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Abstract

Background: Breast cancer is a complex disease in which different genomic patterns exists depending on different
subtypes. Recent researches present that multiple subtypes of breast cancer occur at different rates, and play a
crucial role in planning treatment. To better understand underlying biological mechanisms on breast cancer
subtypes, investigating the specific gene regulatory system via different subtypes is desirable.

Methods: Gene expression, as an intermediate phenotype, is estimated based on methylation profiles to

identify the impact of epigenomic features on transcriptomic changes in breast cancer. We propose a kernel
weighted I1-regularized regression model to incorporate tumor subtype information and further reveal gene
regulations affected by different breast cancer subtypes. For the proper control of subtype-specific estimation,

samples from different breast cancer subtype are learned at different rate based on target estimates.
Kolmogorov Smirnov test is conducted to determine learning rate of each sample from different subtype.

Results: It is observed that genes that might be sensitive to breast cancer subtype show prediction
improvement when estimated using our proposed method. Comparing to a standard method, overall
performance is also enhanced by incorporating tumor subtypes. In addition, we identified subtype-specific
network structures based on the associations between gene expression and DNA methylation.

Conclusions: In this study, kernel weighted lasso model is proposed for identifying subtype-specific
associations between gene expressions and DNA methylation profiles. Identification of subtype-specific gene
expression associated with epigenomic changes might be helpful for better planning treatment and

developing new therapies.

Background

Altered gene expression that regulates cell growth and
differentiation is a major component to transform nor-
mal cell into a cancer cell [1]. Expression of tumor sup-
pressor genes or oncogenes affects many proteins that
are turned on or off via gene silencing or gene activa-
tion, further inhibiting cell division and development
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and promoting the malignant phenotype of cancer cells,
respectively [1]. In addition, other types of genomic data,
including somatic mutations, copy number alterations
(CNA), DNA methylation, or miRNA expression, are as-
sociated with cancer [2-5]. However, there are still huge
gaps between genomic/epigenomic data and cancer as a
phenotypic end-point to fully understand the complex
mechanisms of cancer. Thus, transcriptomic changes
could serve as a proxy to capture phenotypic variations
in human cancer as an intermediate phenotype [6-8].
To identify genomics changes that are associated with
functional changes in cancer, there have been many
integrative analyses between genomic data and
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transcriptomic data. Many expression quantitative trait
loci (eQTL) studies in cancer have been conducted to
identify genomic variations that could explain the vari-
ance of the expression traits [9, 10]. In addition, associa-
tions between CNA data as a structural change and gene
expression data were investigated to search genes associ-
ated with gene dosage in cancer [11, 12].

DNA methylation is one of the major mechanisms of
epigenetic regulation that promotes or inhibits cancer
related genes [13]. Cytosine methylation of CpG islands,
which is the most common type of DNA methylation,
occurs genome-wide in protein coding regions, including
promoters, 5 and 3’-UTRs, or exons, as well as in the
intergenic regions [13]. CpG methylations are likely to
occur in promoter regions located close to the start of
transcription, and hypermethylation in the promoter re-
gions is negatively associated with the transcript level
[14]. For example, the hypermethylation of tumor sup-
pressor genes, which is associated with their inhibition
of transcription, is recognized as one of the key features
of cancer pathogenesis [13]. On the contrary, CpG
methylations in gene body regions are likely to be posi-
tively associated with transcript level [14]. To search
relationships between epigenetic changes and transcrip-
tomic changes in cancer, many integrative studies have
been reported [15-18]. Recently, numerous prediction
models using machine learning to estimate the conse-
quence of epigenetic changes on gene expression have
been developed [19-21]. In the previous study from
Karlic et al [20], it reveals that predicting gene expres-
sion levels based on histone modifications is applicable.
In addition, Cheng et al [21] has improved overall pre-
diction performance of estimating gene expression
levels. However, cancer is an extremely heterogeneous
disease. Each cancer has many distinct subtypes and
there are different genomic patterns based on different
subtypes in cancer. Thus, there is a need to investigate
subtype-specific epigenetic regulation mechanism in
cancer.

