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ABSTRACT
In the area of climate change, nanotechnology provides handy tools for improving crop
production and assuring sustainability in global agricultural system. Due to excellent
physiological and biochemical properties, silver nanoparticles (AgNPs) have been
widely studied for potential use in agriculture. However, there are concerns about the
mechanism of the toxic effects of the accumulation of AgNPs on crop growth and
development. In this study, the impacts of AgNPs on cotton (Gossypium hirsutum)
seedlings were evaluated by integrating physiological and comprehensive metabolomic
analyses. Potting-soil-grown, two-week-old cotton seedlings were foliar-exposed to
5 mg/plant AgNP or 0.02 mg/plant Ag+ (equivalent to the free Ag+ released from
AgNPs). Primary metabolites and volatile organic compounds (VOCs) were identified
by gas chromatography–mass spectrometry (GC-MS) and solid-phase microextraction
(SPME) GC-MS, respectively. AgNPs inhibited the photosynthetic capacity of the
cotton leaves. The metabolic spectrum analysis identified and quantified 73 primary
metabolites and 45 VOCs in cotton leaves. Both treatments significantly changed the
metabolite profiles of plant leaves. Among the primary metabolites, AgNPs induced
marked changes in amino acids, sugars and sugar alcohols. Among the VOCs, 13
volatiles, mainly aldehydes, alkanes and terpenoids, were specifically altered only in
response to AgNPs. In summary, our study showed that the comprehensive influence
of AgNPs on primary metabolites and VOCs was not merely attributed to the released
Ag+ but was caused by AgNP-specific effects on cotton leaves. These results provide
important knowledge about the physiological and chemical changes in cotton leaves
upon exposure to AgNPs and offer a new insight for supporting the sustainable use of
AgNPs in agriculture.
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INTRODUCTION
Engineered nanomaterials offer a promising alternative for crop disease management and
provide potential advantages with high efficacy and lower ecotoxicity (Elmer, Ma &White,
2018; Muthukrishnan, Murugan & Selvaraj, 2019). Nanoparticles were developed as plant-
growth stimulators and fungicides to prevent fungal diseases or were applied as agents to
enhance fruit ripening (Castillo-Henríquez et al., 2020; Monica & Cremonini, 2009; Steinitz
& Bilavendran, 2011; Vinković et al., 2017). Among the various types of nanoparticles,
silver nanoparticles (AgNPs) are the most widely applied nanomaterial (Wijnhoven et al.,
2009). In the agricultural sector, the outstanding properties of AgNPs are of great interest
to researchers developing suitable antimicrobial agents (Acharya & Pal, 2020; Chandra et
al., 2020;Menazea & Ahmed, 2020; Panicker et al., 2020). AgNPs could inhibit the infection
of pathogenic bacteria and promote plant survival (Ali et al., 2015; Ibrahim et al., 2020;
Narayanan & Park, 2014). Although AgNPs have tremendous potential and beneficial
impacts in a wide range of applications, the risks associated with their uses should still be
thoroughly evaluated (Fadeel et al., 2018).

In recent years, the toxicity of AgNPs to plants has been reported in a number of studies.
The growth of mustard seedlings declined as a result of inhibition of photosynthesis after
AgNP treatment (Vishwakarma et al., 2017). AgNPs suppressed the growth of pearl millet
seedlings by accelerating reactive oxygen species production and changing their membrane
permeability (Khan et al., 2019). AgNPs induced a decrease in photosynthetic activity and
chlorophyll content and altered the chloroplast ultrastructure of tobacco plants (Peharec
Štefanić et al., 2021).

