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Key points

� microRNAs (miRs) are small non-coding molecules that regulate post-transcriptional target
gene expression.

� miRs are involved in regulating cellular activities in response to mechanical loading in all physio-
logical systems, although it is largely unknown whether this response differs with increasing
magnitudes of load.

� miR-221, miR-222, miR-21-5p and miR-27a-5p were significantly increased in ex vivo cartilage
explants subjected to increasing load magnitude and in in vivo joint cartilage exposed to
abnormal loading.

� TIMP3 and CPEB3 are putative miR targets in chondrocytes
� Identification of mechanically regulated miRs that have potential to impact on tissue homeo-

stasis provides a mechanism by which load-induced tissue behaviour is regulated, in both
health and pathology, in all physiological systems.

Abstract MicroRNAs (miRs) are small non-coding molecules that regulate post-transcriptional
target gene expression and are involved in mechano-regulation of cellular activities in all physio-
logical systems. It is unknown whether such epigenetic mechanisms are regulated in response
to increasing magnitudes of load. The present study investigated mechano-regulation of miRs
in articular cartilage subjected to ‘physiological’ and ‘non-physiological’ compressive loads in
vitro as a model system and validated findings in an in vivo model of abnormal joint loading.
Bovine full-depth articular cartilage explants were loaded to 2.5 MPa (physiological) or 7 MPa
(non-physiological) (1 Hz, 15 min) and mechanically-regulated miRs identified using next
generation sequencing and verified using a quantitative PCR. Downstream targets were verified
using miR-specific mimics or inhibitors in conjunction with 3′-UTR luciferase activity assays.
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A subset of miRs were mechanically-regulated in ex vivo cartilage explants and in vivo joint
cartilage. miR-221, miR-222, miR-21-5p and miR-27a-5p were increased and miR-483 levels
decreased with increasing load magnitude. Tissue inhibitor of metalloproteinase 3 (TIMP3)
and cytoplasmic polyadenylation element binding protein 3 (CPEB3) were identified as putative
downstream targets. Our data confirm miR-221 and -222 mechano-regulation and demonstrates
novel mechano-regulation of miR-21-5p and miR-27a-5p in ex vivo and in vivo cartilage loading
models. TIMP3 and CPEB3 are putative miR targets in chondrocytes. Identification of specific
miRs that are regulated by increasing load magnitude, as well as their potential to impact on tissue
homeostasis, has direct relevance to other mechano-sensitive physiological systems and provides
a mechanism by which load-induced tissue behaviour is regulated, in both health and pathology.
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Introduction

Mechanical loading is essential with respect to regulating
the functional capabilities of physiological systems
including the musculoskeletal, cardiovascular and nervous
system; this is achieved, at the cell and tissue level,
by adapting to changes in mechanical load and/or
metabolic stress applied. One of the major musculoskeletal
tissues, articular cartilage, primarily functions to dissipate
mechanical forces across the synovial joint surface
and facilitates smooth, low-friction movement. The
biomechanical integrity of articular cartilage is reliant on
the biochemical composition of the extracellular matrix
(ECM) (Gilbert & Blain, 2018), and maintenance of
cartilage tissue homeostasis, effected by the chondrocytes,
is similarly dependent on mechanical load (Buckwalter
et al. 2005). Joint articular cartilage is predominantly
exposed to dynamic compressive forces, although both
tensile strain and shear stresses also result from everyday
movement (Lee et al. 2005). Application of moderate,
physiological mechanical loads is essential for maintaining
cartilage homeostasis by promoting anabolic activities
such as increased production of ECM molecules,
whereas abnormal, non-physiological joint loading, as
characterized by either overload or insufficient load,
disrupts the homeostatic balance, favouring catabolism
and cartilage degeneration, comprising the hallmark of
osteoarthritis (OA) (Felson, 2013).

Mechano-regulation of cellular activities within physio-
logical systems is known to occur through epigenetic
mechanisms (e.g. RNA silencing). Primary contributors
to RNA silencing are the microRNAs (miR), which are
small (20–2 3bp), non-coding cytoplasmic RNAs that
control the post-transcriptional regulation of one-third
of all genes and are important in development, homeo-
stasis and degeneration of tissues, including articular
cartilage (Goldring & Marcu, 2012). Epigenetic studies
have demonstrated that mechanical force has an impact
on cellular responses through regulation of miR expression

levels in tendon fibroblasts (Mendias et al. 2012), smooth
muscle cells (Song et al. 2012), trabecular meshwork cells
(Luna et al. 2011) and endothelial cells (Qin et al. 2010;
Weber et al. 2010; Zhou et al. 2011). A small number
of miRs were also identified as being mechanosensitive
in chondrocytes (Dunn et al. 2009; Guan et al. 2011;
Jin et al. 2014; Yang et al. 2016; Cheleschi et al. 2017).
However, these studies were performed on isolated cells
devoid of a substantial ECM, a feature known to be critical
for cell–matrix mechano-communications (Guilak et al.
2006).

