 5555,
and the Results Server Port to 5558.

◦ Mask: In the Siemens_demo directory, there is a
file named dummyMask_64-64-18.nii.gz. Set
the mask value in Pyneal to use this file. This mask

Frontiers in Neuroscience | www.frontiersin.org 8 September 2020 | Volume 14 | Article 900

https://github.com/jeffmacinnes/pyneal-tutorial
https://github.com/jeffmacinnes/pyneal-tutorial
https://github.com/jeffmacinnes/pyneal-tutorial/blob/master/FullPipelineTutorial.md
https://github.com/jeffmacinnes/pyneal-tutorial/blob/master/FullPipelineTutorial.md
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 9

MacInnes et al. Pyneal: Real-Time fMRI Software

was pre-made to match the volume dimensions of the
Siemens_demo scan data. This mask is simply a
rectangle positioned in the middle slice of the 3D volume,
and is for demonstration purposes only. The user can
unselect the Weighted Mask? option

◦ Preprocessing: Set # of timepts to: 60. The user
can keep the Estimate Motion? option selected if
preferred.

◦ Analysis: Select the Average option.
◦ Output: Set the output directory to ∼/
pyneal-tutorial/Siemens_demo/output.
Check Launch Dashboard?

• Start Pyneal by pressing Submit.

◦ In the Pyneal Scanner terminal, the user will see messages
indicating that Pyneal Scanner has successfully set up a
connection to Pyneal and that it is waiting for a new
seriesDir (which will be created once the scan starts).

◦ In addition, the user can open a browser window and
enter 127.0.0.1:5558 in the URL bar to see the
Pyneal dashboard.

IV. Start demo
• In the first terminal window, where the Scan Simulator tool

is running, press ENTER to begin the scan.
• As the scan is progressing, each of the three terminal

windows will update with new log messages. In addition,
the user can monitor the progress from the dashboard in a
web browser at 127.0.0.1:5558.

• As soon at the scan finishes, the user can find the
Pyneal output at ∼/pyneal-tutorial/Siemens_
demo/output/pyneal_001. This directory will have:

◦ pynealLog.log: log file from the current scan.
◦ receivedFunc.nii.gz: 4D nifti file of the data, as received

by Pyneal ∗ results.json: JSON file containing the analysis
results from the current scan.

Pyneal Analysis Tutorial
The goal of this tutorial is to guide users through two different
analyses using Pyneal. We provide real fMRI data (note – this tool
also allows for use of randomly generated data). This tutorial uses
the pynealScanner_sim.py command line tool that comes
with the Pyneal toolkit. This tool takes real or generated data,
breaks it apart, and sends it to Pyneal for analysis. The source data
(included) is a nifti file from one run of a hand squeezing task. It
alternates between blocks of squeeze and rest (each 20 s, repeated
five times). The first analysis demonstrates Pyneal’s built-in ROI
neurofeedback tool. The second demonstrates use of a custom
analysis script: correlating the activation of two ROIs and using it
for neurofeedback.

Neurofeedback: Single ROI Averaging Using Built-in
Analysis Functions
Example: A researcher wishes to provide participants with
neurofeedback from the primary motor cortex (M1) in a hand-
squeezing task. The M1 ROI is defined on the basis of an
anatomical mask using the Juelich atlas in FSL.

Tutorial: Ordinarily, the first step is to create a unique mask
in functional space of the target ROI (M1). For the purposes
of this tutorial, we provide the ROI in subject-specific space for
users. We used the left M1 ROI from the Juelich atlas freely
available in FSL. We thresholded the mask at 10% and binarized
it using fslmaths. Then using flirt, we converted the left
M1 mask (in MNI space) to functional space (subject-specific).
The resulting mask, L_MotorCortex.nii.gz is now ready
to use in this tutorial.

This tutorial uses the Pyneal Scanner simulation script, which
is located in:

∼/pyneal/utils/simulation/pyneal
Scanner_sim.py

Usage includes:

python pynealScanner_sim.py [-filePath]
[-random] [-dims] [-TR] [-sockethost]
[-socketport]

Input arguments:

• -f/-filePath: path to 4D nifti image
the user wants to use as the “scan”
data. Here we are using “func.nii.gz”
provided in ∼/pyneal-tutorial/analysis
Tutorial as our input data.

• -r/-random: flag to generate random
data instead of using a pre-existing
nifti image

• -d/-dims: desired dimensions of
randomly generated dataset [default:
64 64 18 60]

• -t/-TR: set the TR in ms [default:
1000]

• -sh/-sockethost: IP address Pyneal host
[default: 127.0.0.1]

• -sp/-socketport: port number to send 3D
volumes over to Pyneal [default: 5555]

To run the tutorial, the following steps are required:

I. Launch pynealScanner_sim.py script

python pynealScanner_sim.py -f ∼/pyneal
-tutorial/analysisTutorial/func.
nii.gz -t 1000 -sh 127.0.0.1 -sp 5555

Here we are setting the TR to 1000 ms, the host socket
number to 127.0.0.1 and the port number to 5555. This tool
will simulate the behavior of Pyneal Scanner. During a real scan,
Pyneal Scanner will send data to Pyneal over a socket connection.
Each transmission comes in two phases: (1) a json header with
metadata about the volume and (2) the volume itself.