Most of these studies have focused on the effects of AgNPs at physiological and
biochemical levels. The development of broad profiling approaches, such as genomics,
transcriptomics and metabolomics, has aided the exploration of the diversity of plant
metabolism and the underlying molecular mechanisms by which plants control their
chemical composition (Fernie & Tohge, 2017). It has been reported that the transcriptome
profile changes in Arabidopsis thaliana show that genes involved in photosynthesis are
altered in response to AgNPs (Zhang et al., 2019). Changes in the rice proteome under
AgNP stress were found to be involved in oxidative stress tolerance, cell wall, direct
DNA/RNA/protein damage, cell division and apoptosis (Mirzajani et al., 2014). Moreover,
metabolomic analysis showed the toxicity and detoxification mechanisms of AgNPs on
cucumbers (Zhang et al., 2018a). Therefore, omics technology allows us to explore the
genetic and molecular changes underlying crop responses to AgNPs, which will be highly
informative for their sustainable application as crop protection products.

Low molecular weight metabolites can provide a readout of the physiological status
and a bridge between the genotype and the phenotype (Sanchez et al., 2008; Yang et al.,
2017). Metabolomics has aided in exploring the identification and quantification of the
thousands of smallmolecules bywhich plant cells control their chemical composition (Fang,
Fernie & Luo, 2019). Plant volatile organic compounds (VOCs) are typically lipophilic
molecules with a high vapor pressure and they play critical roles in plant interactions with
their environment to ensure protection from pathogens and pests (Dudareva et al., 2013;
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Pichersky, Noel & Dudareva, 2006). Volatilomics plays an important role in fundamental
plant biology and applied biotechnology (Zeng et al., 2017; Zu et al., 2020).

Cotton (Gossypium hirsutum) is the most important natural fiber crop in the world
and is cultivated in more than 75 countries (Chen et al., 2007). Cotton can be grown in
areas contaminated by heavy metals, both for income and for soil restoration. To elucidate
whether the effects of AgNPs originate from Ag+ or from nanoparticles and assess AgNP
toxicity, we investigated the impact of AgNPs and Ag+ on the leaf accumulation of primary
and volatile metabolites by using gas chromatography–mass spectrometry (GC-MS) and
solid-phase microextraction (SPME) GC-MS techniques. The objectives of this research
were to investigate AgNP effects on growth and metabolic response of cotton seedlings and
provide valuable information for the risk assessment of AgNPs in agriculture.

MATERIALS & METHODS
Characterization of AgNPs
AgNPs (polyvinyl pyrrolidone coated)were synthesized using previously describedmethods
(Cheng et al., 2011; Zhang et al., 2019). Before each exposure, the AgNP suspensions were
sonicated at 45 kHz for 10 min to obtain a well-dispersed solution using an ultrasonic bath
(WD-9415B, Beijing, China). The actual size distribution and morphology of the AgNPs
were identified by transmission electron microscopy (TEM, Hitachi, Japan). Silver nitrate
solution (AgNO3) was purchased from Sigma Aldrich.

Plant culture and exposure
Experiments were carried out during April 2021 in a greenhouse at Hainan University,
Haikou, China. The cotton seeds Gossypium hirsutum cv. TM-1 used in this study were
immersed in deionized water for 48 h before germination in the dark and then cultivated in
the potting soil (Pindstrup, Denmark). The cotton seedlings were grown in the greenhouse
(28–35 ◦C by day and 20–25 ◦C by night) under a 16/8 h light/dark cycle. Foliar exposure
was initiatedwhen the cotton seedlings were 2 weeks old. Three treatments were established,
including control (CK, ultrapure water), Ag+ (AgNO3) andAgNP treatments. Our previous
study showed that approximately 0.4% Ag+ was released from AgNPs (Zhang et al., 2019).
Therefore, 0.02 mg Ag+ was set up in paralleled to 5 mg AgNPs per plant treatment. Fifteen
replicate plants (one plant per pot) were obtained for each treatment. Stock solutions of
100 mg AgNPs per liter and 0.4 mg of AgNO3 per liter were prepared in ultrapure water, as
this dose of AgNPs previously showed effects on virus acquisition and acted as a fungicide
on wilt disease with no negative impacts on plants or the soil community (El Gamal et al.,
2022; Kaur et al., 2018). The application was performed three times per day for a week by
using a hand-held spray bottle, with a total volume of 50 mL per plant during 7 days of
exposure, resulting in an approximate total delivered mass of 0.02 mg Ag+ per plant and
5 mg of AgNPs per plant. The treated cotton leaves were collected and frozen in liquid
nitrogen immediately and stored at −80 ◦C until use for metabolite analysis.