In this study, we propose a novel method that incorpo-
rates subtype information to better explain gene expres-
sion variability based on methylation profiles. Inference
of subtype-specific association patterns between gene ex-
pressions and DNA methylation features is challenging
because the number of available samples in each subtype
may not be large enough to produce reliable estimations.
Therefore, separate estimation of association patterns on
each subtype is not typically feasible. We address this
issue by employing a kernel weighted lasso model that
can incorporate information from samples in different
subtypes while allowing subtype-specific estimations. As
illustrated in Fig. 1, our proposed method requires two
types of input: covariate matrix as commonly used in
linear regression, and prior knowledge for differentiating
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observations. For the proper use of prior knowledge, a
weighted kernel method is applied to be mixed with in-
dependent variables. Finally, the weighted lasso frame-
work provides subtype-specific estimation method for
gene expression level. To test the utility of the proposed
method, we applied it to a breast cancer data set from The
Cancer Genome Atlas (TCGA). TCGA has provided
unprecedented opportunities to better understand the
genetic architecture of cancers through integrating multi-
omics data [7, 22-30]. In particular, breast cancer has
well-known distinct subtypes, including luminal A, lu-
minal B, HER2 positive, and triple negative or basal-like
type. Depending on subtypes in breast cancer, treatment
and therapy approaches are different. Thus, identification
of subtype-specific gene expressions associated with epi-
genetic changes might be useful for better planning treat-
ment and developing new therapies.

Methods

Dataset

DNA methylation and gene expression data of 437 pa-
tients in breast cancer were obtained from TCGA
(https://gdc.ncinih.gov/). Gene expression data from
RNA-seq consisted of 20,502 unique genes with upper
quartile  normalized RNA-Seq by Expectation-
Maximization (RSEM) count estimates [31]. DNA
methylation data was retrieved as a gene-level feature by
choosing the probe least correlated with gene expression
when genes were mapped with multiple methylation
probes, from 485,577 methylation probes to 19,943 [25].
Numerical data were normalized by log (T + 1) where T
was DNA methylation or gene expression level. Since
the size of features and target genes to estimate was too
large, part of them were filtered out. First, genes that
were not members in any KEGG pathways were re-
moved. This implies that we used genes that are known
to be involved in certain molecular processes. Second,
we removed trivial genes for which more than half of pa-
tient records were zero due to the unrecorded elements
or experimental failures to measure expression level. Fi-
nally, we had 4,237 DNA methylation genes as features,
and 4,062 genes for target gene estimation. Along with
numerical data, breast cancer subtype information of all
patients was also provided. The 437 observations are di-
vided into four subtypes as shown in Table 1.

Background on L;-regularized linear regression

Suppose we have data («%,y;) for i=1, 2, ..., n, where
= (x ...,xip)Te R? is a feature vector and y;€R is
response for the i -th observation. In a linear regression
model to predict the response based on the features, the
ordinary least squares (OLS) estimates for the regression
coefficients B €R” are obtained by minimizing residual
squared error as follows.


https://gdc.nci.nih.gov/
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Fig. 1 Overview of the proposed framework for identifying subtype-specific association patterns. For target gene estimation, our weighted lasso
framework requires a covariate matrix and subtype information on samples. Note that four colors in Breast Cancer Subtype field correspond to
subtypes, Luminal A, Luminal B, HER2 positive, and Triple Negative, respectively. With two inputs mixed from a kernel method, target genes in

B = argming (y-XB)" (y-XB)

where X € R”*? is the covariate matrix for features, and y
= (1, .., ¥w) " However, OLS estimates often have low bias
but large variance; prediction accuracy can sometimes be
improved by setting to 0 some coefficients [32]. Also,
among a large number of predictors, determining a
smaller subset of features that exhibits the strongest ef-
fects is more desirable. To satisfy the requirement, L;-reg-
ularized linear regression model, which is called lasso was
proposed [32]. The lasso estimates are defined as:

B = argming(y-XB)" (y-XB) + Al Bl

where A is a parameter for regulating the number of
non-zero entries in the estimated B, and hence the

Table 1 Number of samples per subtype
HER2 Positive Triple Negative
16 306 42 73

Total
437

Luminal A Luminal B

sparsity of the coefficients. The parameter A is typically
determined through cross-validation. For the selection
of a small number of effective features, L; -regulurized
linear regression is known to be efficient.

