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ABSTRACT

Copy number variants, such as duplications and hemizygous deletions at chromosomal loci of up to a few million base pairs, 
are highly associated with psychiatric disorders. Hemizygous deletions at human chromosome 22q11.2 were found to be 
associated with elevated instances of schizophrenia and autism spectrum disorder in 1992 and 2002, respectively. Following 
these discoveries, many mouse models have been developed and tested to analyze the effects of gene dose alterations in small 
chromosomal segments and single genes of 22q11.2. Despite several limitations to modeling mental illness in mice, mouse 
models have identified several genes on 22q11.2—Tbx1, Dgcr8, Comt, Sept5, and Prodh—that contribute to dimensions of autism 
spectrum disorder and schizophrenia, including working memory, social communication and interaction, and sensorimotor 
gating. Mouse studies have identified that heterozygous deletion of Tbx1 results in defective social communication during 
the neonatal period and social interaction deficits during adolescence/adulthood. Overexpression of Tbx1 or Comt in adult 
neural progenitor cells in the hippocampus delays the developmental maturation of working memory capacity. Collectively, 
mouse models of variants of these 4 genes have revealed several potential neuronal mechanisms underlying various aspects 
of psychiatric disorders, including adult neurogenesis, microRNA processing, catecholamine metabolism, and synaptic 
transmission. The validity of the mouse data would be ultimately tested when therapies or drugs based on such potential 
mechanisms are applied to humans.
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Introduction
Since the 1950s, psychopharmacology has drastically trans-
formed the field of psychiatry. This transformation was not 
guided by a rational approach based on mechanistic know-
ledge; instead, many drugs were serendipitously identified to 
be beneficial for treating mental illness. Chlorpromazine was 
initially used as an anti-histamine drug to assuage low blood 

pressure and rapid heart rate during surgical shock; however, 
its antipsychotic effects were first recognized by Henri Laborit 
in 1952 and it was widely used for the treatment of schizo-
phrenia by Pierre Deniker, Jean Delay, J.  M. Harl, and Heinz 
Lehmann. Imipramine was initially developed by the pharma-
ceutical company Geigy as a chlorpromazine-like compound to 
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combat psychosis of schizophrenia. Although imipramine did 
not achieve this intended effect, its beneficial effects on depres-
sion were recognized by Roland Kuhn in 1956. John Cade dis-
covered the beneficial effects of lithium in patients with mania 
in 1949; this discovery was forgotten but was later recognized 
thanks to the work of Morgens Schou. The serendipitous discov-
eries of these drugs freed many patients from semi-permanent 
confinement in mental hospitals, which were often located in 
alienating remote locations, or from prolonged psychoanalysis 
treatment with little tangible improvement. Thus, these drugs 
and their sister compounds, which were subsequently devel-
oped, became a solid starting point to gain knowledge of their 
sites of actions, which provided valuable insights into the mech-
anisms underlying psychiatric disorders.

Nearly half a century later, we are witnessing yet another 
transformation in the field of psychiatry. Rapid advances in 
the field of genetics have identified cases of duplication and 
hemizygous deletions of chromosomal loci, collectively termed 
copy number variants (CNVs), which show a robust and repro-
ducible association with a wide range of psychiatric disorders. 
CNVs provide new opportunities to explore the mechanisms 
underlying psychiatric disorders such as schizophrenia, autism 
spectrum disorder (ASD), bipolar disorder, intellectual disability 
(ID), and attention-deficit/hyperactivity disorder (ADHD).

CNVs

CNVs are deletions and duplications of large stretches of 
chromosomes, which can extend up to a few million bases in 
length. In 2007 and 2008, a number of studies reported the as-
sociation of many CNVs with schizophrenia and autism. Each 
CNV was found to have unprecedented levels of association 
with mental illness (Sebat et  al., 2007; Szatmari et  al., 2007; 
Ullmann et al., 2007; Brunetti-Pierri et al., 2008; Christian et al., 
2008; Marshall et al., 2008; Mefford et al., 2008; Sharp et al., 2008; 
Stefansson et al., 2008; Walsh et al., 2008; Xu et al., 2008). While 
several syndromic cases of developmental disorders had been 
known to be associated with copy number variations (Lee and 
Lupski, 2006), these studies presented a novel view that CNVs 
have a much broader contribution to nonsyndromic, as well as 
syndromic, cases of many psychiatric disorders.

