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Abstract: Sustained-release olmesartan tablets (OLM) were prepared by the simple, direct
compression of composites of anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and cationic
spray-dried chitosan (SD-CS), and were evaluated for use as a sustained release preparation for the
treatment of hypertension. An investigation of the interaction between OLM and SBE-β-CD by the
solubility method indicated that the phase diagram of the OLM/SBE-β-CD system was the AL type,
indicating the formation of a 1:1 inclusion complex. The release of OLM from tablets composed
of the SD-CS/SBE-β-CD composite was slow in media at both pH 1.2 and at 6.8. The in vitro slow
release characteristics of the SD-CS/SBE-β-CD composite were reflected in the in vivo absorption
of the drug after normal rats were given an oral administration of the preparation. Furthermore,
the SD-CS/SBE-β-CD composite continuously increased the antihypertensive effect of OLM in
hypertensive rats, compared with that of the drug itself. These results suggest that a simple mixing of
SD-CS and SBE-β-CD can be potentially useful for the controlled release of a drug for the continuous
treatments of hypertension.

Keywords: chitosan; sulfobutyl ether β-cyclodextrin; extend-release; matrix tablet; antihypertensive
effects

1. Introduction

Olmesartan (OLM), an angiotensin (Ang) II type 1 receptor antagonist, independently inhibits not
only hypertension, but also albuminuria and glomerular hypertrophy, and functions independently
of blood pressure [1,2]. Furthermore, Kadowaki et al. reported on the antioxidant activity of OLM
in vivo, but this activity had direct and indirect antioxidant activity, including modulation via NADPH
oxidase activity [3–5]. Thus, OLM has recently attracted attention as an effective antihypertensive
drug with multifaceted effects, as reported above. Therefore, a more efficient design of OLM using
new excipients would lead to the more effective and safe administration of the drug.

Chitosan (CS), a naturally occurring polysaccharide that is largely obtained from marine
crustaceans, is a promising extended-release excipient for therapeutics and diagnostics, owing to
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its biocompatibility, biodegradability, low toxicity, and structural variability [6,7]. A new type of
polysaccharide nano-carrier consisting of the polysaccharide CS and cyclic oligosaccharides such
as cyclodextrins (CDs) was recently reported [8–10]. For example, CS nanoparticles containing an
anionic cyclodextrin, sulfobutyl ether-β-cyclodextrin (SBE-β-CD), appear to have some potential for
use as peptide carriers, because they combine improved peptide loadings with the capacity to promote
peptide transport through the intestine, as observed in a frog intestinal sac model [11–13]. It is known
that SBE-β-CD forms inclusion complexes with various drug molecules and can be used to solubilize
drugs that are poorly water-soluble, thus making them more soluble than the parent compound, β-CD,
due to the presence of a hydrophilic sulfobutyl moiety [14]. It therefore appears that CS/SBE-β-CD
nano-carriers would be useful for preparing homogeneous nano-carriers that contain drugs that are
poorly water soluble. On the other hand, one drawback to this system is that these nano-carriers are
difficult to prepare, because they are too small in size to permit their isolation by simple filtration
through filter paper. Furthermore, the extent of encapsulation of medicines in nano-carriers is not
always high. In recent studies, we reported that a simple blend of CS and SBE-β-CD retarded the
release of famotidine, a histamine H2 receptor antagonists, from ordinary tablets and the slow release
of the drug was clearly reflected in in vivo absorption after oral administration to rats [15]. However,
there are only a few reports concerning relationships between in vivo pharmacokinetics and in vivo
pharmacodynamics using CS/SBE-β-CD composites.

In this study, sustained-release tablets containing OLM were prepared by direct compression,
using composites of cationic CS and anionic SBE-β-CD, and the resulting preparation was then
evaluated for use as a sustained release tablet for the treatment of hypertension using rats as
model animals.