Kernel weighted lasso for subtype-specific association
network estimation

Gene expression, as an intermediate phenotype, is esti-
mated based on DNA methylation profiles to identify
the impact of epigenome on transcriptome in breast
cancer. For understanding genomic mechanisms resulted
from various breast cancer subtypes, we use weighted
lasso with some modification in which subtype informa-
tion of patients is incorporated using kernel-based
weighting method. We concentrate on utilizing samples
from various types of data. Especially in terms of small
sample size problem, which is frequently encountered in
the field of computational biology, our proposed method
is exploited to enlarge the sample size by employing dif-
ferent types of samples. For example, samples resulted
from a variety of breast cancer subtypes such as Luminal
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A, Luminal B, and Triple negative can be used in esti-
mating a target gene whose subtype is HER2 positive.

As a response vector, Y*€R™ denotes gene expression
level of target gene g, where n; is the number of samples
whose subtype is s. The covariate matrix XéeR™*¥ is
DNA methylation profile from samples whose subtype is
s, where p¥® is the number of features for estimating tar-
get gene g. Note that the feature matrix X% is changed
over target genes, because for each target gene, we select
DNA methylation features that are more likely to affect
the target gene based on prior knowledge. Specifically,
only DNA methylation genes that are extracted from
those KEGG pathways where the target gene belongs to
are selected for estimation. Finally, with modified lasso
model, our proposed method for estimating the coeffi-
cients S5 for subtype s is defined as:

B = argming wa (s) (8 -X2B%.) T (¥8-X2p5.)
+ Al BE

Here, the weight w%.(s) for samples in subtype s when
we estimate the coefficients of gene g in subtype s is de-
fined as Kj,(dist(s,s*)) where Kj, is a symmetric kernel
function, % is the kernel bandwidth, and dist(s, s*) is a
distance between samples from subtype s and s*. Note
that the entire samples from all the subtypes are used
for estimation of B including samples from subtype s*
but with different contribution to the final estimation.
For the proper control of subtype-specific estimation,
samples are learned at different rate based on target
estimates.

The challenging problem is to set the geographical dis-
tance between heterogeneous samples to be applied in

1
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forms of kernel. We assumed that given two observa-
tions have different distribution over DNA methylation
genes in which expression level is affected by subtype-
specific molecular process. From the fact that two sam-
ples are not originated from the same distribution, the
distance between them can be measured by conducting
Kolmogorov Smirnov (K-S) test. K-S test is used to de-
cide if given two samples come from a population with a
specific distribution. The advantage of K-S test is that
the distribution of the K-S test statistic itself does not
depend on the underlying cumulative distribution func-
tion being tested. Taking advantage of this fact, it is in-
tuitive to set the critical value as distance between two
samples. Finally, kernel weighting is applied to weighted
lasso regression based on the distance. Radical Basis
Function (RBF) kernel of Kj,(d) = exp(-d®/h) is used to
give different weights to each observation based on their
distance [33]. That is, wg(s) is defined as exp(-dis-
tance’/h) where distance is the critical value resulted
from K-S test between samples from subtype s and s*
and / is the kernel bandwidth that is tuned through
cross-validation.

Results

Prediction of gene expression level based on methylation
profiles

As described in Methods, a covariate matrix X% to esti-
mate a target gene g is built by picking up methylation
features from KEGG pathways that the target gene be-
longs to. The number of selected features p® varied
across target genes, which is around 200 ~ 300 on aver-
age, 10 at minimum, and 1698 at maximum. Figure 2
shows the density plot for the number of features to pre-
dict target genes.

#DNA methylation features

Fig. 2 Density plot for the number of DNA methylation features across all target genes. The number of methylation features ranges from 10 to
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One of the advantages of our proposed method is that
different sets of well-estimated genes having little predic-
tion error can be obtained from subtype-specific estima-
tion. It is observed that genes that might be sensitive to
breast cancer subtype show prediction improvements
when estimated using kernel weighted lasso. For valid-
ation of subtype-specific estimation over target genes,
we pick up top 10 well-estimated genes over entire tar-
get genes as shown in the column Overall in Table 2,
and then pick up top 10 better-estimated genes that have
smaller prediction error in our proposed method than in
the plain [34] lasso framework. We observe that most of
the genes shown in four different subtypes do not appear
in Overall. It means our proposed method is capable of
recovering genes affected by breast cancer subtype that
plain lasso cannot detect.