Physiological and photosynthetic parameter analysis
After 7 days of exposure, the cotton seedlings were thoroughly washed with deionized
water to remove any residual particles. The seedlings were separated into leaves, stems and
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roots for weighing. Chlorophyll was extracted using 10 mL of 95% ethanol in 15 mL tubes.
The tubes were placed in the dark for 24 h until all of the leaves became chlorotic. The
absorbance was measured at 665 nm, 649 nm and 470 nm using 95% ethanol as a control.
The concentrations of chlorophyll a and b and carotenoids were calculated as previously
described (Lichtenthaler & Wellburn, 1983): chlorophyll a= 13.36 × A665 − 5.19 × A649,
chlorophyll b= 27.43 × A649 − 8.12 × A665, carotenoids = (1,000 × A470 − 2.05 ×
chlorophyll a − 114.8 × chlorophyll b)/245.

Plant photosynthetic parameters were measured with a Li-6800 portable gas-exchange
system (Li-Cor, Lincoln, Nebraska, USA). The measurement parameters included the net
photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci)
and transpiration rate (Tr). Manual control conditions were applied at a CO2 flow rate of
400 µmol s−1 and at a photosynthetic photon flux density of 1,000 µmol m−2 s−1. The
chlorophyll fluorescence parameters, such as the quantum yield of nonregulated energy
dissipation Y(NO), nonphotochemical quenching Y(NPQ) and the measure of overall
reduced and oxidizable PSII centers (qP), were used as indicators of the photosystem
efficiency (Kramer et al., 2004). Chlorophyll fluorescence characteristics were determined
using a PAM-2500 portable chlorophyll fluorescence apparatus (PAM-2500; Walz,
Germany). The leaves were adapted to dark conditions for 30 min before the measurement.

Metabolite and VOC extraction
Frozen leaves were ground into powder in a cryogenicmill and 0.1 g of tissuewas transferred
to a twomLmicrocentrifuge tube. Then, onemLof 70%methanolwas added to each sample
while vortexing the tubes. The samples were extracted for 12 h at 4 ◦C and centrifuged at
12,000 rpm for 5 min. The supernatant was transferred to a two mL tube and vortexed for
4∼6 h until all of the methanol evaporated. Then, 100 µL of 20 mg/mL methoxyamine
pyridine solution was added to the dried residue. The mixture was vortexed vigorously
until it completely dissolved, and then it was heated at 37 ◦C for 1 h. The extracts were
derivatized by adding 100 µL N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA,
Sigma–Aldrich, USA) and heating at 60 ◦C for 3 h. Quality control samples were prepared
by mixing aliquots of each sample and analyzing them every 9 samples to evaluate the
analytical validation.

A total of 0.5 g powder was weighed and transferred into a 22 mL glass headspace vial
(Agilent Technologies, Inc.), incubated for 10 min at 37 ◦C. Then, 1 g CaCl2·2H2O and
one mL of 100 mM EDTA-NaOH (Sinopharm Chemical Reagent Co., Ltd., Shanghai,
China) (pH 7.5) were added and mixed thoroughly by sonication for 5 min. The
VOCs were absorbed onto a one cm 50/30 µm SPME fiber with DVA/CWR/PDMS
(divinylbenzene/carbon wide range/polydimethylsiloxane) (Supelco, http://www.supelco.
com/). After a 20 min adsorption period at 50 ◦C while shaking, the samples were desorbed
for 2 min at 270 ◦C in GC–MS. Quality control samples were injected every 9 samples
throughout the analytical run.