2. Materials and Methods

2.1. Materials

CS (Molecular weight: 30 kDa) and SBE-β-CD (Captisol®, degree of substitution (DS) 7) was
obtained from Nippon Kayaku Food Techno Co., Ltd. (Takasaki, Japan) and New Product Development
Ligand Pharmaceuticals Incorporated (Lawrence, KS, USA), respectively. OLM was obtained from
Nipro Co., Ltd. (Osaka, Japan). 2-Hydroxypropyl-β-CD (HP-β-CD, with a degree of substitution (D.S.)
of the 2-hydroxypropyl group of 5.6) was a gift from Nihon Shokuhin Kako Co., Ltd. (Shizuoka, Japan).
Spray-dried chitosan (SD-CS) was used in all experiments. All other chemicals were reagent grade
or better.

2.2. Measurements of Turbidity

The CDs/SD-CS ratio in the complex was examined by monitoring the transmittance of the
solution at a wavelength of 600 nm using a spectrophotometer (UV-1601 spectrophotometer, Shimadzu,
Kyoto, Japan). Aqueous 1% acetic acid solutions of SBE-β-CD or HP-β-CD and SD-CS were mixed at
different weight ratios. Each mixture was shaken vigorously. The mixtures were then left to stand for
10 min before measuring the transmittance, as a function of various mixing ratios.

2.3. Solubility Studies

Solubility measurements were conducted following a method of Higuchi and Connors [16,17].
Excess amounts (15 mg) of OLM were added to different concentrations of CD solutions (1.0 mL) and
the suspension was shaken at 25 ◦C for 2 days. After reaching equilibrium, the vials were centrifuged
for 5 min at 1000 g and the supernatant was filtered through a 0.2 µm-filter. The resulting filtrate was
appropriately diluted and the level of OLM determined at a wavelength of 248 nm by means of a UV
spectrometer (Shimadzu Scientific Instrument, Kyoto, Japan). The stability constant (Kc) of the CD
complexes was calculated using the equation of Kc = slope/[intercept (1−slope)] using a slope and an
intercept of the initial straight-line portion of the phase solubility diagrams [18].
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2.4. Fourier Transform Infrared (FT-IR) Spectroscopy Study

The infrared absorption spectra of SBE-β-CD, SD-CS and their composites were obtained with a
Fourier transform infrared spectroscopy (FT-IR) spectrophotometer (LX30-7012, Perkin Elmer, Waltham,
MA, USA). Pellets were prepared by pressing the sample with potassium bromide.

2.5. Preparation of SD-CS/CDs/OLM Extended-Release Tablets

CS was dissolved in aqueous acetic acid (1%) resulting in the formation of the protonated species,
and the resulting solutions were spray-dried using a SD-1000 instrument (Tokyo Rikakikai Co.,
Ltd, Tokyo, Japan) under the following conditions: inlet temperature of 140 ◦C, drying air flow
of 0.50 m3/min, atomizing air pressure of 50 kPa, and an outlet temperature of 90–95 ◦C [19]. The
extended-release SD-CS/ CDs tablets, with a total weight of 95 mg, were prepared using a mixture of
OLM (5 mg) and an excipient (90 mg) at a ratio of 1:19. The mixture was compressed using a hydraulic
press with a 7 mm diameter and compressing the mixed composite using a hydraulic press with a
7 mm diameter and a 2.0 mm thickness. The compression force was 10 kN/cm2 with a dwell time of
5 min. CDs, SD-CS, lactose, and three types of SD-CS/CDs composites were used as excipients.

2.6. In Vitro Dissolution Studies of SD-CS/CDs/OLM Composite

A dissolution test was carried out using a dissolution tester (NTR-6600, Toyama, Inc., Osaka,
Japan). The rate of OLM dissolution was measured using the USP paddle method at 50 rpm using
450 mL of a pH 1.2 or pH 6.8 medium at 37 ◦C. An aliquot (1.0 mL) was automatically withdrawn,
diluted appropriately with water and the level of OLM determined at a wavelength of 248 nm using a
UV spectrometer (Shimadzu Scientific Instrument, Kyoto, Japan).