Furthermore, we examine pathway-based prediction
performance over subtypes to identify the impact of our
proposed method on pathway analysis. The performance
on a pathway is measured by summing up error rates of
target genes that belong to the pathway. In Table 3, 20
well-estimated KEGG pathways over entire subtypes are
listed. And Table 4 represents top 10 pathways better es-
timated than the one without subtype information. We
observe that commonly well-estimated pathways in
Table 3 are not seen in Table 4. As discussed in [35],
ERBB2 gene amplification and overexpression of the
ERBB2 tyrosine kinase receptor is shown in breast can-
cer. [34] observed the upregulation of NPY1R is associ-
ated with ER" breast cancer. Also, UCHL1 expression in
invasive ductal carcinomas significantly correlated with
the triple negative phenotype [36]. Previous researches
show more than 5 genes at subtype columns are known
to affect breast cancer subtype directly or indirectly. Es-
pecially genes in Triple negative are associated with
breast cancer subtype progression.

Table 2 Top 10 well-estimated gene list

Overall HER2 positive  Luminal A Luminal B Triple negative
TRA2B MMP1 PSMD3 PSMD3 ABCC12
HNRNPK SPDYC GPD1 CDC6 SLC18A2
RAB5B ERBB2 ERBB2 RPL19 VD
HNRNPK.1 ~ ELOVL2 UGT1A6 ERBB2 ABCA12
HNRNPK.2  SERPINAS BMPR1B CACNG6 DNALI
SECTTA NPY1R CTSE PCK1 DEGS2
SF3A1 SEMA3E CCL21 PSMB3 UCHL1
SRP14 AKR1B10 TAT PIP4K2B NEIL1
CDC42 UGT8 RPL19 CALML3 MAGOH
NRF1 EPO ATP6VOA4  ABCCI12 HGD

Genes having the smallest prediction error over all target genes are shown in
column Overall, and genes that show prediction improvement when
estimated using kernel weighted lasso over the plain lasso are shown for each
subtype in the remaining columns
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Table 3 Top 20 well-estimated KEGG pathways
Overall
SPLICEOSOME

SNARE_INTERACTIONS_IN_VESICULAR_TRANSPORT
PROTEIN_EXPORT VALINE_LEUCINE_AND_ISOLEUCINE_BIOSYNTHESIS
AMINOACYL_TRNA_BIOSYNTHESIS UBIQUITIN_MEDIATED_PROTEOLYSIS
NON_HOMOLOGOUS_END_JOINING

RNA_DEGRADATION

DNA_REPLICATION
REGULATION_OF_AUTOPHAGY
NUCLEOTIDE_EXCISION_REPAIR
BASAL_TRANSCRIPTION_FACTORS
MISMATCH_REPAIR
RNA_POLYMERASE

PROTEASOME

RENAL_CELL_CARCINOMA
GLYOXYLATE_AND_DICARBOXYLATE_METABOLISM
OXIDATIVE_PHOSPHORYLATION
NOTCH_SIGNALING_PATHWAY
PARKINSONS_DISEASE

Subtype-specific prediction performance

Next, we compare the subtype-specific prediction per-
formance of the proposed method with two baseline ap-
proaches: one in which each subtype data are learned
separately with plain lasso framework, and the other for
entire data learned equally without weighting using plain
lasso. Figure 3 represents Root Mean Squared Error
(RMSE) from 5-fold cross validation, resulted from each
approach over entire target genes. Note that dotted hori-
zontal line is the mean of error rates over entire genes
estimated by plain lasso without kernel weighting. As
seen in Fig. 3, our proposed method shows substantial
prediction improvement over separate estimation ap-
proach. Especially in case of HER2 positive subtype that
has the smallest number of samples of 16, our kernel-
weighted approach outperforms separate estimation the
most significantly. This result is as expected because our
proposed method can effectively enlarge the sample size
by incorporating information in samples from different
subtypes. On the other hand, the largest subtype Lu-
minal A with 307 samples does not show much per-
formance improvement because the number of samples
is already large enough for estimation. We find that the
overall accuracy of our proposed method is comparable
to the one for estimating a single common network
(gray bars in Fig. 3) that does not produce subtype-
specific association networks.