Therefore, using articular cartilage as a model system,
the present study aimed to identify miRs that respond to
‘physiological’ and ‘non-physiological’ mechanical loads
and to investigate the regulation of their potential down-
stream target genes.

Materials and methods

Reagents were from Sigma (Poole, UK) unless otherwise
specified; molecular biology reagents and plastic ware
were certified RNase and DNase-free. Culture medium
consisted of Dulbecco’s modified Eagle’s medium/Ham’s
F12-glutamax (1:1; Life Technologies, Paisley, UK)
supplemented with 100 μg mL−1 penicillin, 100 U mL−1

streptomycin, 50 μg mL−1 ascorbate-2-phosphate
and 1 × insulin-transferrin-selenium ethanolamine
(1 × ITS-X; Life Technologies).

Preparation of articular cartilage explants and
high-density primary chondrocytes

Full depth articular cartilage explants were removed (5 mm
biopsy punch; Selles Medical Limited, Hull, UK) from the
metacarpophalangeal joint of <3-week old bovine calves
within 6 h of slaughter (F. Drury & Sons Abattoir, Swindon,
UK); ethical approval was not required. Cartilage explants
were equilibrated in culture medium for 3 days prior
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to mechanical load. Primary chondrocytes were isolated
from full depth cartilage utilizing the same tissue source
as explants, and enzymatic digestion was performed
(Al-Sabah et al. 2016). All cultures were maintained in
5% CO2 and 20% O2 at 37°C. Each experiment utilized
tissue from between two and three animals, and repeat
experiments utilized tissue from independent animals.

In vitro application of mechanical load to cartilage
explants

Cartilage explants were subjected to either a ‘physio-
logical’ (2.5 MPa, 1 Hz) or a ‘non-physiological’ load
(7 MPa, 1 Hz) for 15 min using the ElectroForce
3200 (TA Instruments, New Castle, DE, USA) (Al-Sabah
et al. 2016) and gene expression analysed at 2, 6 and
24 h post-load; unloaded explants served as controls.
Explants were immediately snap frozen and remained in
liquid nitrogen (<48 h) until RNA extraction. Loading
regimes were selected based on articular cartilage literature
demonstrating that �5 MPa is generally accepted as a
‘physiological’ load (Grodzinsky et al. 2000; Fehrenbacher
et al. 2003), whereas peak loads >5 MPa are considered
degradative (i.e. ‘non-physiological’) (Fehrenbacher et al.
2003); the frequency was set at 1 Hz, which has been
demonstrated to resemble a human fast walking speed
(Bader et al. 2011).

In vivo application of mechanical load

Twelve-week old male C57Bl6 mice (�25 g; Envigo,
Huntington, UK) were randomly assigned to either
experimental or control groups and randomly allocated to
MB1 cages (960 cm2) in groups of five (12:12 h light/dark
photocycles, with food and water available ad libitum).
Animal husbandry and procedures were performed in
compliance with the Animals (Scientific Procedures) Act
1986 [Home Office licence P287E87DF] according to
Home Office and ARRIVE guidelines (Kilkenny et al.
2010). Mice were anaesthetized with isoflurane and
custom-built cups used to hold the right ankle and knee
in flexion with a 30o offset prior to the application of
a 0.5 N pre-load (ElectroForce13200; TA Instruments,
Elstree, UK). A single 12 N load at a velocity of 1.4 mm s−1

was then applied resulting in anterior cruciate ligament
(ACL) rupture as described previously (Gilbert et al. 2018);
mechanical loading was always conducted in the morning.
Buprenorphine (0.05 mg kg−1) was administered S.C.
to mice at the start of the experiment; animals were
able to move freely and were monitored for welfare
and lameness until termination of the experiment. Mice
were culled by cervical dislocation at either day 1 or 7
post-load and the knee articular cartilage was dissected
and processed for histology (toluidine blue staining) as

described previously (Gilbert et al. 2018) or immediately
snap frozen and remained in liquid nitrogen until RNA
extraction. These early time points allowed assessment
of mechanically regulated miRs in cartilage prior to
overt degenerative changes and ECM loss. Nine animals
were utilized for quantification of miR levels and the
representative histology depicting the loading model
phenotype is derived from experiments published in
Gilbert et al. (2018).