Once the user hits enter, she should see the following:

Prepping dataset: ∼/pyneal-tutorial/
analysisTutorial/func.nii.gz
Dimensions: (64, 64, 18, 208)
TR: 1000

Frontiers in Neuroscience | www.frontiersin.org 9 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 10

MacInnes et al. Pyneal: Real-Time fMRI Software

Connecting to Pyneal at 127.0.0.1:5555
waiting for connection...

II. Launch Pyneal using the appropriate configurations. In a
new terminal window type:

cd ∼/pyneal
python pyneal.py

This will launch the Pyneal GUI. Configure Pyneal with the
following:

◦ Communication: Set the Pyneal Host IP to
127.0.0.1, the Pyneal-Scanner Port to 5555,
and the Results Server Port to 5558.

◦ Mask: In the ∼/pyneal-tutorial/analysis
Tutorial/masks/ directory, there is a file named
L_MotorCortex.nii.gz. Set the mask value
in Pyneal to use this file. The user can unselect the
Weighted Mask? option. Once the mask is loaded, the
GUI should display the volume dimensions of the selected
mask (here 64, 64, 18), allowing us to confirm a match with
the dimensions of the upcoming scan.

◦ Preprocessing: Set # of timepts to: 208. The user
can keep the Estimate Motion? option selected if
preferred.

◦ Analysis: Select the Average option.
◦ Output: Set the output directory to

∼/pyneal-tutorial/analysisTutorial/
output. Check Launch Dashboard?

The user can then hit Submit to start Pyneal.

III. Start the scan

Back in the Scan Simulator terminal, the user should see a
successful connection to Pyneal

connected to pyneal
Press ENTER to begin the “scan”

IV. Hit Enter to begin the simulated scan

As soon as the scan simulation begins, Pyneal Scanner
begins processing and transmitting volumes of the provided
data (func.nii.gz) to Pyneal, which calculates the mean
activation within the target region on each volume and stores the
results on the Pyneal’s Results Server. As the scan is progressing,
the user should see information about each volume appear in
both the Scan Simulator and Pyneal terminals, indicating the
volumes are being successfully transmitted and processed.

V. Results
• At the completion of the scan, the user can find

the following Pyneal output files in ∼/pyneal-
tutorial/analysisTutorial/output/pyneal_
001 (Note: the directory names increase in sequence. If
this is the first time saving output to this directory, it will
be _001, otherwise it will be a larger number):

◦ pynealLog.log: complete log file from the scan.

◦ receivedFunc.nii.gz: 4D Nifti of the data, as
received by Pyneal.

◦ results.json: JSON-formatted file containing the
computed analysis results at each timepoint.

• Since the input data here came from a simple hand
squeezing task where we computed the average signal
within the Left Motor Cortex, we expect to see a fairly
robust signal in the results, following the alternating blocks
design of the task.

◦ To confirm, the user can open the results.json file
and plot the results at each timepoint using the user’s
preferred tools (e.g., Python, Matlab).

Note – it is also possible to use this setup to test
communication with an End User (e.g., experimental
presentation script) if desired. See https://jeffmacinnes.github.io/
pyneal-docs/simulations/ for more details.

See MacInnes et al. (2016) for an example of a single
ROI analysis using built-in tools in the Pyneal toolkit. For
additional examples of rt-fMRI single-ROI neurofeedback studies,
see deCharms et al. (2005), Caria et al. (2010), Sulzer et al. (2013b),
Greer et al. (2014), Young et al. (2017).

Neurofeedback: Correlation Between Two ROIs Using
a Custom Analysis Script
Example: Using a custom analysis script to calculate the
correlation between two ROIs and use the correlation as feedback
during a task. E.g., A researcher wishes to calculate the correlation
between the primary motor cortex and the caudate nucleus and use
that correlated signal as neurofeedback in a hand squeezing task.

This tutorial uses the Pyneal Scanner simulation script, which
is located in:

∼/pyneal/utils/simulation/pyneal
Scanner_sim.py

To perform this tutorial the following steps are required:

I. Setup Scan Simulator

Like in the example in “Neurofeedback: Single ROI Averaging
Using Built-in Analysis Functions,” the first step is to set up
Pyneal Scanner Simulator, which will send our sample dataset to
Pyneal for analysis.

Open a new terminal and navigate to the Simulation Tools
directory: cd ∼/pyneal/utils/simulation

Run pynealScanner_sim.py and pass in the path to
our sample dataset.

Type:
python pynealScanner_sim.py -f ∼/
pyneal-tutorial/analysisTutorial/func.
nii.gz -t 1000 -sh 127.0.0.1 -sp 5555

Hit enter. The user should see the simulator prepare the
data and wait for a connection to Pyneal:
Prepping dataset:∼/pyneal-tutorial/
analysisTutorial/func.nii.gz

Frontiers in Neuroscience | www.frontiersin.org 10 September 2020 | Volume 14 | Article 900

https://jeffmacinnes.github.io/pyneal-docs/simulations/
https://jeffmacinnes.github.io/pyneal-docs/simulations/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 11

MacInnes et al. Pyneal: Real-Time fMRI Software

Dimensions: (64, 64, 18, 208)
TR: 1000
Connecting to Pyneal at 127.0.0.1:5555
waiting for connection...

II. Setup Custom Analysis Script

This tutorial includes a custom analysis script that the
user will load into pyneal. This script can be found at:
∼/pyneal-tutorial/analysisTutorial/custom
Analysis_ROI_corr.py. Open this file to follow along
below. This script is adapted from the customAnalysis
Template.py that is included in the Pyneal toolkit.