Three features distinguish CNVs from widely studied common 
genetic variants such as single nucleotide polymorphisms 
(SNPs). First, CNVs are rare variants; each CNV is found in less 
than 1% of patients with schizophrenia or ASD (Kirov et al., 2014; 
Rees et al., 2014b). Second, unlike common variants (e.g., SNPs) 
that individually raise the risk for mental illness only slightly, 
the rates of psychiatric disorders among carriers of each CNV 
are extraordinarily high. The odds ratios for schizophrenia reach 
67.7 with 22q11.2 deletions, 20.6 with 16p11.2 distal deletions, 
and higher than 10 with 2q16.3 deletions, 15q13.3 deletions, 

7q11.23 duplications, 9p24.3 deletions/duplications, and 8q22.2 
deletions (Marshall et  al., 2017). Similarly, the odds ratios are 
high for ASD and ID with these and other CNVs (Cooper et al., 
2011; Girirajan et  al., 2011; Malhotra and Sebat, 2012). Thirdly, 
each CNV is associated, to varying degrees, with multiple dis-
orders such as schizophrenia, ASD, ID, bipolar disorder, depres-
sion, and ADHD (Elia et al., 2011; Malhotra and Sebat, 2012; Kirov 
et al., 2014). The pleiotropic actions of CNVs do not conform to 
the existing clinical classification of psychiatric disorders, which 
is based on symptomatic clustering. However, the CNV effects 
are hardly surprising considering that the clinical diagnosis 
of one psychiatric disorder is often followed by another, even 
among idiopathic cases (Plana-Ripoll et al., 2019).

Despite promising leads, the precise mechanistic links be-
tween CNVs and their symptomatic manifestations still remain 
poorly understood. In humans, analysis has been largely cor-
relative. Due to technical limitations, studies have been unable 
to establish the causative effects of CNV-associated alterations 
in gene expression patterns and regional activity patterns in the 
brain with mental illness.

One way of viewing association is that all the genes encoded 
in a CNV contribute in some way to any given clinically defined 
psychiatric disorder. This could occur through the collective ac-
tions of all genes, particularly in the cases of large-sized CNVs. 
Consistent with this possibility, the severity of the phenotype in-
creases with the size of the CNV and each of large de novo CNVs 
does not contain ASD-associated genes identified by exome 
sequencing (Sanders et al., 2015). An alternative view is that a 
single driver gene within a CNV is critical. This notion is sup-
ported by evidence that each of small de novo CNVs contained a 
single ASD-associated gene identified by exome sequencing, and 
no cases were found in which many such genes were encoded 
in a single small de novo CNV (Sanders et al., 2015). However, 
exome sequencing might not be ideal to identify driver genes if 
their variants detected by exome sequencing simply do not exist 
or do not frequently occur. Moreover, hemizygous deletion or 
duplication might produce more severe effects than some vari-
ants that exome sequencing identify. There are cases where a 
single gene can recapitulate the effects of a large deletion (e.g., 
17p11.2) (Lee and Lupski, 2006). Thus, it is still possible that a 
larger size CNV increases the chances of affecting a few risk 
genes with large effects, and a small CNV contains more than 
one contributory gene.

Analyses of biological pathways have elegantly demon-
strated select pathways in CNV cases in humans. However, 
some technical limitations need to be considered. First, some 
CNV-encoded genes are not listed in data sets for pathway 
analyses because their functions are not well characterized or 
they contribute to peripheral phenotypes and used as negative 
controls. Second, some analyses are done using all CNVs as a 
set. Such grouping is ideal to identify contributory genes and 
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biological pathways common to all CNVs but not those unique 
to each CNV.