Subtype-specific association network

We construct subtype-specific association networks by
using the regression coefficients estimated by the pro-
posed method. The node represents either methylation
feature or gene expression feature and the edge repre-
sents the subtype-specific association. That is, if node A
is associated with node B under specific subtype having
non-zero coefficients, the edge is drawn. Figure 4 illus-
trates the resulting association network between DNA
methylation and gene expression genes. The total num-
ber of edges in each subtype network is 31289, 31306,
31515, and 31385 for HER2 positive, Luminal A,
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Table 4 Top 10 better-estimated KEGG pathways per subtype
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HER2 positive

Triple negative

GLYCOLYSIS_GLUCONEOGENESIS
CITRATE_CYCLE_TCA_CYCLE
PENTOSE_PHOSPHATE_PATHWAY
FRUCTOSE_AND_MANNOSE_METABOLISM
GALACTOSE_METABOLISM
FATTY_ACID_METABOLISM
STEROID_BIOSYNTHESIS
PRIMARY_BILE_ACID_BIOSYNTHESIS
OXIDATIVE_PHOSPHORYLATION
PURINE_METABOLISM

Luminal A
GLYCOLYSIS_GLUCONEOGENESIS
PENTOSE_PHOSPHATE_PATHWAY
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
FRUCTOSE_AND_MANNOSE_METABOLISM
GALACTOSE_METABOLISM
ASCORBATE_AND_ALDARATE_METABOLISM
FATTY_ACID_METABOLISM
STEROID_BIOSYNTHESIS
PRIMARY_BILE_ACID_BIOSYNTHESIS
STEROID_HORMONE_BIOSYNTHESIS

GLYCOLYSIS_GLUCONEOGENESIS
CITRATE_CYCLE_TCA_CYCLE
PENTOSE_PHOSPHATE_PATHWAY
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
FRUCTOSE_AND_MANNOSE_METABOLISM
GALACTOSE_METABOLISM
ASCORBATE_AND_ALDARATE_METABOLISM
FATTY_ACID_METABOLISM
STEROID_BIOSYNTHESIS
PRIMARY_BILE_ACID_BIOSYNTHESIS

Luminal B

GLYCOLYSIS_GLUCONEOGENESIS
CITRATE_CYCLE_TCA_CYCLE
PENTOSE_PHOSPHATE_PATHWAY
PENTOSE_AND_GLUCURONATE_INTERCONVERSIONS
FRUCTOSE_AND_MANNOSE_METABOLISM
GALACTOSE_METABOLISM
ASCORBATE_AND_ALDARATE_METABOLISM
FATTY_ACID_METABOLISM
STEROID_BIOSYNTHESIS
PRIMARY_BILE_ACID_BIOSYNTHESIS

Method

. Single common network
. Kernel weighted estimation
. Separate estimation

S N N S
¢ & & &
Qg, O O \0(‘
& <8
Subtype

Fig. 3 Subtype-specific Root Mean Squared Error from 5-fold cross validation. Each bar represents the average prediction error obtained from the

proposed method (red), separate estimation that uses only the corresponding subtype data (yellow), and a single common estimation ignoring

the subtype information (gray). Our proposed method shows significantly improved performance over the separate estimation approach, and
slightly better or comparable performance over single common estimation

.
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Fig. 4 Subtype-specific association networks between DNA methylation and gene expression, and Venn diagram for the number of edges in the
network. An edge in a subtype-specific association network is drawn if methylation node A and gene expression node B have non-zero a regression
coefficient resulted from kernel weighted lasso. The edges are colored based on their subtype-specific association. Venn diagram represents
the number of edges occurring in each association network where intersection region stands for the number of edges appearing in more

than two networks

Luminal B, and Triple negative, respectively, among
which 29571 number of edges (88.82%) are common
across all the subtypes as shown in the Venn diagram of
Fig. 4 (gray region). To look into only subtype-specific
edges in the network, common edges in at least two or
more subtypes are not shown. The hub genes, which
have a large number of associated genes are represented
as bigger-sized nodes. The four types of subtype-specific
edges are marked with the color of each region in the
Venn diagram of Fig. 4. Among 4,061 genes, 2,063
subtype-specific features and 1,502 number of associ-
ation are observed. The numbers of subtype-specific
edges are 256, 326, 864, and 56 for HER2 positive,
Luminal A, Luminal B, and Triple negative, respectively.

We found that several hub methylation features in our
subtype-specific association network are known to be in-
volved in breast cancer progression. For example, LEP,
the top hub methylation feature affecting the largest
number of gene expressions with total degree of 9, is
found to be associated with basal-like or luminal A

breast cancer subtypes. Another example includes
FGFR3 and FGFR4 that are known to be associated with
breast cancer as revealed in [37]. Table 5 summarizes
the top 5 hub methylation features and their subtype-
specific degrees along with the supporting literature for
the relevance of each feature in breast cancer.