There are two relevant sections to this script:
initialize
The analysis script includes an __init__ method that

runs once Pyneal is launched. This section should be used to
load any required files and initialize any variables needed once
the scan begins.

In the __init__ method in the tutorial script, the user will
find the following code block:

Load the mask files for the 2 ROIs
we will compute the correlation between
Note: we will be ignoring the mask
that is passed in from the Pyneal GUI
mask1_path = join(self.customAnalysis
Dir, ‘masks/L_Caudate.nii.gz’)
mask2_path = join(self.customAnalysis
Dir, ‘masks/L_MotorCortex.nii.gz’)
mask1_img = nib.load(mask1_path)
mask2_img = nib.load(mask2_path)
self.masks = {
‘mask1’: {

‘mask’: mask1_img.get_data() > 0,
creat boolean mask
‘vals’: np.zeros(self.numTimepts)
init array to store mean signal
on each timept

},
‘mask2’: {

‘mask’: mask2_img.get_data() > 0,
‘vals’: np.zeros(self.numTimepts)

}
}
Correlation config
self.corr_window = 10 # number of
timepts to calculate correlation over

The above block of code does the following:

• Loads each mask file. Note that while the template
provides a reference to the mask file loaded via the Pyneal
GUI, we are ignoring that mask and instead loading
each mask manually.

• Pre-allocates an array for each mask where we will store the
mean signal within that mask on each timepoint.

• Sets the correlation window to 10 timepoints, meaning
that, with each new volume that arrives, the correlation

between the two ROIs will be computed over the previous
10 timepoints.

compute
The compute method will be executed on each incoming

volume throughout the scan, and provides the image data (vol)
and volume index (volIdx) as inputs. This method should be
used to define analysis steps.

In the compute method in the tutorial script, the user will find
the following code block:

Get the mean signal within each mask
at this timept
for roi in self.masks:

mask = self.masks[roi][’mask’]
meanSignal = np.mean(vol[mask])
self.masks[roi][’vals’][volIdx] =
meanSignal

Once enough timepts have
accumulated, start calculating rolling
correlation
if volIdx > self.corr_window:

get the timeseries from each ROI
over the correlation window
roi1_ts = self.masks[’mask1’][’vals’]
[volIdx-self.corr_window:volIdx]
roi2_ts = self.masks[’mask2’][’vals’]
[volIdx-self.corr_window:volIdx]
compute correlation,
return r-value only
Corr = stats.pearsonr(roi1_ts,
roi2_ts)[0]

else:
corr = None

return {’corr’: corr }

The above block of code does the following:

• Computes the mean signal within each mask at the
current timepoint.

• Once enough volumes have arrived, computes the
correlation between the two ROIs over the specified
correlation window.

• Returns the result of the correlation as a dictionary.

The results of any custom script need to be returned as a
dictionary. The Pyneal will integrate these results into the existing
pipeline and the results will be available via the Pyneal Results
Server (for requests from an End User if desired) in the same
manner as with the built-in analysis options.

III. Set up Pyneal

Next, configure Pyneal to use the custom analysis script
developed above.

In a new terminal, launch Pyneal:

cd ∼/pyneal
python pyneal.py

Frontiers in Neuroscience | www.frontiersin.org 11 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 12

MacInnes et al. Pyneal: Real-Time fMRI Software

• Configure Pyneal:

◦ Communication: Set the Pyneal Host IP to
127.0.0.1, Pyneal-Scanner Port to 5555,
and the Results Server Port to 5558.

◦ Mask: In the ∼/pyneal-tutorial/analysis
Tutorial/masks/ directory, select L_Motor
Cortext.nii.gz. Note that although the custom
analysis script overrides the mask supplied here, a valid
mask file is required nonetheless.

◦ Preprocessing: Set # of timepts to: 208. The
user can keep the Estimate Motion? option selected if
preferred.

◦ Analysis: Select the Custom option. The user will be
presented with a file dialog. Select the custom analysis
script at ∼/pyneal-
tutorial/analysisTutorial/custom
Analysis_ROI_corr.py.

◦ Output: Set the output directory to
∼/pyneal-tutorial/analysisTutorial/
output. Check Launch Dashboard?

• Hit Submit to start Pyneal.

IV. Start the scan

Back in the Scan Simulator terminal, the user should see a
successful connection to Pyneal

connected to pyneal
Press ENTER to begin the “scan”

• Hit Enter to begin the simulated scan

As the scan is progressing, the user should see information
about each volume appear in both the Scan Simulator and the
Pyneal terminals, indicating the volumes are being successfully
transmitted and processed.

V. Results

• At the completion of the scan, the user can find
the following Pyneal output files in ∼/pyneal-
tutorial/analysisTutorial/output/pyneal_
002 (Note: the directory names increase in sequence. If the
user completed the single ROI NF tutorial first, it’ll be _002,
otherwise it’ll be a different number):

◦ pynealLog.log: complete log file from the scan.
◦ receivedFunc.nii.gz: 4D Nifti of the data, as

received by the Pyneal.
◦ results.json: JSON-formatted file containing the

computed analysis results at each timepoint.

• The custom analysis script computed a sliding window
correlation between the Left Motor Cortex and the Left
Caudate throughout the task.