2.7. In Vivo Pharmacokinetic Studies of SD-CS/CDs/OLM Composite

ALL animal experiments, including 2.8, were performed according to the guidelines for the
care and use of experimental animals under the approval of the Animal Research Committee of Sojo
University (Permission No.: 2017-P-026). Furthermore, the study protocol also complied with the laws
and notifications of the Japanese government prior to the commencement of the study. The rats (SD
rats, N = 16, male, weight 250–350 g) were divided into four groups and fasted overnight. Each sample
was immediately administered at a dose of 8 mg/kg/1 mL as suspensions containing SD-CS/CDs
/OLM composite by oral gavage. Blood samples were collected from the tail vein for a period of up
to 24 h. The plasma samples were prepared for HPLC analysis as reported previously, with minor
modifications [20]. The pharmacokinetics and statistical analyses were computed by fitting using the
Practical Pharmacokinetic Program (MULTI, a normal least square program [21]).

2.8. Antihypertensive Studies of Spray-dried Chitosan Cyclodextrins (SD-CS/CDs)/Olmesartan Composite

20-week-old male stroke-prone spontaneously hypertensive (SHRsp)/Izm rats were used in the
experiments (Japan SLC, Shizuoka, Japan). The rats (SHRsp/Izm rats, N = 20, male, weight 250–350 g)
were divided into five groups and fasted overnight. The rats were treated with OLM 1 mg/kg/1 mL
as suspensions in each of the composites (n = 4). The water administration group was used as a control
(N = 4). Mean blood pressure (MBP) was measured for 24 h in conscious rats by the indirect tailcuff
method (BP-98A; Softron, Tokyo, Japan) without anesthesia.

2.9. Statistics

Results are reported as the mean ± SEM. Statistical significance was evaluated using analysis
of variance (ANOVA), followed by the Tukey-Kramer post hoc test. For all analyses, P < 0.05 was
regarded as statistically significant.
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3. Results and Discussion

3.1. Characterization of Spray-dried Chitosan Cyclodextrins (SD-CS/CD) Composites

3.1.1. Turbidity Measurements

The interaction between SD-CS and SBE-β-CD or HP-β-CD was studied based on changes in the
turbidity in solutions, as the result of the precipitation of the inter-polymer complex (IPC) (Figure 1).
The SD-CS solutions and SBE-β-CD solutions were transparent regardless of their concentration prior
to the mixing. The transmittance of the mixing solutions showed no significant change with increasing
SBE-β-CD concentration up to a SD-CS:SBE-β-CD ratio = 1:1. At higher ratios, the solution became
cloudy (Figure 1b). Further increases in the amount of SBE-β-CD resulted in a decrease in absorbance.
These results indicate that SD-CS formed a less-soluble IPC with SBE-β-CD predominantly at a 1:1
weight ratio, with the precipitation of micro-particles being observed. Thus, these results suggest that
the formation of IPC could involve electrostatic interactions between the SO3− group of SBE-β-CD
and the NH3+ group of SD-CS. Actually, SD-CS contains about 170 monomer units of glucosamine per
molecule, because the MW of SD-CS employed in this study was about 30000. Thus, the interaction
between SD-CS and SBE-β-CD is maximal at a weight ratio of 1/1. These results suggest that about
13-14 glucosamine units per CS polymer participate in interactions with a SBE-β-CD molecule. On
the other words, a sulfobutyl anion of SBE-β-CD interacted with about two cationic amino groups.
Therefore, the SD-CS/SBE-β-CD composite was prepared by simply mixing both components at a ratio
of 1/1, and this formulation was employed in subsequent studies. Otherwise, the relative absorption
was essentially the same as the result of mixing the SD-CS and HP-β-CD solutions.
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Figure 1. Effect of the weight ratio of spray-dried chitosan (SD-CS) and sulfobutyl ether-β-cyclodextrin
(SBE-β-CD) (close circles) or HP-β-CD (open circles) on the absorbance as a measurements of turbidity
of the solution (a) and appearance of SD-CS/SBE-β-CD solution (left) and SD-CS/HP-β-CD solution
(right) (weight ratio = 1:1) (b).