GC-MS and chemical analysis
The metabolites and VOCs were detected on a gas chromatography instrument (7890A
GC, Agilent Technologies, Santa Clara, CA, USA) equipped with an Agilent 7000 mass
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spectrometer. TheHP-5MS capillary column (Agilent Technologies, Santa Clara, CA,USA)
with a 30 m length 0.25 mm diameter and 0.25 µm film thickness was used to separate
VOCs. The temperature program was as follows: 40 ◦C for 3 min and then increasing to
160 ◦C at 2 ◦C/min. Subsequently, the temperature was ramped at 50 ◦C/min to 300 ◦C
and held for 3 min. The injector temperature was set at 270 ◦C. Helium was used as the
carrier gas at a flow rate of onemL/min. Themass spectra were scanned at 50–650m/Z. The
metabolites were analyzed using the derivatized samples. The initial temperature column
oven was set at 70 ◦C for 3 min, increased to 300 ◦ C at 10 ◦C/min and kept at 300 ◦C
for 5 min. The injection volume was set to 1 µL in spitless mode. The temperatures of
the injector, MS quadrupole and ion source were kept at 270 ◦C, 150 ◦C and 230 ◦C. The
electron collision energy was set at 70 eV. The data were acquired with the full scan mass
range (m/z 50 to 650), and the solvent delay time was 5.4 min.

To identify the separated compounds, the GC-MS raw data were compared to the
chemical structures in the National Institute of Standards and Technology NIST library
(Version 2.4) database by using the MassHunter Qualitative Analysis Navigator (Agilent
Technologies, Santa Clara, CA, USA). The identified compounds were then detected based
on the retention index (RI) and mass spectra. The peak areas of the mass spectra signal
were used to calculate the relative contents of the components by using MassHunter
Quantitative Analysis (Agilent Technologies, Santa Clara, CA, USA). All of these analyses
were performed in triplicate.

Statistical analysis
Unsupervised principal component analysis (PCA) and biological pathway analysis were
performed on GC-MS data via an online server (https://www.metaboanalyst.ca/) (Pang et
al., 2021). Before PCA, the data were normalized by data scaling to make the individual
features more comparable. The statistical significance of the metabolite and VOC data was
determined using the Student’s t-test at p< 0.05 (n = 3). The impact value of the pathway
enrichment analysis was set at 0.1 (Xia & Wishart, 2010).

The data for each physiological and biochemical treatment were analyzed by SPSS
26.0 (IBM, NY, USA). An analysis of variance (ANOVA) test was used to determine the
treatment effects on the measured variables. Post hoc Duncan’s multiple range test was
performed to compare the means at p< 0.05.

RESULTS
AgNP characterization
To confirm nanoparticle morphological characteristics, the AgNP solution was analyzed
with TEM. It showed that the AgNPs were spherical and uniformly dispersed (Fig. 1A).
The average diameter of the AgNPs was 5.78 ± 1.77 nm as measured by ImageJ software
(Fig. 1B). It is believed that AgNPs of 5 nm demonstrate the best bactericidal activity and are
internalized by cells (Agnihotri, Mukherji & Mukherji, 2014). Previously, we demonstrated
that AgNPs could be transferred in A. thaliana and accumulate in leaves (Zhang et al.,
2019). Thus, these AgNPs were suitable for our treatments.
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Figure 1 Morphology of the nanoparticles. (A & B) Transmission electron microscopy (TEM) images
and frequency of the different AgNP sizes, (C & D) phenotypes and photosynthetic pigment contents of
the cotton seedlings after exposure to Ag+ and AgNPs for one week (CK, ultrapure water exposure plants;
Ag+, AgNO3 exposure plants; AgNP, AgNP exposure plants). Error bars represent the standard error of
three biological replicates. The same letters represent no significant differences.