RNA extraction and reverse transcription for mRNA
analysis

Total RNA was extracted from cartilage explants/
chondrocytes using 500 μL of Trizol reagent (Invitrogen,
Paisley, UK) (Al-Sabah et al. 2016). RNA integrity was
assessed (2100 Bioanalyzer and associated RNA 6000
Nano kit; Agilent Technologies, Wokingham, UK) and
RNA integrity numbers >8.5 were observed. cDNA (total
volume of 20 μL) was synthesized from 300 ng of
total RNA using Superscript III reverse transcriptase in
conjunction with 0.5 μg of random primers (Promega,
Southampton, UK) in accordance with the manufacturer’s
instructions (Invitrogen).

RNA extraction and reverse transcription for miR
analysis

Total RNA was extracted from cartilage explants/
chondrocytes as described above, except 1 mL of Trizol
reagent was used. After ethanol precipitation, total RNA
was purified using a mirVana miR Isolation Kit (Ambion,
Paisley, UK) in accordance with the manufacturer’s
instructions. RNA integrity numbers of >8.0 were
observed. cDNA of mature miRs was generated separately
from total RNA (5 ng) using the TaqMan MicroRNA
Reverse Transcription Kit (Applied Biosystems, Paisley,
UK) involving 50 U of MultiScribe Reverse Transcriptase
and stem-looped reverse transcription primers, specific
to individual miRs, from TaqMan MicroRNA Assays
(Applied Biosystems, Paisley, UK) in accordance with the
manufacturer’s instructions.

miR next generation sequencing and bioinformatic
analysis

Mechanically-regulated articular cartilage miRs were
identified using next generation sequencing (NGS) using
>3.5μg of RNA per sample. Procedures were conducted in
accordance with the manufacturers’ instructions. Library
preparation was conducted on 450 ng of total RNA
using the NEB Next Small RNA Library Prep Set for
Illumina (Multiplex Compatible: BioLabs, Hitchin, UK)
and amplified cDNA was purified using a QIAquick PCR
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Purification Kit (Qiagen, Crawley, UK). miR libraries were
selected by running purified cDNA samples on 8% (v/v)
polyacrylamide gels and excising bands located at �140 bp
(Crowe et al. 2016). A Multiplex Compatible kit (NEB
Next Small RNA Library Prep Set for Illumina) was used
to elute and purify the miRs, and the concentration of miR
libraries assessed prior to analysis on a HiSeq Sequencing
System (The Genome Analysis Centre, Norwich, UK). miR
deep sequencing data (raw FASTQ files) were run through
FastQC and Cutadapt (Martin 2011), and trimmed
FASTQ files were aligned against known bos taurus
miR sequences from miRBase (http://www.mirbase.org).
Quantification was determined by counting aligned reads
against a reference, using a combination of RSamTools
and ShortRead (Li et al. 2009) bioconductor packages.
Differential expression was assessed using DESeq2 (Love
et al. 2014). Global experimental variance was analysed
using principal component analysis to assess for outlier
samples and statistical significance from differential
expression tests was determined by retaining miRs that
had an adjusted P < 0.05.

Manipulation of miR expression levels in high-density
chondrocyte cultures

Primary bovine chondrocytes were seeded onto six-well
culture plates (VWR, Lutterworth, UK) at a density of
4 × 106 cells per well in antibiotic-free culture media
and incubated at 37°C for 24 h prior to transfection.
Chondrocytes were transfected for 48 h with 50 nM

mirVana miR inhibitors (Applied Biosystems) or 50 nM

miScript miR mimics (Qiagen) using DharmaFECT1 lipid
reagent (Dharmacon, Cambridge, UK) in accordance with
the manufacturer’s instructions; mirVana miR Inhibitor
Negative Control #1 (Applied Biosystems) and AllStars
negative control small interfering RNA (siRNA) (Qiagen)
were utilized as transfection controls (50 nM).