3.1.2. FT-IR Measurements

The IR spectrum of the SD-CS/SBE-β-CD composite showed that the peak at 1595 cm−1 assigned
to the amine band of SD-CS was shifted to 1640 cm−1, indicating that the amine group was in the
protonated form in IPC [22]. In addition, the FT-IR spectra of the SD-CS/SBE-β-CD composites were
different from other spectra, with new peaks appearing at 1729 cm−1 and 1412 cm−1, consistent with
CS/SBE-β-CD nano-particle studies (Figure 2) [23], indicating the formation of the SD-CS/ SBE-β-CD
IPC. This IPC formation was further confirmed by differential scanning calorimetric studies, i.e.,
the endothermic peak of dehydration decreased from 140 ◦C–150 ◦C for CS and SBE-β-CD alone to
80 ◦C–120 ◦C for IPC, because of large hydrophobicity of the IPC surface due to the neutralization of
the opposite charges of the components, facilitating the dehydration, as reported previously [15].
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Figure 2. Fourier transform infrared spectroscopy (FT-IR) spectra of spray-dried chitosan (SD-CS),
sulfobutyl ether-β-cyclodextrin (SBE-β-CD), and SD-CS/SBE-β-CD components.

3.1.3. Solubility Studies

To estimate the ability of SBE-β-CD or HP-β-CD to solubilize OLM, we investigated the interaction
of the drug with SBE-β-CD and HP-β-CD in aqueous solution by the solubility method [10]. Figure 3
shows the phase solubility diagrams obtained for OLM/HP-β-, or /SBE-β-CD systems in water
at 25 ◦C. The solubility plots showed an AL-type [24,25]. Thus, the solubility of OLM increased
linearly with increasing concentration of the CD under these experimental methods. The apparent 1:1
stability constant (Kc) of the complexes was calculated from the initial linear portion of the solubility
diagrams and the results indicated that SBE-β-CD (Kc = 128 M−1) had a higher solubilizing ability
than HP-β-CD (Kc = 79 M−1). In fact, SBE-β-CD is a negatively charged derivative of β-CD, with an
extended hydrophobic cavity and an extremely hydrophilic exterior surface in comparison to β-CD.
This is because the secondary hydroxyls on the wide rim of β-CD are substituted with SBE groups.
Furthermore, SBE-β-CD, with the advancements of higher aqueous solubility and the fact that it is
non-toxic, is one of the most popular β-CD derivatives used as a pharmaceutical excipient [26,27].
Therefore, SBE-β-CD would be useful for not only as a solubilizer but also as an effective excipient.
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Figure 3. Phase solubility diagrams of olmesartan tablets (OLM)-sulfobutyl ether-β-cyclodextrin
(SBE-β-CD), OLM/ SBE-β-CD (close circle) and OLM/HP-β-CD (open circle) systems in water at
25 ◦C.
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3.2. In Vitro Release of OLM