Full-size DOI: 10.7717/peerj.13336/fig-1

Phenotypes, biomass and photosynthetic pigment content
To explore the physiological responses of cotton seedlings under AgNP exposure, the
effects of AgNPs and Ag+ on phenotype, biomass and photosynthetic pigments were
analyzed. After one week of exposure, none of the treatments showed significant toxicity
symptoms, only exhibiting a darker leaf color under AgNP treatment due to its original
color (Fig. 1C). The contents of photosynthetic pigments were significantly changed in
both the Ag+ and AgNP groups. The Ag+ and AgNP treatment resulted in a significant
increase in chlorophyll a (p = 0.003, 0.009) and b (p = 0.000, 0.001) and carotenoid
contents (p = 0.003, 0.042) (Fig. 1D). However, the root, stem and leaf biomass of the
cotton seedlings were not significantly impacted after exposure to 0.4 ppm Ag+ or 100
ppm AgNPs for 1 week (Figs. S1A, S1B and S1C). It has been reported that the application
of Ag+ and AgNPs did not significantly increase the biomass of cucumbers after one week
(Zhang et al., 2018a). This result indicated that one week of treatment was not enough to
change the biomass of cotton seedlings.

Photosynthetic capacity and chlorophyll fluorescence
As the photosynthetic pigments changed, their photosynthetic capacity was comprehen-
sively detected. Treatment with AgNPs exhibited stronger effects on their photosynthetic
capacity than Ag+. Namely, the net photosynthetic rate (Pn) was significantly (p = 0)
decreased under AgNP treatment (Fig. 2A), while the intercellular CO2 concentration
(Ci), transpiration rate (Tr) and stomatal conductance (Gs) were not significantly
changed in response to either Ag+ or AgNP treatment (Figs. S2A, S2B and S2C). In
addition, the photochemical qP increased significantly under AgNP treatment (p= 0.038),
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Figure 2 Photosynthetic parameters under Ag+ and AgNP treatments. (A) Net photosynthetic rate
(Pn), (B) coefficient of photochemical quenching (qP), (C) yield of nonregulated heat dissipation of PSII
(Y(NO)) and (D) effective quantum yield of regulated nonphotochemical quenching (Y(NPQ)) of cot-
ton leaves after Ag+ and AgNP treatments. Error bars represent the standard error of three biological repli-
cates, and the same letters represent for no significant differences.

Full-size DOI: 10.7717/peerj.13336/fig-2

while nonphotochemical quenching [Y(NPQ)] (p = 0.035) and the quantum yield of
nonregulated energy dissipation [Y(NO)] (p = 0.047) decreased (Figs. 2A, 2B and 2C).

Primary metabolite response to AgNPs
Due to their special physiochemical characteristics, AgNPsmay be involved in keymetabolic
progresses. To further determine the metabolite changes in cotton leaves, nontargeted
GC-MS metabolomics was conducted to identify the relative quantitation of primary
metabolites. In total, 73 metabolites were identified and quantified in cotton leaves after
exposure to 0.4 ppm Ag+ or 100 ppm AgNPs (Table S1). First, PCA was performed to
overview the similarities between samples. The PCA score plot showed that the 3 groups
were clustered along the PC1 and PC2, which explained 52.2% and 15.5% of the total
variance, respectively (Fig. S3). To gain insight into the metabolite response to Ag+ and
AgNPs, we identified significantly differential metabolites in Ag+ and AgNP samples
in comparison with CK samples. The relative content of these significantly differential
metabolites is shown in Fig. 3.

PCA of the significantly differential metabolites exposed to Ag+ and AgNPs indicated
high reproducibility of the biological replicate samples. The different groups were clearly
separated, with a total variance of 78%, which showed that the 3 groups were easily
discriminated (Fig. 4A). Furthermore, Venn diagram analysis showed that treatment with
Ag+ and AgNPs caused 28 and 18 metabolites, respectively, to be significantly changed
(Fig. 4B). Specifically, treatment with Ag+ induced upregulation of 25 metabolites and
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Figure 3 Heatmap visualization of 34 significantly differential metabolites in the samples.Heatmap
showing the significantly differential metabolites after Ag+ and AgNP treatments (red and blue colors in-
dicate relatively high and low metabolite contents, respectively).