Quantification of miRNA and mRNA transcripts

Quantification of mRNA or miR in experimental samples
was performed using a MxPro3000 QPCR system (Agilent
Technologies, Stockport, UK) and measured using either
reference gene primers (MWG-Biotech AG, Ebersberg,
Germany) or bovine-specific TaqMan probes (Applied
Biosystems, Paisley, UK) in conjunction with either
Brilliant III Ultra-Fast SYBR Green QPCR Master Mix
(Agilent Genomics, Berkshire, UK) or TaqMan Fast
Advanced Master Mix (Applied Biosystems, Paisley, UK).
Reference gene primers (200 nM final concentration
(Al-Sabah et al. 2016)) including SDHA, YWHAZ,
HPRT, 18 s and β-actin were validated as per MIQE
guidelines (Bustin et al. 2009). Cycling conditions were:
95°C-3 min (1 cycle), 95°C-15 s followed by 60°C-30

s (40 cycles) with an additional dissociation cycle
of 95°C-1min, 60°C-30 s followed by 95°C-30 s (1
cycle) to confirm primer specificity with SYBR Green
detection. Relative quantification was calculated using
the 2−��CT method (Livak & Schmittgen, 2001), with
unloaded controls as a reference group to quantify
relative changes in transcript expression. Fold change
was normalized to the geometric mean of 2–3 reference
genes whose expression was identified as stable under
the experimental condition using RefFinder software
(https://www.heartcure.com.au/for-researchers/).

Luciferase activity assays

The 3′-UTR of mRNAs, containing the predicted
binding site of target miRs, were cloned into pmirGLO
dual-luciferase miRNA target expression vector (Promega,
Southampton, UK) by In-Fusion (Takara Bio Europe,
Saint-Germain-en-Laye, France) and construct sequences
verified (for primer sequences, see Table 1). SW1353
chondrosarcoma cells (�20 000 cells cm–2) were
co-transfected with 50 nM miRNA mimics with the
reporter plasmids (500 ng mL−1) (Barter et al. 2015);
transfection of 50 nM AllStars negative control siRNA with
the reporter plasmids was used as control. Following a
24 h transfection, cells were lysed and luciferase levels
were determined using a Promega GloMax luminometer
and the Dual-Luciferase reporter assay system (Promega).

Statistical analysis

Quantitative PCR (qPCR) data are presented as the mean
± 95% confidence intervals (CIs) after normalization
to identified reference genes for explants (SDHA and
YWHAZ), transfected cells (HPRT and YWHAZ) or in
vivo model (U6, 18s and β-actin) and further normalized
to untreated controls. Experiments were performed on
explants (n = 6), transfected cells (n = 3) and in
vivo studies (n = 9), with three independent repeats
for explant and cell studies. Data were assessed for
normality and differences in variances and transformed
where required. One-way ANOVA and Fisher’s post hoc test
were performed to determine significance of mechanical
load or manipulation of miR expression levels on
gene expression, respectively; the results were considered
statistically significant at P < 0.05 (Minitab, version 17;
Minitab, LLC, State College, PA, USA).

Results

Identification and validation of
mechanically-regulated miRs in cartilage explants

NGS was performed on cartilage explants subjected to a 2.5
or 7 MPa load (1 Hz, 15 min) to identify mechano-sensitive
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Figure 1. Validation of mechanically-regulated miRs in cartilage explants using qPCR
qPCR validation of mechanically-regulated miRs, identified by NGS, in cartilage explants subjected to loads of 2.5
or 7 MPa (1 Hz, 15 min) and analysed 24 h post-cessation of load for (A) miR-21-5p, (B) miR-27a-5p, (C) miR-221,
(D) miR-222, (E) miR-451, (F) miR-483 and (G) miR-453; unloaded explants served as controls. miR levels were
normalized to the geometric mean of two reference genes (SDHA, YWHAZ) and further normalized relative to the
unloaded control cDNAs. Data are presented as box plots depicting the mean ± 95% CI (n = 6 explants) and are
representative of three independent experiments. Statistical analysis was performed using one-way ANOVA with
Tukey’s post hoc test.
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Table 1. Sequences of primers used to clone the 3′-UTR of mRNAs containing the predicted binding site of target miRs

Target 5′- to 3′ Oligo sequence Annealing
temperature (°C)

TIMP3
UTR

F 5′-GCTCGCTAGCCTCGACTGAGCTTCCCTTGGACACT-3′ R
5′-CGACTCTAGACTCGAGCTAAAGGGAAAGGCGGAT-3′

60

CPEB3
UTR

F 5′-GCTCGCTAGCCTCGAAAGGAGGGAAAAGAGAGGGC-3′ R
5′-CGACTCTAGACTCGAAACAGAGCACCGCAAAGTAC-3′

60

Table 2. Mean fold-change and statistical significance of mechanically-regulated miRs in articular chondrocytes subjected to loads
of 2.5 or 7 MPa (1 Hz, 15 min), to represent a physiological or non-physiological load respectively, and analysed 2, 6 and 24 h
post-cessation of load (unloaded explants served as controls)