A physical mixture of OLM, SD-CS, and SBE-β-CD or HP-β-CD in a weight ratio of 1:9:9 was
compressed to form ordinary tablets. Figure 4 shows the dissolution profiles for OLM from the tablets
in a pH 1.2 HCl solution, pH 6.8 phosphate buffer, and the sequential exposure to both solutions.
As shown in Figure 4a, 100% of the OLM was released from the SD-CS/lactose or CS/HP-β-CD
tablet after 2 h at pH 1.2, whereas less than 30% was released from the SD-CS/SBE-β-CD tablet.
These phenomena were observed for physical mixtures of OLM, SD-CS and SBE-β-CD or HP-β-CD
as well as for the tablets that were prepared, although the OLM in these physical mixtures were
released slightly faster than from the tablets (data not shown). Furthermore, the release of OLM from
a suspension of OLM/SBE-β-CD or OLM/HP-β-CD suddenly reached 100 % of the OLM release
within a few minutes (data not shown). Similarly, the release of OLM from the SD-CS/SBE-β-CD
tablet was significantly retarded in the case of the sequential exposure to both pH solutions (Figure 4c).
In the case of the pH 1.2 HCl solution, the SD-CS/lactose or SD-CS/HP-β-CD tablet disintegrated
rapidly and disappeared after 2 h, because SD-CS is quite soluble in acidic solutions. However, the
SD-CS/SBE-β-CD tablet maintained its round shape in the pH 1.2 HCl solution after 2 h, although
some erosion and disintegration was observed on the surface (data not shown). The erosion and
disintegration gradually progressed and the tablet eventually became fully dispersed after about 10 h.
These results suggest that, after exposure to water, the soluble SBE-β-CD and SD-CS in the solution at
pH 1.2, easily formed a less-soluble IPC on the surface or inside the tablet, from which OLM was slowly
dissolved as the erosion and disintegration of the tablet proceeded. Otherwise, the release of OLM from
other type of tablet at pH 6.8 was significantly slower than that at pH 1.2, because SD-CS is sparingly
soluble in neutral conditions (Figure 4a,b). The release from the SD-CS/lactose or SD-CS/HP-β-CD
tablet at pH 6.8 was accompanied by the erosion and disintegration of the tablet, and the surface of the
tablet was encapsulated in a thin gel. On the other hand, the round shape of the SD-CS/SBE-β-CD
tablet did not undergo disintegration and the shape was maintained for the duration of the experiment
(Figure 4d). In general, CS is known to have gelation properties, although not high. In a previous
study, we reported that chitin nanofibers formed strong elastic gels with SBE-β-CD [28,29]. Therefore,
these results indicate that the gelation that was observed on the surface of SD-CS/SBE-β-CD tablets
after exposure to water, which functioned as a barrier to water penetration, caused the drug release
to decelerate.

3.3. In Vivo Release of Olmesartan Tablets (OLM)

The concentration of OLM in plasma following the administration of suspensions of OLM,
OLM/SD-CS/lactose, OLM/SD-CS/HP-β-CD, and OLM/SD-CS/SBE-β-CD are shown in Figure 5
and the pharmacokinetic parameters, as determined from OLM plasma concentration-time data, are
presented in Table 1. The results indicate that the ratio of the AUC(0–∞) for the OLM/CS/SBE-β-CD
to the AUC for the drug alone or the OLM/SD-CS/lactose was accompanied by the increase in Cmax

values. Furthermore, a significant difference in Tmax, AUC(0–∞), and half-life (T1/2) was observed
between the OLM/SD-CS/HP-β-CD and OLM/SD-CS/SBE-β-CD. The insignificant difference in
plasma concentrations of OLM was observed between these formulations until about 3 h after the
administration. This may be due to the fact that the release rate of the drug from the SD-CS/ SBE-β-CD
composite is not markedly slowed down in pH 1.2, when compared with that in pH 6.8, as shown
in Figure 4c. On the other hand, the markedly slowed release of the drug from the composite in the
neutral solution (pH6.8) after 3 h might contribute significantly to the extended plasma concentrations
of OLM following the administration of the composite.
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Figure 4. Release profiles for olmesartan tablets (OLM) from tablets at pH 1.2 (a), pH 6.8 (b),
sequential exposure to pH 1.2 and pH 6.8 (c) and microscopic observation of OLM/SD-CS/lactose,
OLM/SD-CS/HP-β-CD, and OLM/SD-CS/SBE-β-CD tablets before (left) and after 24 h (right) in
media at pH 6.8 (d). OLM/ SD-CS/SBE-β-CD (close circle), OLM/SD-CS/HP-β-CD (open circle),
and OLM/SD-CS/lactose (close square). (SD-CS = spray-dried chitosan, SBE-β-CD = sulfobutyl
ether-β-cyclodextrin).
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Figure 5. Mean plasma pharmacokinetic profiles of OLM (4), OLM/SD-CS/lactose (�),
OLM/SD-CS/HP-β-CD (#), OLM/SD-CS/SBE-β-CD (•) suspensions in rats (at OLM dose of 8 mg/kg).
(OLM = olmesartan tablets, SBE-β-CD = sulfobutyl ether-β-cyclodextrin, and SD-CS = spray-dried
chitosan).
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Table 1. Pharmacokinetic parameters for olmesartan tablets (OLM) in rats following oral administration
of the suspensions (8 mg/kg as the drug).