Full-size DOI: 10.7717/peerj.13336/fig-3

downregulation of 3 metabolites, while treatment with AgNPs induced upregulation of 7
metabolites and downregulation of 11 metabolites (Fig. S4). These results demonstrated
that more primarymetabolites changed in response to Ag+ treatment than AgNPs in cotton
leaves. Previous studies showed that ionic silver induced more toxic effects than AgNPs in
green algae. Low concertation Ag+ induced more significantly changed metabolites than
AgNPs in N2-fixing cyanobacteria (Huang et al., 2020). In this experiment, the changes in
the metabolic profiles of the Ag+ group was greater than that in the AgNP group, which
may be because Ag+ from AgNO3 is more available than Ag+ from AgNPs.

Additionally, 12 primary metabolites (alanine, propanoic acid, ethanolamine, glutamic
acid, xylose, arabitol, mannitol, galactopyranose, gluconic acid, glyceryl-glycoside,
sucrose and galactinol) showed significant changes, which were common in Ag+- and
AgNP-treated leaves. Six primary metabolites (3-pyridinol, glycine, palmitic acid, acetyl-
glucosamine, stearic acid and mannobiose) were specifically changed in response to AgNPs
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Figure 4 Characterization of significantly differential metabolites in all the samples. (A) PCA score
plots of specific differential metabolite profiles in cotton leaves after Ag+ and AgNP treatments. (B) Venn
diagram depicting the specific differential metabolites in the Ag+ and AgNP treatment groups.

Full-size DOI: 10.7717/peerj.13336/fig-4

only (Fig. S5). Biological pathway analysis revealed that significantly affected primary
metabolites in AgNP-exposed leaves were mainly associated with alanine, aspartate and
glutamate metabolism, galactose metabolism, glyoxylate and dicarboxylate metabolism,
glutathione metabolism, ascorbate and aldarate metabolism, and glycine, serine and
threonine metabolism (Fig. S6).

VOC response to AgNPs
The SPME GC-MS technique was used to identify VOCs in cotton leaves. A total of 45
VOCs were identified and quantified. In this study, the identified VOCs were mainly
lipids, lipid-like compounds, benzenoids and organic oxygen compounds (Table S2).
To characterize the overall differences in VOCs, the PCA of all samples were classified
by similarity. Two principal components cumulatively accounted for 67% of the total
variation, with PC1 explaining 36.7% and PC2 explaining 30.3% of the variance (Fig. 5A).
The replicate samples of each group were clustered together, and the CK, Ag+ and AgNP
groups were partly discriminated. To better understand the response of the cotton leaves
to 0.4 mg/L Ag+ or 100 mg/L AgNPs, significantly differential VOCs were screened out.
Specifically, 12 and 21 significantly different VOCs were identified in the Ag+ and AgNP
treatment groups, respectively. Eight VOCs were significantly changed in response to both
treatments (Fig. 5B). Thus, AgNPs induced significant differences in a higher number of
VOCs than Ag+.

In addition, four (methanethiol, 2-penten-1-ol, 2-hexenal, 3-hexen-1-ol) and 11
(methanethiol, 2-penten-1-ol, 2-hexenal, 3-hexen-1-ol, 1-Penten-3-ol, hexanal, β-
bisabolene, γ -bisabolene, nerolidol, 3-cyclohexen-1-ol, naphthalene) VOCs were
upregulated and 8 (decane, 1,3,6-octatriene, bicyclo[2.2.1]heptan-2-ol, naphthalene,
cyclohexanone, γ -elemene, copaene, γ -muurolene) and 10 (decane, 1,3,6-octatriene,
bicyclo[2.2.1]heptan-2-ol, pentanal, pentane, β-myrcene, limonene, undecane, nonanal
and dodecane) VOCs were down-regulated in the Ag+ and AgNP treatment groups,
respectively. A heatmap was generated using the relative abundances of the 25 VOCs
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Figure 5 Characterization of significantly differential VOCs in the samples. (A) PCA score plots of
VOC profiles in cotton leaves. (B) Venn diagram depicting the specific differential metabolites in the Ag+