A third possibility is that more than one, but not all, gene in 
each CNV, regardless of its size, is contributory to psychiatric 
disorders. Consistent with this hypothesis, many genes known 
to be involved in diverse functions, such as synaptic func-
tions and activity-regulated cytoskeleton-associated proteins, 
are represented in CNVs (Walsh et al., 2008; Pinto et al., 2014; 
Chang et al., 2015; Sanders et al., 2015; Marshall et al., 2017). Data 
coming from mouse models lend further support for this hy-
pothesis that several, but not all, genes even in a large CNV are 

contributory and the degree of contribution varies among such 
genes (see Figure 1B–C) (Hiroi et al., 2012, 2013, 2018; Hiroi and 
Nishi, 2016; Nishi and Hiroi, 2016; Zinkstok et al., 2019).

22q11.2 CNV

Unlike most CNVs that were more recently discovered in 2007 
and 2008, the association between several CNVs and syndromic 
developmental disorders was known much earlier (Lee and 
Lupski, 2006). Robert Shprintzen and his colleagues at the Albert 
Einstein College of Medicine and the Montefiore Hospital were 

Figure 1. 22q11.2 CNVs and mouse models. (A) Human 22q11.2 hemizygous deletions and duplications associated with schizophrenia and autism spectrum disorder 

(ASD). The names of protein-coding genes only are provided for clarity. Color density increases with segment recurrence. Data were tallied from studies that examined 

schizophrenia and ASD patients with 22q11.2 CNV (Szatmari et al., 2007; Weksberg et al., 2007; Marshall et al., 2008, 2017; Kirov et al., 2009; Pinto et al., 2010; Girirajan 

et al., 2011; Sanders et al., 2011, 2015; Ahn et al., 2014; Szatkiewicz et al., 2014; Li et al., 2016; Rees et al., 2016; Kushima et al., 2018). The starting and ending addresses 

of deletions and duplications are based on the addresses indicated in their publications, but all addresses were converted into those of GRCh38.p12. (B) Mouse chromo-

some 16, a homolog of the minimal nested segment of human 22q11.2 CNV. (C) Mouse models of single gene deletions. Only those genes in which deletions were exam-

ined in congenic (10 or higher backcrosses) or co-isogenic mouse models were studied because biased genetic background in noncongenic mice results in interpretative 

difficulty (Hiroi, 2018). Red indicates phenotypes consistent with 22q11.2 hemizygous deletions in humans. Black indicates no detectable effect. Purple indicates pheno-

types opposite to those of human 22q11.2 deletion carriers. Anx, anxiety-related behaviors; PPI, prepulse inhibition; Pup, neonatal vocalization; SI, social interaction or 

sociability; Voc Adult, adult vocalization; WM, working memory. Neonatal vocalization was recorded on and before neonatal day 12 under maternal separation, which 

reflects ASD-related pup social communication with a mother (Takahashi et al., 2016; Esposito et al., 2017; Kikusui and Hiroi, 2017; ÓBroin, 2018). Adult vocalization was 

recorded at 9 weeks of age in a view jar, arena, click box, geotaxis grid, and tube and collectively analyzed. Adult vocalization could reflect an adverse reaction to stress 

or expressions of anxiety. As no second mouse was present in any of the experimental settings, it does not reflect interactive social behavior. Please note that the data 

presented here are based on information available as of April 2, 2019. We set a lenient significance level at P < .05. Readers are advised to check the site for updates at 

http://www.mousephenotype.org/. Prodh (Paterlini et al., 2005; Koscielny et al., 2014); Dgcr2 (Koscielny et al., 2014); Slc25a1 (Koscielny et al., 2014); Mrpl40 (Devaraju et al., 

2017); Sept5 (Harper et al., 2012; Hiroi et al., 2012; Koscielny et al., 2014); Gp1bβ (Koscielny et al., 2014); Tbx1 (Hiramoto et al., 2011; Takahashi et al., 2016); Comt (Papaleo 

et al., 2008; O’Tuathaigh et al., 2010, 2012; Koscielny et al., 2014); Tango2 (Koscielny et al., 2014); Dgcr8 (Fénelon et al., 2013; Ouchi et al., 2013; Chun et al., 2017); Ranbp1 

(Koscielny et al., 2014); Rtn4r (Koscielny et al., 2014).