AUC(0-∞) (mgh/mL) Cmax (µg/mL) T1/2 (h) Tmax (h)

OLM suspension 7.8 ± 0.10 0.80 ± 0.16 3.6 ± 0.11 3.3 ± 0.16
OLM/SD-CS/lactose 8.2 ± 0.80 0.74 ± 0.12 4.5 ± 0.34 3.6 ± 0.17

OLM/SD-CS/HP-β-CD 9.4 ± 0.58 b 1.0 ± 0.033 a 3.0 ± 0.45 3.3 ± 0.26
OLM/SD-CS/SBE-β-CD 14.1 ± 1.2 a,d,e 1.0 ± 0.10 b,d 4.2 ± 0.29 b,e 5.0 ± 0.10 b,c,e

a p < 0.01 for OLM suspension, b p < 0.05 for OLM suspension, c p < 0.01 for OLM /SD-CS/lactose, d p < 0.05 for
OLM /SD-CS/lactose, e p < 0.05 for OLM /SD-CS/HP-β-CD.

3.4. In Vivo Antihypertensive Effects of OLM

The in vivo antihypertensive effect of OLM was evaluated using hypertensive model rats, and
the results are shown in Figure 6. In hypertensive rats, the mean blood pressure (MBP) for the OLM
alone, OLM/SD-CS/lactose, and olmesartan/SD-CS/HP-β-CD systems returned to the control level
within 24 h, whereas in the OLM/SD-CS/SBE-β-CD-treated groups, a large continuous decrease in this
parameter was noted, compared with the control and other composites. This effect can be attributed to
the increased solubility of OLM and the extended-release effect, as the result of inter-polymer complex
formation between SD-CS and SBE-β-CD (Figure 6, Table 1). Because CDs are known to function
as a potent absorption enhancer [19], these phenomena might be another reasonable explanation
for the increment in the oral bioavailability of OLM in SBE-β-CD. Actually, the solubility of OLM
was significantly enhanced by SBE-β-CD, and was linearly dependent on the CD concentration (AL

type) [20]. In fact, we also indicated that the SBE-β-CD (128 M−1) had a higher solubilizing ability than
that of HP-β-CD (79 M−1) (Figure 3). Therefore, these results suggest that a simple mixing of SD-CS
and SBE-β-CD can be potentially useful for the controlled release of a medicine for the continuous
treatment of hypertension.Pharmaceutics 2018, 10, x FOR PEER REVIEW  9 of 11 
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Figure 6. Mean plasma blood pressure profiles for control (l), OLM suspension (4),
OLM/SD-CS/lactose (�), OLM/SD-CS/HP-β-CD (#), OLM/SD-CS/SBE-β-CD (•) suspensions in rats
(at OLM dose of 1 mg/kg). (OLM = olmesartan tablets, SBE-β-CD = sulfobutyl ether-β-cyclodextrin,
and SD-CS = spray-dried chitosan).

4. Conclusions

To design a more effective and safer process for the oral administration of OLM, we prepared
a sustained-release tablet of OLM by the direct compression of a SD-CS/SBE-β-CD composite and
evaluated its anti-hypertensive effect. The release of OLM from tablets of the SD-CS/SBE-β-CD
composite was slow in media at both pH 1.2 and 6.8. The in vitro slow release characteristics
of the SD-CS/SBE-β-CD composite were reflected in the in vivo absorption of the drug after oral
administration to rats. Furthermore, the SD-CS/SBE-β-CD composite continuously increased the
antihypertensive effect of OLM, compared with that of the OLM itself. Considering the multiple
functions of SD-CS and SBE-β-CD, a simple mixing of SD-CS and SBE-β-CD represents a potentially
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useful process for creating an effective and safe excipient of OLM for the continuous treatment
of hypertension.
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