◦ To visualize these results, the user can open the
results.json file and plot the results at each timepoint
using their preferred tools (e.g., Python, Matlab).

DISCUSSION

Advantages of the Pyneal Toolkit rt-fMRI
Software
A variety of tools currently exist that support real-time fMRI to
varying degrees, including AFNI (Cox and Jesmanowicz, 1995),
FIRE (Gembris et al., 2000), scanSTAT (Cohen, 2001), STAR
(Magland et al., 2011), FieldTrip toolbox extension (Oostenveld
et al., 2011), Turbo-BrainVoyager (Goebel, 2012), FRIEND
(Sato et al., 2013), BART (Hellrung et al., 2015), OpenNFT
(Koush et al., 2017), and Neu3CA-RT (Heunis et al., 2018). At
a time when implementing real-time fMRI meant researchers
had to develop custom in-house software solutions, these tools
presented a valuable alternative, catalyzing new experiments,
and supporting pioneering early research with real-time fMRI.
Nevertheless, the existing software options are limited in one or
more ways that fundamentally restricts who can use them and
where, and what types of experiments they support. Please see
Table 1 for a comparison of the Pyneal toolkit to the other main
rt-fMRI software packages currently available. For example, some
of these tools require users to purchase licensing agreements for
the package itself (e.g., Turbo-BrainVoyager), or are designed to
work inside of commercial software packages like Matlab7. In
addition, a number of these tools are designed to only support a
particular usage of real-time fMRI, like neurofeedback, while not
supporting other uses of rt-fMRI. And lastly, even in cases where
the underlying code is customizable, it often requires proficiency
with advanced computer languages like C++. We built the Pyneal
toolkit to directly address these limitations.

Free and Open-Source
The Pyneal toolkit offers a number of key features that make it
an appealing package for existing real-time fMRI practitioners
as well as those new to the field. First, in support of the
growing movement toward open-science, the Pyneal toolkit is
free and open source. It is written entirely in Python (see text
footnote 2), and all required dependencies are similarly cost-
free and open. We chose to use Python specifically because it
is sufficiently powerful to handle the computational demands
of fMRI analysis in real-time and the language is comparatively
easy for users to read and write, an important consideration
when designing a package that encourages customization by
researchers. Furthermore, the number of libraries designed to
aid scientific computing (e.g., Numpy, Scipy, Scikit-learn), and
the large user support community worldwide, have lead Python
to surge in popularity among the sciences (see Perez et al.,
2011), and neuroscience in particular (see Gleeson et al., 2017
and Muller et al., 2015). The Pyneal toolkit follows style and
documentation guidelines of scientific python libraries, and when
possible uses the same data formats and image orientation
conventions as popular neuroimaging libraries (e.g., NiBabel).
Moreover, the source code for the Pyneal toolkit is hosted via a
GitHub repository, which ensures users can access the most up-
to-date code releases, as well as track modifications and revisions
to the codebase across time (Perkel, 2016).

7https://www.mathworks.com/help/matlab/

Frontiers in Neuroscience | www.frontiersin.org 12 September 2020 | Volume 14 | Article 900

https://www.mathworks.com/help/matlab/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900
Septem

ber11,2020
Tim

e:18:34
#

13

M
acInnes

etal.
P

yneal:
R

eal-Tim
e

fM
R

IS
oftw

are

TABLE 1 | Comparison of common, currently available real-time fMRI software packages.

Software Commercial
license required?

Cost Source code
available?

Base
software
language

Network requirements Main types of built in analyses Limitations

Pyneal No Free Yes Python TCP/IP socket
communication

Out of the box ROI neurofeedback
analyses; allows fully custom
analysis scripts written by users in
Python

Not compatible with multiband
data yet; no online data
preprocessing yet; has not
been tested on Windows
environment (no known
incompatibilities)

AFNI
plug_realtime

No (GNU GPL v2.0
license)

Free Yes C TCP/IP socket
communication

Data quality assessment (e.g.,
motion) and neurofeedback

Limited documentation online;
limited built-in functions

Turbo-Brain
Voyager

Yes Price varies across
countries; see https:
//www.brainvoyager.
com/products/
purchase.html for
current pricing

Not for main
software; may be
available for plugins
and remote
extensions

C++ Depends on the MRI
manufacturer. Siemens:
TCP/IP connection to the
imager and default dicom
export to the TBV analysis
computer. GE/Philips:
supports reading the
exported files

Incremental: GLM, ERA, motion
correction, spatial smoothing, and
drift removal; multi-voxel pattern
classification; ICA; ROI NF

Commercial license required.
Requires sophisticated
software knowledge: custom
analyses are allowed via user
development of plugins; must
be in C++. (Note – TBV
provides a network interface
build on top of the plugin
interface. The network interface
is available for all programming
languages.)

FRIEND No Free Yes C++ TCP/IP socket
communication for
communicating with End
Users via Friend Engine

Image preprocessing, NF, ROI
analysis (PSC), and multivoxel
pattern decoding

Requires sophisticated
software knowledge: custom
plugins must be written in C++.
Frontend is fully customizable,
but users must be comfortable
writing socket protocols.

OpenNFT No (GNU GPL v3.0
license)

Free Yes Python and
Matlab

TCP/IP socket
communication

Built-in key volume and time series
preprocessing and processing
procedures (e.g., spatial smoothing,
high pass filtering, despiking); rt
QA; incremental and cummulative
GLM; the following types of NF:
continuous and intermittent
activation-based NF; intermittent
effective connectivity NF,
continuous classification-based NF.