Discussion

The proposed kernel weighted model allows subtype-
specific prediction of gene expressions based on methy-
lation data along with discovery of subtype-specific
association patterns between them even when the num-
ber of samples per subtype is substantially small. The re-
duction in error across the subtype given by the model
was the starkest in genes coding for GTPases, transcrip-
tion factors, and splicing factors, and nucleic acid bind-
ing proteins. Given our model’s incorporation of factors
at the transcriptome-epigenome level, incorporating
such epigenetic signals into the model improved subtype
prediction and recapitulates the importance of RNA
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Table 5 Top 5 hub methylation features in subtype-specific association network and their degrees

Gene Name Total HER2 positive Luminal A Luminal B Triple negative Literature
LEP 9 2 1 0 [63, 64]
RET 6 2 1 3 0 [65, 66]
FGFR3 6 1 0 5 0 [37,67]
PLA2G2A 6 1 3 2 0

ADCY5 6 2 0 4 0

For each methylation node, the total number of connected edges that are present over four subtype-specific association networks is shown in the column Total.
Remaining columns represent the degrees in the corresponding subtype-specific association network

processing mechanisms, transcription factors, and meta-
bolic processes in determining subtype beyond the
genomic level.

The RMSE over all subtypes using the proposed pre-
diction model was lowest for genes coding for transcrip-
tion factors, GTPases, and nucleic-acid binding proteins:
TRA2B, HNRNPK, RAB5B, SEC11A, SF3Al, SRP14,
CDC42, and NRF showed the lowest RMSE over all
breast cancer subtypes. This is consistent with the fact
that our kernel-weighted model incorporates epigenomic
information and proof of concept of the potential of the
incorporating previously-overlooked epigenomic infor-
mation in cancer subtype classification. HnRNP K
showed the second lowest prediction error over all sub-
types in the kernel-weighted model; HnRNP K is a
multifunctional protein that binds the TATA-box [38]
and is associated with both oncogenic and tumor-
suppressor pathways [39] by interacting with many
kinases including ncRNAs to control the expression of
target genes [40]. TRA2B, SF3A1, and NRF1 were spli-
cing factors that showed significant improvement in
subtype prediction when epigenomic data were incorpo-
rated. TRA2B showed the lowest prediction error over
all subtypes and had previously been shown to be specif-
ically induced in breast cancer, and more induced in in-
vasive breast cancers compared to non-invasive breast
cancers, perhaps by splicing CD44 isoforms [41]. When
both TRA2A and TRA2B are eliminated, expression of
full-length CHK1 protein is reduced [42]. Polymor-
phisms in SF3A1 have been found to be associated with
slightly higher colorectal cancer risk [43] and breast can-
cer [44]. Lastly, NRF1, a splicing factor was shown to be
part of a redox signaling pathway where PTEN and
CDC25A were modified by reactive oxygen species, lead-
ing to activation of NRF1 and estrogen-induced growth
of breast cancer cells [45] and NRF1 was previously in-
cluded in a Bayesian model of transcription factors in-
volved in estrogen receptor alpha (ER-a). In breast
cancer cells with acquired resistance to tamoxifen, the
ER-a network (of which NRF1 is a component) lost re-
sponsiveness to 17-beta-estradiol; this loss of responsive-
ness was mediated by epigenomic changes [46]. This
indicates the fundamental importance of epigenomics in

modifying the transcription and translation of multi-
functional proteins and genes involved in the induction
of an oncogenic phenotype.