and AgNP treatment groups.
Full-size DOI: 10.7717/peerj.13336/fig-5

(Fig. 6). The significantly differential VOCs from Ag+ or AgNP treatment were selected
for PCA. The different groups were clearly separated, with a total variance of 82.2%, which
showed that the groups were easily discriminated (Fig. S7). These results implied that the
toxicity of AgNPs not only resulted from the free Ag+ released from nanoparticles, but was
also affected by the nanoparticles. Therefore, theses 25 VOCs are expected to be the new
hallmarks of AgNP exposure.

DISCUSSION
In this study, Ag+ or AgNPs was applied to cotton seedling leaves. The growth of cotton
seedlings showed no significantly differences under Ag+ or AgNP treatment, but the
phenotype and photosynthesis of cotton seedlings weremuchmore influenced under AgNP
treatment. Previous studies reported that the chlorophyll content of Hydrilla verticillata
increases after AgNP and AgNO3 treatment (Jiang et al., 2017a). In our data, the pigment
contents were increased in both Ag+ and AgNP treatments, indicating that chlorophyll
changes resulted from the release of Ag+ rather than the nanoparticles. Moreover, a high
value of Y(NPQ) indicates a high photoprotective capacity, while Y(NO) reflects the
closure of reaction centers of PSII and the excess of energy being passively dissipated in
the form of heat and fluorescence (Deng et al., 2013; Jiang et al., 2017b). A lower measure
of overall reduced and oxidizable PSII center (qP) values resulted in a decrease in the
plant chlorophyll content (Khan et al., 2019; Vishwakarma et al., 2017). It can also be
seen in tobacco that AgNPs induce a greater more inhibitory effect on photosynthesis
than Ag+ (Peharec Štefanić et al., 2021). Carotenoids are involved in the NPQ of excess
energy to prevent photoinhibition and photodamage. Our results demonstrated that an
increase in the qP resulted in an increased chlorophyll b content to lower NPQ and NO to
maintain the photosynthesis. Therefore, these results indicated that the AgNPs inhibited
the photosynthetic capacity of cotton seedlings.

The metabolites of plants were dramatically affected by environmental stimuli. Glycine
and serine are two important amino acids formed during photorespiration, and they
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Figure 6 Heatmap visualization of 25 significantly differential VOCs in the samples. The heatmap
shows the significantly differential VOCs after Ag+ and AgNP treatments (red and blue colors indicate rel-
atively high and low metabolite contents, respectively).

Full-size DOI: 10.7717/peerj.13336/fig-6

act as indicators of photorespiratory activity (Diaz et al., 2005). Photorespiration may
be protected under high light-induced stress by supplying additional glycine (Osmond et
al., 2000). Glycine was significantly decreased when plants were exposed to AgNPs and
a derivative of serine was significantly increased, suggesting that photorespiration was
inhibited. Sugars are important signaling molecules involved in the adaption to abiotic
stress (Sami et al., 2016). Low concentrations of glucose and sucrose function as osmotic
adjustments and strengthen the carbon energy reserves under salt stress (Boriboonkaset et
al., 2013; Hu et al., 2012). A significant increase in the accumulation of xylose, arabitol,
mannitol, galactopyranose and glyceryl-glycoside was identified upon exposure to AgNPs,
while alanine, glutamic acid, gluconic acid, pyridinol, glycine, palmitic acid, acetyl-
glucosamine, sucrose, mannobinose and galactinol were significantly decreased (Fig. S5).
Among them, pyridinol, glycine, palmitic acid, glucosamine, stearic acid and mannobiose
were specially altered in the AgNP treatment. In summary, the changes in glycine, sugars
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Figure 7 Schematic diagram of the proposed metabolic pathway and VOCs in cotton leaves exposed to
AgNPs. Red and blue (right panel) represent up- and downregulated in primary metabolites in the AgNP
group compared to the CK group. Red and blue (left panel) indicate the relatively high and low content of
the significantly differential VOCs in the AgNP and CK groups.