Requires Matlab license
(commercial); tested with
Siemens and Philips, but
should be compatible with
other scanner types. Has not
been tested on GE to our
knowledge.

ROI, region of analysis; GLM, general linear model; ERA, event related averaging; ICA, independent component analysis; NF, neurofeedback; IP, internet protocol; TCP, transmission control protocol. Note, in this table
we exclude packages that are exclusively quality control (for example see rtQC: https://github.com/rtQC-group/rtQC).

Frontiers
in

N
euroscience

|w
w

w
.frontiersin.org

13
S

eptem
ber

2020
|Volum

e
14

|A
rticle

900

https://www.brainvoyager.com/products/purchase.html
https://www.brainvoyager.com/products/purchase.html
https://www.brainvoyager.com/products/purchase.html
https://www.brainvoyager.com/products/purchase.html
https://github.com/rtQC-group/rtQC
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 14

MacInnes et al. Pyneal: Real-Time fMRI Software

Flexibility in Handling Multiple Data Formats and
Local Computing Configurations
A second advantage the Pyneal toolkit offers is flexibility
in handling multiple different data formats and directory
structures. MRI data can be represented via a number of
different file formats, depending in part on the particular scanner
manufacturer and/or automated processing pipelines that modify
data before it gets written to disk. For instance, the scanner
may store images using a universal medical imaging standard
like DICOM, a more specific neuroimaging standard like Nifti,
or a proprietary format like the PAR/REC file convention
currently seen with Philips scanners. Moreover, even within a
given file format, there is considerable variation in how data
are represented. For instance, a single DICOM image file may
represent a 2D slice (GE scanners) or a 3D volume arranged
as a 2D mosaic grid (Siemens scanners). Lastly, even when two
imaging centers have the same scanners and use the same data
formats, there can be differences in how the local computing
networks are configured. This affects where data is saved, and
how the Pyneal toolkit can access existing pipelines. The Pyneal
toolkit was designed to be robust to these differences across
scanning environments.

Relatedly, a third advantage is the ability of the Pyneal toolkit
to accommodate multiple different environmental variations.
Importantly, the Pyneal toolkit splits data handling from real-
time analysis tasks into modular components that run via
independent processes. Pyneal Scanner is responsible for reading
incoming MRI data in whatever form it takes, accessing the raw
data, and reformatting to a standardized form that is compatible
with subsequent analysis stages of Pyneal. The re-formatted data
is then passed to the preprocessing and analysis stage of Pyneal
via TCP/IP based interprocess communications. The modular
nature of this configuration offers important advantages. For one,
Pyneal Scanner and Pyneal are able (though not required) to
run on separate workstations. This is important as researchers
may lack the administrative permissions needed to significantly
modify the computing environment of a shared scanning suite.
For example, in a situation where the scanner console does not
export images to a shared network directory, Pyneal Scanner can
run on the scanner console and pass data to a remote workstation
running Pyneal, minimizing the risk of interfering with normal
scanner operations. In other situations where the scanner does
export images to a shared network directory, Pyneal Scanner and
Pyneal can run on the same workstation.

The modular nature of the Pyneal toolkit’s design means that
it can be modified to support new data formats in the future
without having to drastically alter the core codebase. Importantly,
if the Pyneal toolkit does not currently support a desired data
format, researchers can modify Pyneal Scanner to accommodate
their needs without having to modify the rest of the Pyneal toolkit
core utilities. As the entire toolkit is free and open-source, users
and welcome and encouraged to do so.

Fully Customizable Analyses
A fourth, and chief, advantage that the Pyneal toolkit offers
is flexibility of analyses. The ability to design and implement
uniquely tailored analysis routines via custom analysis scripts

means that users can adapt the method to their research question
rather than having to constrain their research questions based
on the methodology. This flexibility means that the Pyneal
toolkit can be used to accommodate a broader and more
diverse spectrum of research and experimental goals, offering
numerous benefits to the real-time neuroimaging community
and general scientific advancement. Importantly, in the Pyneal
toolkit, the entire incoming data stream is made available,
and by using custom analysis scripts, researchers can extract,
manipulate and interrogate whichever portions of that data are
most relevant to their question. In addition, researchers are
able to use these results in real-time for whatever purpose they
choose, including neurofeedback, experimental control, quality-
assurance monitoring, etc.

The ability to design and test one’s own analyses will expedite
the growth and maturation of real-time neuroimaging more
broadly. It is worth highlighting that real-time fMRI is still
a comparatively new approach, with many open questions
regarding imaging parameters, experimental design, effect sizes,
subject populations, long-term outcomes, and general best
practices (Sulzer et al., 2013a). Determining satisfactory answers
to these questions has been slow, in part due to the limitations of
existing software and a small community of users. Customizing
analyses in the Pyneal toolkit allows researchers to work in a
rapid and iterative way to explore new methods, addressing
these questions, and establishing a framework for future studies.
It also means that researchers can keep up with the latest
analytic advances in their domain without having to rely on
external software developers to release new updates for their
real-time tools.

In short, the Pyneal toolkit is powerful precisely because
it does not presuppose how researchers intend to use it; our
conviction is that advances in real-time neuroimaging are best
achieved by empowering the community to develop those
advances itself.