http://www.mousephenotype.org/phenoview/
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following up on patients exhibiting a cluster of physical symp-
toms including cleft palate, congenital heart defects, character-
istic facial features, and learning disability (Shprintzen et  al., 
1978). They were found to have high rates of ID and delays in 
cognitive and language development (Golding-Kushner et  al., 
1985). In 1992, Shprintzen and colleagues reported that some 
of those patients also suffered from schizophrenia (Shprintzen 
et al., 1992). In the same year, several research teams, including 
Shprintzen’s, reported that the patients exhibiting the 
above-mentioned physical abnormalities carried deletions 
at chromosome 22q11.2 (Driscoll et  al., 1992; Scambler et  al., 
1992). Together, these data established both an association be-
tween schizophrenia/learning disability and the physical symp-
toms, and an association between the physical symptoms and 
22q11.2 hemizygous deletions. Since then, the direct association 
of 22q11.2 deletions with schizophrenia, learning disability, ID, 
anxiety, and ADHD has been consistently replicated by his group 
and others (Goldberg et al., 1993; Chow et al., 1994; Karayiorgou 
et al., 1995; Lindsay et al., 1995; McDonald-McGinn et al., 1997; 
Murphy et al., 1999; Sugama et al., 1999).

Although early estimates were confounded by small sample 
sizes and ascertainment biases, current estimates, which are 
based on large sample sizes, indicate that 22q11.2 deletions 
occur at the rate of approximately 0.3% in general schizophrenia 
samples (Kirov et  al., 2014; Rees et  al., 2014b; Marshall et  al., 
2017). Conversely, among carriers of 22q11.2 deletions, 30% of 
the adults develop schizophrenia (Schneider et al., 2014), 13% to 
27% are diagnosed with ASD depending on their age, 16% to 36% 
are diagnosed with ADHD, and 24% to 36% are diagnosed with 
anxiety (Niklasson et al., 2002; Fine et al., 2005; Antshel et al., 
2007; Kates et al., 2007; Schneider et al., 2014; Wenger et al., 2016; 
Hoeffding et al., 2017).

One important detail for consideration is that the cohorts of 
patients with schizophrenia used in large-scale studies and meta-
analyses do not systematically include or exclude patients with 
ID diagnoses. Some cohorts were formed using inpatient samples 
that included patients with low IQ, and other cohorts may have 
excluded patients with ID. The exclusion of the ID comorbidity 
from schizophrenia samples is expected to underestimate the ac-
tual rate of such CNVs in schizophrenia, as almost half of the pa-
tients with 22q11.2 deletion are diagnosed with ID.

Duplication of 22q11.2 was also identified by a team of re-
searchers at the Albert Einstein College of Medicine (Edelmann 
et al., 1999). Many cases of 22q11.2 duplication were shown to 
exhibit epilepsy, ID, ADHD, and ASD (Ensenauer et  al., 2003; 
Hassed et al., 2004; Portnoï et al., 2005, 2009; Yobb et al., 2005; 
de La Rochebrochard et  al., 2006; Alberti et  al., 2007; Engels 
et  al., 2007; Mukaddes and Herguner, 2007; Torres-Juan et  al., 
2007; Descartes et al., 2008; Ramelli et al., 2008; Wentzel et al., 
2008; Yu et  al., 2008; Lo-Castro et  al., 2009; Soysal et  al., 2011; 
Wenger et  al., 2016) at rates higher than those of noncarriers 
(Hoeffding et al., 2017; Olsen et al., 2018). Schizophrenia samples 
have shown lower rates of 22q11.2 duplication compared with 
controls; therefore, this variant is considered to be a protective 
factor (Rees et al., 2014a). However, a recent study with a larger 
sample size did not find this effect to be statistically significant 
after genome-wide correction (Marshall et al., 2017). Additional 
cases of schizophrenia, psychosis, paranoia, hallucination, sui-
cidal ideation, and mood disorders among 22q11.2 duplication 
carriers have also been reported (van Amelsvoort et  al., 2016; 
Olsen et  al., 2018; Woestelandt, 2018). Again, interpretation of 
these results should also consider how the samples were col-
lected, as most duplication carriers have cognitive deficits and 
many are diagnosed with ID.