UL vs. 2.5MPa UL vs. 7MPa 2.5 vs. 7MPa

FC Padj FC Padj FC Padj

Analysed 2 h post-cessation of load
miR-27a-5p 4.420 2.79 × 10–22 7.092 3.08 × 10–40

miR-2898 0.588 0.008 0.408 3.16 × 10–10

miR-2478 0.566 0.001
miR-98 1.698 0.001
miR-23b-3p 1.539 0.004
miR-1260b 0.647 0.025
miR-23a 1.464 0.034
miR-148b 1.644 0.039

Analysed 6 h post-cessation of load
miR-486 0.521 0.002
miR-677 2.149 5.50 × 10–5 1.933 0.001
miR-222 1.568 0.008
miR-2889 2.393 1.54 × 10–6

miR-1249 0.562 0.013
Analysed 24 h post-cessation of load

miR-222 1.814 0.003 7.409 8.81 × 10–51 4.085 4.00 × 10–25

miR-27a-5p 3.019 1.14 × 10–16 2.027 5.84 × 10–7

miR-221 3.393 1.63 × 10–13 2.593 3.58 × 10–8

miR-543 2.619 1.30 × 10–9 1.725 0.005
miR-21-5p 2.267 6.67 × 10–6 1.719 0.013
miR-495 1.775 1.45 × 10–4

miR-451 0.481 0.002
miR-425-5p 0.626 0.010 0.672 0.037
miR-20a 1.603 0.012
miR-7 1.699 0.017
miR-760-3p 1.715 0.017
miR-2318 1.8518 0.022
miR-2344 1.829 0.030
miR-431 1.817 0.030
miR-155 1.472 0.042
miR-100 1.429 0.048
miR-483 0.599 0.025

Data are representative of three independent experiments (n = 6 explants per individual experiment).

miRs (Table 2); unloaded explants served as controls.
NGS analysis was conducted at 2, 6 or 24 h post-load
to investigate temporal differences in miR expression.
A small number of annotated miRs were significantly
regulated by load at 2 h (8 miRs) (Table 2) and 6 h (5

miRs) (Table 2), with 17 miRs detected at 24 h post-load
(Table 2). A greater number of miRs were only regulated
by the non-physiological 7 MPa load (Table 2). Given
the number of significant changes at 24 h post-load
(Table 2), the top five most significantly up-regulated (i.e.
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miR-222, -27a-5p, -221, -543 and -21-5p) and the two
most significantly down-regulated (i.e. miR-451 and -483)
were validated for this time point using TaqMan qPCR on
individual RNA samples (Fig. 1). Relative to unloaded, a
7 MPa load increased expression of miR-21-5p (two-fold;
P = 0.034) (Fig. 1A), miR-27-5p (2.56-fold; P = 0.001)
(Fig. 1B), miR-221 (3.85-fold; P < 0.001) (Fig. 1C) and
miR-222 (3.78-fold; P < 0.001) (Fig. 1D), and decreased
miR-483 expression (two-fold; P = 0.047) (Fig. 1F). A
loading magnitude-dependent regulation of miRs was
observed between explants subjected to a 7 MPa vs. 2.5
MPa load: miR-27-5p (2.4-fold, P < 0.001) (Fig. 1B),
miR-221 (2.55-fold, P = 0.011) (Fig. 1C) and miR-222
(2.83-fold, P = 0.002) (Fig. 1D). Although miR-seq
indicated that a 7 MPa load down-regulated miR-451 levels
(2.1-fold, P = 0.002) (Table 2) and up-regulated miR-543
levels (2.62-fold, P < 0.001; P = 0.005) (Table 2) relative
to unloaded cartilage, this was not verified using qPCR
(Fig. 1E and G).

In vivo validation of miR-21-5p, miR-27-5p, miR-221
and miR-222 mechano-regulation