Limitations
While the Pyneal toolkit offers a convenient and flexible
infrastructure for accessing and using fMRI data in real-time,
there are a few limitations with the software presently. First,
the Pyneal toolkit does not currently include built-in online
denoising of the raw fMRI data. Depending on the application, a
user may find that simple denoising steps prior to analysis, such as
slow-wave drift removal or head motion correction, may increase
the signal-to-noise ratio and improve the statistical power of the
analysis. We plan to include built-in options for basic denoising
in forthcoming software releases. In the meantime, the current
version of the Pyneal toolkit allows users to implement their own
denoising steps as part of a customized processing pipeline via a
custom analysis script.

Second, the Pyneal toolkit offers built-in support for standard
data formats found across the three main scanner manufacturers,
but does not currently support multiband acquisitions. As
imaging technology advances, multiband acquisitions are
becoming increasingly common as a way to increase coverage
while maintaining short TRs. As such, we plan to offer built-in
multiband support in an upcoming software update. Due to the

Frontiers in Neuroscience | www.frontiersin.org 14 September 2020 | Volume 14 | Article 900

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 15

MacInnes et al. Pyneal: Real-Time fMRI Software

modular nature of the Pyneal toolkit, multiband support can be
integrated as a component of Pyneal Scanner without requiring
significant changes to the bulk of the code base.

Third, the Pyneal toolkit was built and tested using Python 3
on Linux and macOS environments. While there are no obvious
incompatibilities with a Windows environment, we have not had
the resources to thoroughly test the Pyneal toolkit across multiple
platforms. We encourage Windows users to run the Pyneal toolkit
via a virtual machine configured as a Linux operating system. In
future versions of the Pyneal toolkit we hope to offer broader
support across platforms, or containerize the application using
a tool like Docker8 in order to be platform agnostic.

While our team is working to improve the aforementioned
limitations, we would also like to extend an invitation to the
neuroimaging community to contribute directly to the Pyneal
toolkit. The Pyneal toolkit was developed with the open source
ethos of sharing and collaboration. It lives in the GitHub
ecosystem, which facilitates collaborative work across multiple
teams and/or individuals, and offers an easy way for users to
submit new features, discuss code modifications in detail, and
log bugs as they are discovered. Working collaboratively in this
manner ensures efficiency in expanding the software’s capabilities
and improving stability. Anyone interested in working on the
Pyneal toolkit can find information in the Contributor Guidelines
and Contributor Code of Conduct outlined in the documentation
at the Pyneal toolkit GitHub repository at: https://github.com/
jeffmacinnes/pyneal.

CONCLUSION

In this article we describe the Pyneal toolkit, a free and open-
source software platform for rt-fMRI. The Pyneal toolkit provides
seamless access to incoming MRI data across a variety of formats,
a flexible basis to carry out preprocessing and analysis in real-
time, a mechanism to communicate results in real-time with
remote devices, and interactive tools to monitor the quality
and status of an on-going real-time fMRI experimental session.
In addition to a number of basic built-in analysis options, the
Pyneal toolkit offers users the flexibility to design and implement
fully customized processing pipelines, allowing real-time fMRI
analyses to be tailored to the experimental question instead of the
other way around [for two examples using the Pyneal toolkit with
8 https://www.docker.com/

different experimental approaches see (MacInnes et al., 2016)
and (MacDuffie et al., 2018)]. As the rt-fMRI community grows
worldwide, new tools are needed that allow researchers to flexibly
adapt to suit their unique needs, be that neurofeedback from
a single or multiple regions, triggering task flow, or online
multivariate classification. The Pyneal toolkit offers researchers
a powerful way to address the current open questions in the field,
and the flexibility necessary to adapt to answer future questions.

DATA AVAILABILITY STATEMENT

Pyneal is available at https://github.com/jeffmacinnes/pyneal and
full documentation is online at https://jeffmacinnes.github.io/
pyneal-docs/.

AUTHOR CONTRIBUTIONS

JM designed and developed the software and documentation,
and co-wrote the manuscript. KD consulted on software design,
provided material support, and co-wrote the manuscript. RA
and AS consulted on software design and implementation,
provided material support, and revised the manuscript. RR
and CP provided material support and revised the manuscript.
All authors contributed to the article and approved the
submitted version.

FUNDING

Funding support came from W.M. Keck Foundation (AS, CP, and
RR), NCATS 1KL2TR002554 (KD), NIMH R01 MH094743 (RA),
NSF EEC-1028725 (RR), as well as the Alfred P. Sloan Foundation
(RA), Klingenstein Fellowship Award in the Neurosciences
(RA), and the Dana Foundation Brain and Immuno-Imaging
Program (RA). The content is solely the responsibility of the
authors and does not necessarily represent the official views of
the NIH or the NSF.

ACKNOWLEDGMENTS

The authors would like to thank Ian Ballard for helpful comments
on the manuscript.

REFERENCES
Caria, A., Ranganatha, S., Ralf, V., Chiara, B., and Niels, B. (2010).