Full-size DOI: 10.7717/peerj.13336/fig-7

and sugar alcohols might indicate perturbations in carbon and nitrogen metabolism to
manage plant development to stimulate defense responses upon AgNP exposure.

VOCs are key signals for communication between plants and the environment (De
Moraes et al., 1998). Our data showed that methanethiol 3-hexen-1-ol and 1-penten-
3-ol were significantly increased under AgNP treatment (Fig. 7). It has been reported
that methanethiol could effectively scavenge reactive oxygen species in algae (Sunda et
al., 2002). The accumulation of 3-hexen-1-ol was found to enhance the hyperosmotic
stress tolerance of Camellia sinensis (Hu et al., 2020). 1-Penten-3-ol and 3-hexen-1-ol
are photooxidation compounds initiated by radicals and sunlight (Jiménez et al., 2009).
These results suggested that the abiotic tolerance was enhanced under AgNP treatment.
Moreover, 2-hexenal, naphthalene, hexanal and 3-cyclohexen-1-ol were also found to
significantly increase under AgNP treatment. At a low concentration, 2-hexenal was found
to facilitate Botrytis cinerea infection of fruits (Xu et al., 2021). Naphthalene is a common
pesticide used against moths and moth larvae (Portoni, Grau-Bové & Strlic, 2019). Hexanal
was used as a quorum-sensing inhibitor to prevent diseases of Chinese cabbage and lettuce
(Zhang et al., 2018b). 3-Cyclohexen-1-ol is a derivative of limonene, which is well known
for its antimicrobial and antiseptic activities (Oliveira et al., 2001; Magwa et al., 2006). It is
noteworthy that these VOCs can be involved in the plant response to abiotic and biotic
stresses, which suggests that the cotton leaves initially produce compounds to adapt to
AgNP stress. Therefore, it is of great significance to pay more attention to the impact of
AgNPs on VOCs in plants.
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Based on the above analyses, we proposed a metabolic map to elucidate the
comprehensive mechanism of primary metabolites and VOCs in cotton leaves in response
to AgNPs. The compounds significantly affected by AgNPs were scattered across the
primary metabolism with the partial specific pathways involved in sugar metabolism
(sucrose, xylose, arabitol) and amino acid metabolism (glycine, L-glutamic acid, alanine)
(Fig. 7). Changes in primary metabolites induced by AgNPs might subsequently influence
the production of VOCs via unknown pathways. In summary, this study provides a
comprehensive reflection for studying the toxic effects of AgNPs on cotton. These results
revealed that the changes in primary metabolites and VOCs of cotton leaves induced by
AgNPsmight enhance abiotic and biotic stress tolerance, but this will need to be investigated
in future studies.

CONCLUSIONS
In this study, we comparably investigated the impact of AgNPs and Ag+on cotton seedlings
after one-week treatment. In addition to considering typical photosynthetic endpoints
to evaluate the impact of AgNPs on cotton, we also evaluated the differences of primary
metabolites and VOCs under AgNP and Ag+ treatments. While AgNPs and Ag+ can both
induce slight physiological responses, metabolomics revealed metabolite profile alterations
in cotton leaves. For the primary metabolites, a number of amide acids, sugars and sugar
alcohols were altered upon exposure to either AgNPs or Ag+, while more metabolites
were changed by Ag+, indicating that Ag+ from AgNO3 might be more available than that
from AgNPs. VOC analysis showed more VOCs induced by AgNPs than Ag+, suggesting
that biotic and abiotic stress tolerance might be enhanced. We demonstrated that AgNPs
impacted the primary metabolic profiles, but the significantly changed VOCs might also
be one of the hallmarks of AgNP exposure. This finding provides valuable information for
understanding the molecular mechanisms involved in plant responses to AgNPs and will
be useful for seeking sustainable protection strategies to safely control crop diseases.
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