The physiological relevance of identified mechanically-
regulated miRs was determined in a murine in vivo model
of post-traumatic OA, in which ACL rupture induces
mechanical instability, by applying an abnormal load to
the knee joint (Gilbert et al. 2018). Synovial infiltration
occurs rapidly followed by extensive joint degeneration
as characterized by articular cartilage loss and bone
remodelling by day 21 (Fig. 2A) (Gilbert et al. 2018).
However, at the earlier stages analysed in the present
study, the articular cartilage is intact. Of the original miRs
identified (Table 1), four that were successfully validated
by qPCR (miR-221, -222, -21-5p and -27-5p) (Fig. 1) were
subsequently analysed in vivo. No significant effects were
detected after 1 day of destabilization; however, after 7 days
of mechanical instability, miR-221 (2.20-fold, P < 0.001)
(Fig. 2B), miR-222 (1.56-fold, P = 0.070) (Fig. 2C),
miR21-5p (4.75-fold, P = 0.002) (Fig. 2D) and miR-27-5p
(4.21-fold, P = 0.003) (Fig. 2E) were up-regulated
compared to naı̈ve mice (control). Furthermore, miR-221
(2.05-fold, P = 0.003) (Fig. 2B), miR-222 (1.90-fold,
P = 0.030) (Fig. 2C), miR21-5p (7.99-fold, P = 0.001)
(Fig. 2D) and miR-27-5p (3.19-fold, P = 0.013) (Fig. 2E)
were all significantly up-regulated compared to mice after
1 day of joint instability.

miR target gene validation

Potential miR target genes identified by NGS were
determined using Targetscan (http://www.targetscan.org)
in conjunction with an assessment of their relevance to
mechanical load or cartilage homeostasis as determined
using the literature; putative target genes were examined

by manipulation of expression levels using specific
miR mimics or inhibitors (Fig. 3). Three putative
miR-21-5p targets were selected: cytoplasmic poly-
adenylation element binding protein 3 (CPEB3), matrix
metalloproteinase 13 (MMP13) and tissue inhibitor of
metalloproteinase 3 (TIMP3). miR-221 and miR-222 seed
sites are identical; hence, the selected putative target genes
included: CPEB3, leukaemia inhibitory factor receptor
(LIFR) and TIMP3. miR-27a target gene validation was
not performed because a consistent reduction in miR-27a
expression was not achieved using specific antagomirs.
qPCR analysis confirmed that mimic-induced elevations
in miR-221 levels resulted in a significant reduction in
TIMP3 (P = 0.006) (Fig. 3A). Conversely, inhibition of
miR-221 expression correlated with a significant increase
in TIMP3 transcription (P = 0.003) (Fig. 3B). Similarly,
a mimic-induced increase in miR-222 levels led to a
significant reduction in TIMP3 (P = 0.006) (Fig. 3C).
Conversely, inhibition of miR-222 expression correlated
with a significant increase in TIMP3 (P = 0.025) (Fig. 3D).
No other putative target genes were robustly regulated by
miR-221 or 222. Mimic-induced miR-21 levels resulted
in a significant reduction in TIMP3 (P = 0.006)
(Fig. 3E) and CPEB3 transcription (P = 0.015) (Fig. 3G).
Conversely, inhibition of miR-21 expression correlated
with a significant increase in TIMP3 (P = 0.010) (Fig. 3F)
and no significant effect on CPEB3 (P = 0.068) (Fig. 3H).
MMP13 expression was not consistently regulated by
miR-21 (data not shown).

Activation of the 3′-UTR of target mRNAs containing
the predicted seed sites was investigated (Fig. 4). Addition
of miR-21 mimic significantly suppressed luciferase
activity regulated by TIMP3 (P = 0.053) (Fig. 4A) and
Cpeb3 3′-UTRs (P = 0.010) (Fig. 4B). Furthermore,
miR-222 mimic also significantly inhibited CPEB3 3′-UTR
regulated luciferase activity (P = 0.010) (Fig. 4B).
Surprisingly, and in contrast to qPCR validation, miR-222
overexpression significantly increased luciferase activity
regulated by TIMP3 3′-UTR (P = 0.030) (Fig. 4A).
Although this contradicts the miR-222 mimic data
demonstrating a significant TIMP3 reduction (Fig. 3C),
it does substantiate the load-induced TIMP3 observed in
the in vitro loading model where TIMP3 transcription was
elevated in response to 7 MPa load (4.8-fold, P < 0.001)
(Fig. 4C).