Volitional control of anterior insula activity modulates the response
to aversive stimuli. a real-time functional magnetic resonance imaging
study. Biol. Psychiatry 68, 425–432. doi: 10.1016/j.biopsych.2010.
04.020

Cohen, M. S. (2001). Real-time functional magnetic resonance imaging. Methods
25, 201–220. doi: 10.1006/meth.2001.1235

Cox, R. W., and Jesmanowicz, A. (1995). Real-time functional magnetic
resonance imaging. Magn. Reson. Insights 33, 230–236. doi: 10.1002/mrm.19103
30213

deCharms, R. C., Fumiko, M., Gary, H. G., David, L., John, M. P., Deepak, S.,
et al. (2005). Control over brain activation and pain learned by using real-
time functional MRI. Proc. Natl. Acad. Sci. U.S.A. 102, 18626–18631. doi:
10.1073/pnas.0505210102

Gembris, D., John, G. T., Stefan, S., Wolfgang, F., Dieter, S., and Stefan, P. (2000).
Functional magnetic resonance imaging in real time (FIRE): sliding-window
correlation analysis and reference-vector optimization. Magn. Reson. Med. 43,
259–268. doi: 10.1002/(sici)1522-2594(200002)43:2<259::aid-mrm13>3.0.co;
2-p

Gleeson, P., Andrew, P. D., Silver, R. A., and Giorgio, A. A. (2017). A commitment
to open source in neuroscience. Neuron 96, 964–965. doi: 10.1016/j.neuron.
2017.10.013

Frontiers in Neuroscience | www.frontiersin.org 15 September 2020 | Volume 14 | Article 900

https://github.com/jeffmacinnes/pyneal
https://github.com/jeffmacinnes/pyneal
https://www.docker.com/
https://github.com/jeffmacinnes/pyneal
https://jeffmacinnes.github.io/pyneal-docs/
https://jeffmacinnes.github.io/pyneal-docs/
https://doi.org/10.1016/j.biopsych.2010.04.020
https://doi.org/10.1016/j.biopsych.2010.04.020
https://doi.org/10.1006/meth.2001.1235
https://doi.org/10.1002/mrm.1910330213
https://doi.org/10.1002/mrm.1910330213
https://doi.org/10.1073/pnas.0505210102
https://doi.org/10.1073/pnas.0505210102
https://doi.org/10.1002/(sici)1522-2594(200002)43:2<259::aid-mrm13>3.0.co;2-p
https://doi.org/10.1002/(sici)1522-2594(200002)43:2<259::aid-mrm13>3.0.co;2-p
https://doi.org/10.1016/j.neuron.2017.10.013
https://doi.org/10.1016/j.neuron.2017.10.013
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

fnins-14-00900 September 11, 2020 Time: 18:34 # 16

MacInnes et al. Pyneal: Real-Time fMRI Software

Goebel, R. (2012). BrainVoyager–past, present, future. NeuroImage 62, 748–756.
doi: 10.1016/j.neuroimage.2012.01.083

Greer, S. M., Andrew, J. T., Gary, H. G., and Brian, K. (2014). Control of nucleus
accumbens activity with neurofeedback. NeuroImage 96, 237–244. doi: 10.1016/
j.neuroimage.2014.03.073

Hellrung, L., Maurice, H., Oliver, Z., Torsten, S., Christian, K., and Elisabeth, R.
(2015). Flexible adaptive paradigms for fMRI using a novel software package
‘Brain Analysis in Real-Time’ (BART). PLoS One 10:e0118890. doi: 10.1371/
journal.pone.0118890

Heunis, S., René, B., Rolf, L., Anton, D. L., Marcel, B., Bert, A., et al. (2018).
Neu3CA-RT: a framework for real-time fMRI analysis. Psychiatry Res. 282,
90–102. doi: 10.1016/j.pscychresns.2018.09.008

Jenkinson, M. (2000). Measuring Transformation Error by RMS Deviation.
TR99MJ1. Oxford: Oxford University.

Jenkinson, M., Christian, F. B., Timothy, E. J. B., Mark, W. W., and Stephen, M. S.
(2012). FSL. NeuroImage 62, 782–790.

Koush, Y., John, A., Evgeny, P., Ronald, S., Peter, Z., and Sergei, B. (2017).
OpenNFT: an open-source python/matlab framework for real-time fMRI
neurofeedback training based on activity, connectivity and multivariate pattern
analysis. NeuroImage 156, 489–503. doi: 10.1016/j.neuroimage.2017.06.039

MacDuffie, K. E., Jeff, M., Kathryn, C. D., Kari, M. E., Timothy, J. S., and Alison,
R. A. (2018). Single session real-time fMRI neurofeedback has a lasting impact
on cognitive behavioral therapy strategies. NeuroImage Clin. 19, 868–875. doi:
10.1016/j.nicl.2018.06.009

MacInnes, J. J., and Dickerson, K. C. (2018). Real-Time Functional Magnetic
Resonance Imaging. eLS. Hoboken, NJ: John Wiley & Sons, Ltd.

MacInnes, J. J., Dickerson, K. C., Nan-Kuei, C., and Adcock, R. A. (2016).
Cognitive neurostimulation: learning to volitionally sustain ventral tegmental
area activation. Neuron 89, 1331–1342. doi: 10.1016/j.neuron.2016.02.002

Magland, J. F., Christopher, W. T., and Anna, R. C. (2011). Spatio-temporal activity
in real time (STAR): optimization of regional fMRI feedback. NeuroImage 55,
1044–1053. doi: 10.1016/j.neuroimage.2010.12.085

Muller, E., James, A. B., Markus, D., Marc-Oliver, G., Michael, H., and Davison,
A. P. (2015). Python in neuroscience. Front, Neuroinform. 9:11. doi: 10.3389/
fninf.2015.00011

Oostenveld, R., Pascal, F., Eric, M., and Jan-Mathijs, S. (2011). FieldTrip:
open source software for advanced analysis of meg, eeg, and invasive
electrophysiological data. Comput. Intell. Neurosci. 2011:156869.