The weighted estimation model also showed marked
improvement in marking the influence of GTPases in ac-
curately predicting breast cancer subtype. Two small
GTPases, CDC42 (Rho) and RAB5B (Ras) were among
the ten genes with smallest RMSE across all subtypes.
CDC42 is a locally excitable GTPase which steers cells
during chemotaxis [47] and induces the extension of
filopodia [48]. In the developing mammary gland, over-
expression of CDC42 induces hyperbranching, increased
stromal thickness and collagen deposition, and elevated
mRNA expression of extracellular matrix proteins in
stromal cells [49]. MiR-1 binding with CDC42 (mediated
by MALAT1) induced migration and invasion of breast
cancer cells [50] and CDC42 activity has been implicated
in the invasive phenotype [51]. CDC42 is overexpressed
in a variety of tumor types and is activated by oncogenic
Ras protein to instigate Ras-mediated tumorigenesis in
colon cancer [52]. Another GTPase that showed im-
provement in predictivity after incorporating epigenetic
modification was RAB5B, a Ras GTPase that participates
in the early stages of endocytosis. The early endosomal
autoantigen EEA1 was found in a yeast two-hybrid
system to interact directly with RAB5B in a GTP-
dependent matter, independent of intrinsic GTPase
activity [53]; in tumor cells, exosomes tended to localize
with EEA1 [54]. Suppression of RAB5A and RABSB ham-
pered the degradation of EGER, an epidermal growth fac-
tor receptor [55]. RABSB specifically interacts with LRRK2
(mutations in which are associated with autosomal-
dominant Parkinson’s disease) and can rescue synaptic
vesicle endocytosis defect induced by LRRK2 knockout
[56]. Administration of paclitaxel at 60 ng/mL in breast
cancer cells caused significant increase in the expression
of the RAB family of genes in comparison to the control
group. RAB5B with lost GTPase function in lymphocytes
caused the formation of abnormal, giant hybrid organelles
which showed changed morphology over time [57]. The
influence of epigenomic data recapitulates the importance
of incorporating multi-omics data when constructing
complex disease models, subtypes, and classifications.
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The network illustration (Fig. 4) implicated multiple
levels and mechanisms by which epigenetic features
impact subtype classification, especially on the his-
tone, nucleosome, and cellular differentiation levels.
HIST2H2AA4 is a variant of histone 2A (specifically,
type 2-A) that is implicated in histone core octamer
stabilization; Histone 2A forms a dimer with Histone
2B, and then forms a tetramer with the H3-H4 dimer
[58]. It was found that HIST2H2AAA4’s interaction
with various linker histones, especially variants of H1.
Among core histones, histone H2A has by far the
maximum number of variants (totaling 19). The exact
role of HIST2H2AA4 in the breast cancer phenotype
merits additional investigation given that it was previ-
ously implicated in a study of genes that statistically
distinguish the hyperthermic response of three breast
cancer lines compared to normal mammary epithelial
cells [59]. The interaction between an element of
Collagen VI (COL6A6) and serine-threonine protein
kinase AKT1 was also found to be meaningful in a
search for significant networks that included epigen-
etic data. AKT1 encodes a serine-threonine protein
kinase which is activated by platelet-derived growth
factor which has been implicated in many cancers,
with the highest incidence in breast cancer [60]. A
subset of breast cancer specimens was found to only
contain AKT1 as a driver alteration, although AKT1-
mutants were also often found to contain mutations
in other driver genes [61]. Down-regulation of the
Collagen VI extracellular matrix by AKT1 and upreg-
ulation of MMP1 was found in human dermal fibro-
lasts [62]; our model incorporating epigenetic control
also reduced error in MMP1 the most when predict-
ing a HER2 positive subtype (Table 2).

In terms of the model accuracy for predicting the gene
expression level, our proposed methodology shows per-
formance improvement only to part of target genes, that
is, the kernel weighted method does enhance the predic-
tion accuracy for entire target genes. As shown in Fig. 3,
large improvement over single common estimation in
terms of prediction accuracy is not observed. That is be-
cause genes that are not sensitive to breast cancer sub-
type may not benefit much from the proposed method.

Conclusions

In this study, we proposed a novel method for identify-
ing subtype-specific gene expressions based on DNA
methylation profiles. To make it possible to provide
subtype-specific association network, kernel weighted
lasso model is applied in which breast cancer subtype in-
formation is employed in forms of kernel. We found our
proposed method is able to discover subtype-sensitive
genes that plain lasso framework could not detect
(Table 2). Especially for the subtype with small sample
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size, it outperforms the separate estimation method sub-
stantially. Furthermore, our framework provides a
subtype-specific network, which represents genomic as-
sociation underlying breast cancer subtypes. From the
perspective of observations, we assumed samples from
different subtypes come from different distribution. The
distance between samples from different subtypes are set
based only on their distribution. Thus, for our future
work, well-designed kernel that appropriately reflects as-
sociation exerted between samples will enhance the per-
formance, and can reveal the relationship between
samples.
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