Discussion

Physiological forces are critical for maintaining tissue
homeostasis, and the involvement of epigenetic
mechanisms such as mechano-regulation of miR
expression occurs in many tissues, including articular
cartilage (Dunn et al. 2009; Guan et al. 2011; Jin
et al. 2014; Yang et al. 2015; Cheleschi et al. 2017).
However, our understanding of miR involvement in
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Figure 2. Validation of mechanically regulated miRNAs in a murine in vivo model of load-induced joint
degeneration
A, toluidine blue staining of a representative mouse knee joint at days 3 and 21 after ACL rupture to induce
joint instability/joint degeneration. MTP, medial tibial plateau; MFC, medial femoral condyle; LTP, tibial plateau;
LFC, lateral femoral condyle; ACL, anterior cruciate ligament. Yellow indicates inflammatory cell infiltrate. Validation
of differential expression of (B) miR-221, (C) miR-222, (D) miR-21-5p and (E) miR-27-5p in articular cartilage after
normalization to the geometric mean of the reference genes U6, β-actin and 18s and further normalization to
the uninjured knee cartilage. Data are presented as box plots depicting the mean ± 95% CI (n = 3 animals per
experimental time point). Statistical analysis was performed using one-way ANOVA with Tukey’s post hoc test.
[Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 3. Validation of TIMP3 and CPEB3, putative target genes of miR-221, miR-222 or miR-21, using
TaqMan qPCR
Primary bovine chondrocytes were treated with either 50 nM miR mimic, 50 nM inhibitor or negative control siRNAs
for each respective miR for 48 h, prior to analysis of the effect of overexpression and knockdown of miR-221 on
TIMP3 transcription (A and B), miR-222 on TIMP3 transcription (C and D), and miR-21 on TIMP3 (E and F) and
CPEB3 (G and H) transcript levels after normalization to the geometric mean of the reference genes HPRT and
YWHAZ and further normalization to respective negative control siRNAs. Data are presented as the mean ± 95%
CI (n = 3 wells) and are representative of three independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s post hoc test.
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Figure 4. Verification of 3′-UTR activation of target mRNAs
containing the predicted miR seed sites using a luciferase
promoter assay
SW1353 chondrosarcoma cells were co-transfected with reporter
plasmids containing either (A) TIMP3 or (B) CPEB3 3′-UTRs and
50 nM miR-221, miR-222 or miR-21-5p mimics, or the negative
control siRNA, for 24 h and luciferase levels were determined. Data
are presented as the mean ± 95% CI (n = 3 wells) and are
representative of three independent experiments. C, TIMP3 mRNA
levels, as assessed using qPCR, in cartilage explants subjected to
loads of 2.5 or 7 MPa (1 Hz, 15 min) and analysed 24 h
post-cessation of load; unloaded explants served as controls. mRNA
levels were normalized to the geometric mean of two reference
genes (SDHA, YWHAZ) and further normalized relative to the
unloaded control cDNAs. Data are presented as box plots depicting
the mean ± 95% CI (n = 6 explants) and are representative of three
independent experiments. Statistical analysis was performed using
one-way ANOVA with Tukey’s post hoc test.

response to different magnitudes of mechanical forces
and, specifically, its impact on controlling mechanically
induced tissue homeostasis is still in its infancy. The pre-
sent study investigated the mechano-regulation of miRs
in articular cartilage tissue explants subjected to ‘physio-
logical’ and ‘non-physiological’ loads in vitro and validated
regulated miRs in a murine in vivo model of abnormal joint
loading. In addition, the study identified downstream miR
targets to provide insight on mechanisms of mechanically
mediated cartilage homeostasis. Importantly, the seed
regions of the miRs of interest analysed in the present study
are evolutionarily conserved across bovine, mouse and
human species, indicating their potential physiological
relevance.

Analysis of the miR-seq data illustrated that (i) a
miR-mediated response to a 15 min loading episode
was most noticeable at 24 h post-load and (ii)
differentially regulated miRs were largely responsive to
non-physiological compressive loads; the small number
of miRs that were significantly regulated in response to
physiological load probably reflects the loading regimen
period. The miRs that were identified and validated
to be most robustly altered by non-physiological load
compared to unloaded controls and to physiological
load were miR-221 and miR-222. This confirms the
mechano-sensitive nature of miR-221 and miR-222, pre-
viously shown in cardiomyocytes after cardiac overload
(El-Armouche et al. 2010), as well as in tendon fibroblasts
(Mendias et al. 2012), engineered cartilage constructs in
response to a catabolic loading regimen (Hecht et al.
2019) and anterior weight-bearing cartilage relative to the
posterior non-weight bearing tissue in bovine stifle joints
(Dunn et al. 2009).

Chondrogenic markers COL2A1 and SOX9 have
been identified as putative gene targets for miR-221
and miR-222 (conserved seed site) that may influence
cartilage homeostasis (Lolli et al. 2014); furthermore,
miR-221 silencing strongly enhanced in vivo cartilage
repair (Lolli et al. 2016). miR-221 inhibition also enhanced
expression of chondrocyte-like phenotypic markers in
intervertebral disc cells (Penolazzi et al. 2018). Therefore,
miR-221 and miR-222 induction, observed in the cartilage
explants in response to non-physiological load (Al Sabah
A., Duance V. C., Blain E. J., unpublished observations),
suggests an attempt to remodel the cartilage tissue to
confer a more appropriate biomechanical response.