Perez, F., Granger, B. E., and Hunter, J. D. (2011). Python: an ecosystem for
scientific computing. Comput. Sci. Eng. 13, 13–21. doi: 10.1109/mcse.2010.119

Perkel, J. (2016). Democratic databases: science on GitHub. Nature 538, 127–128.
doi: 10.1038/538127a

Sato, J. R., Rodrigo, B., Fernando, F. P., Griselda, J. G., Ivanei, E. B., and Patricia, B.
(2013). Real-Time fMRI pattern decoding and neurofeedback using FRIEND:
an FSL-Integrated BCI toolbox. PLoS One 8:e81658. doi: 10.1371/journal.pone.
0081658

Sitaram, R., Ros, T., Stoeckel, L., Haller, S., Scharnowski, F., Lewis-Peacock, J.,
et al. (2017). Closed-loop brain training: the science of neurofeedback. Nat. Rev.
Neurosci. 18, 86–100. doi: 10.1038/nrn.2016.164

Stoeckel, L. E., Garrison, K. A., Ghosh, S., Wighton, P., Hanlon, C. A., Gilman,
J. M., et al. (2014). Optimizing real time fMRI neurofeedback for therapeutic
discovery and development. NeuroImage Clin. 5, 245–255. doi: 10.1016/j.nicl.
2014.07.002

Sulzer, J., Haller, S., Scharnowski, F., Weiskopf, N., Birbaumer, N., Blefari,
M. L., et al. (2013a). Real-Time fMRI neurofeedback: progress and challenges.
NeuroImage 76, 386–399.

Sulzer, J., Ranganatha, S., Maria, L. B., Spyros, K., Niels, B., and Klaas, E. S.
(2013b). Neurofeedback-mediated self-regulation of the dopaminergic
midbrain. NeuroImage 83, 817–825. doi: 10.1016/j.neuroimage.2013.
05.115

Voyvodic, J. T. (1999). Real-Time fMRI paradigm control, physiology, and
behavior combined with near real-time statistical analysis. NeuroImage 10,
91–106. doi: 10.1006/nimg.1999.0457

Young, K. D., Greg, J. S., Vadim, Z., Raquel, P., Masaya, M., and Han, Y.
(2017). Randomized clinical trial of real-time fMRI amygdala neurofeedback
for major depressive disorder: effects on symptoms and autobiographical
memory recall. Am. J. Psychiatry 174, 748–755. doi: 10.1176/appi.ajp.2017.160
60637

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Copyright © 2020 MacInnes, Adcock, Stocco, Prat, Rao and Dickerson. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) and the copyright owner(s) are credited and that the
original publication in this journal is cited, in accordance with accepted academic
practice. No use, distribution or reproduction is permitted which does not comply
with these terms.

Frontiers in Neuroscience | www.frontiersin.org 16 September 2020 | Volume 14 | Article 900

https://doi.org/10.1016/j.neuroimage.2012.01.083
https://doi.org/10.1016/j.neuroimage.2014.03.073
https://doi.org/10.1016/j.neuroimage.2014.03.073
https://doi.org/10.1371/journal.pone.0118890
https://doi.org/10.1371/journal.pone.0118890
https://doi.org/10.1016/j.pscychresns.2018.09.008
https://doi.org/10.1016/j.neuroimage.2017.06.039
https://doi.org/10.1016/j.nicl.2018.06.009
https://doi.org/10.1016/j.nicl.2018.06.009
https://doi.org/10.1016/j.neuron.2016.02.002
https://doi.org/10.1016/j.neuroimage.2010.12.085
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.3389/fninf.2015.00011
https://doi.org/10.1109/mcse.2010.119
https://doi.org/10.1038/538127a
https://doi.org/10.1371/journal.pone.0081658
https://doi.org/10.1371/journal.pone.0081658
https://doi.org/10.1038/nrn.2016.164
https://doi.org/10.1016/j.nicl.2014.07.002
https://doi.org/10.1016/j.nicl.2014.07.002
https://doi.org/10.1016/j.neuroimage.2013.05.115
https://doi.org/10.1016/j.neuroimage.2013.05.115
https://doi.org/10.1006/nimg.1999.0457
https://doi.org/10.1176/appi.ajp.2017.16060637
https://doi.org/10.1176/appi.ajp.2017.16060637
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	Pyneal: Open Source Real-Time fMRI Software
	Introduction
	Method
	Overview
	Pyneal Scanner
	Pyneal
	Using Pyneal
	Web-Based Dashboard

	Results
	Pyneal Toolkit – Full Pipeline Tutorial
	Pyneal Analysis Tutorial
	Neurofeedback: Single ROI Averaging Using Built-in Analysis Functions
	Neurofeedback: Correlation Between Two ROIs Using a Custom Analysis Script

	Discussion
	Advantages of the Pyneal Toolkit rt-fMRI Software
	Free and Open-Source
	Flexibility in Handling Multiple Data Formats and Local Computing Configurations
	Fully Customizable Analyses

	Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