Analysis of downstream target genes identified robust
regulation of TIMP3 only. However, although TIMP3 was
clearly regulated via overexpression/inhibition studies in
primary chondrocytes, this did not reflect observations
in the SW1353 chondrosarcoma cell line for 3′-UTR
activity using the luciferase assay or recapitulate events
in tissue demonstrating that other, as yet unidentified,
targets are regulated by miR-221 and miR-222 to elicit
effects. These conflicting findings may be explained by the
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different experimental systems used in the present study,
thus potentially masking the effects of other regulatory
contributors with respect to the influence of miR-221
and miR-222 on Timp3 expression. Another possibility
that might explain the simultaneous elevation of both the
tested miRs and TIMP3 is a regulatory loop , such that
elevated TIMP3 expression induces higher expression of
these miRs to reduce Timp3 transcript levels in cells over
time. Analysis at time points beyond 24 h post-load would
provide insight as to whether potential regulatory loops
exist.

Two other miRs robustly regulated by a
magnitude-dependent load in our in vitro and in
vivo loading models were miR-21-5p and miR-27a-5p. To
the best of our knowledge, this is the first report of the
mechano-regulation of these miRs in articular cartilage.
However, miR-21 mechano-regulation occurs in other
cell types; tensile strain induced miR-21 expression in
human aortic smooth muscle cells (Song et al. 2012),
and both laminar (Weber et al. 2010) and oscillatory
shear stress (Zhou et al. 2011) elevated miR-21 levels
in human umbilical vein endothelial cells. By contrast,
pulsatile shear stress inhibited miR-21 expression in
these endothelial cells (Zhou et al. 2011), revealing the
mechano-sensitive nature of these molecules. In the
present study, both TIMP3 and CPEB3 were identified
as downstream targets of miR-21-5p; however, as noted
previously, TIMP3 is not negatively correlated with
miR-21-5p levels in our model systems. Furthermore,
CPEB3 levels were not significantly regulated in the
present study, indicating that, although these genes are
direct targets of miR-21-5p in primary chondrocytes, they
are not directly regulated in our models. As a result of the
complexities of such signalling mechanisms in the tissue,
further experiments are clearly required to determine the
interplay of these miRs and their mechanistic activities
in cartilage homeostasis, which both remain beyond the
scope of the present study.

miR-27a-5p was robustly regulated by mechanical load
both in vitro and in vivo. Mechano-regulation of miR-27a
in articular cartilage is a novel finding and corroborates
studies demonstrating up-regulation of both miR-27a and
miR-27b in endothelial cells subjected to laminar flow
(Urbich et al. 2012) and endothelial cells exposed to cyclic
tensile strain (Wang et al. 2017). Downstream targets
of miR-27-5p, which are known to be regulated in in
situ cartilage explants in response to non-physiological
load Al-Sabah et al. (unpublished data), include WNT
signalling molecules such as DKK2 (Tao et al. 2015; Wu
et al. 2019) and sFRP1 (Wu et al. 2019). Future studies
will explore the relationship between mechano-sensitive
miR-27-5p and downstream regulation of WNT signalling
components in cartilage homeostasis.

A reduction in miR-483 levels was observed in response
to non-physiological load and is the first report of its

mechano-sensitivity in articular cartilage. Its potential
role in cartilage homeostasis is not well defined, with
conflicting evidence suggesting anabolic (Yang et al. 2015)
and catabolic outcomes (Xu et al. 2017; Wang et al. 2019);
hence, its observed reduction in response to abnormal
load may reflect an attempt at tissue remodelling.

A limitation of the present study is use of immature
articular cartilage removed from underlying sub-
chondral bone, which could influence mechano-biological
outcomes. However, to mitigate this limitation, we
validated identified miRs in an in vivo model of abnormal
joint loading to confirm their mechano-regulation; inter-
estingly, many of the miRs regulated by load in our in
vitro and in vivo models have also been reported to be
differentially expressed in OA (Tardif et al. 2009; Zhang
et al. 2014; Song et al. 2015; Wang et al. 2019), lending
weight to their relevance in cartilage homeostasis.

In conclusion, the loading magnitude-dependent
regulation of specific miRs identified in the present study,
as well as their potential to impact on tissue homeostasis,
has direct relevance to other physiological systems that
are mechano-sensitive. Furthermore, it provides a pivotal
mechanism by which load-induced tissue behaviours are
regulated, in both health and pathology, and is critical to
understand with respect to successful tissue engineering
strategies in physiological systems.
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