There are some individual variations in the locations and 
sizes of 22q11.2 duplication and hemizygous deletions. The ma-
jority of 22q11.2 deletions are approximately 3.0 Mb in size, but 
there are nested cases of 2.0-Mb or 1.5-Mb deletions and dupli-
cations; nested 1.5-Mb deletions help narrow down critical re-
gions within the larger deletions (see Figure 1A).

Because the smallest nested deletion is still 1.5 Mb long, it 
is not possible to analyze how each 22q11.2 gene contributes to 
the symptoms of psychiatric disorders in humans. While there 
are individual cases of much smaller deletions (Girirajan et al., 
2011), they are too few to statistically determine the definitive 
role of the encoded genes in mental illness. Researchers have at-
tempted to correlate SNPs of some individual 22q11.2-encoded 
genes with psychiatric conditions in humans, but the results 
have been mixed and inconsistent, perhaps due to the weak ef-
fects of SNPs compared with deletions or duplications.

Predictive Power of Dimensions

The presence of a CNV by itself is a reliable predictive risk 
factor for the onset of psychiatric disorders. However, pene-
trance of CNVs is incomplete, and additional predictors that 
signal the impending onset of psychiatric disorders are needed. 
The underlying impetus to identify such predictors is that they 
might serve not only as a warning signal but also as a good 
starting point for early intervention. Moreover, identifying the 
mechanisms underlying those predictors may allow preventive 
therapeutic options to be used long before the onset of psychi-
atric disorders.

There are some known factors that predict the future onset 
of psychiatric disorders (Ozonoff et al., 2014). Typically, ASD is 
clinically diagnosed in children when they are 2 to 3 years of age. 
However, certain prognostic features, such as reduced eye con-
tact (Jones and Klin, 2013) and atypical preverbal vocalizations 
(Esposito et al., 2017), could signal the future onset of ASD at least 
in a subpopulation (Zwaigenbaum et al., 2013; Estes et al., 2015; 
Ozonoff et  al., 2018). Atypical cries do not optimally facilitate 
bonding or reciprocity between babies and mothers because the 
emotional state of such atypical cries is not easily understood 
(Esposito and Venuti, 2010) or is negatively perceived (Esposito 
et al., 2013) by mothers. Delayed motor and language develop-
ment (Ozonoff et al., 2010, 2014) are also noted among incipient 
ASD babies; however, delayed motor development might not be 
specific to ASD, as it is also seen in children with other develop-
mental issues (Iverson et al., 2019).

Individuals who develop schizophrenia after adolescence 
show atypical developmental trajectories in some domains be-
fore symptoms reach diagnostic thresholds. School perform-
ance, behavioral development, and various cognitive capacities, 
particularly complex cognition and social cognition, start to 
precipitously lag behind their peers 10  years before the onset 
of psychosis (van Oel et al., 2002; Ullman et al., 2012; Gur et al., 
2014a). Children and adolescents who later develop schizo-
phrenia lag in working memory, attention, and processing 
speed (David et al., 1997; Davidson et al., 1999; Fuller et al., 2002; 
Woodberry et al., 2008; Reichenberg et al., 2010; Bora et al., 2014; 
Meier et al., 2014; Bora and Pantelis, 2015; Seidman et al., 2016). 
Cognitive deficits in individuals with schizophrenia have been 
shown to affect a wide range of capacities, including atten-
tion, working memory, executive function, episodic memory, 
semantic memory, visual memory, verbal ability and learning, 
spatial memory and reasoning, face memory, emotion differ-
entiation, verbal reasoning, list memory, processing speed, and 
fluency (Saykin et al., 1991; Yung and McGorry, 1996; Fioravanti 
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et al., 2005; Piskulic et al., 2007; Goldenberg et al., 2012; Schaefer 
et al., 2013; Vangkilde et al., 2016).

Evidence from 22q11.2 deletion cases is consistent with this 
line of evidence obtained from idiopathic cases. The most pro-
foundly impaired capacities are facial memory, identification 
of emotions from facial expressions, emotion intensity differ-
entiation, and age differentiation of faces; other capacities are 
also impaired, including executive functions, verbal and spatial 
memory, verbal and nonverbal reasoning, and spatial reasoning. 
A delay in the developmental maturation of most of these fea-
tures can be seen as early as 8 years of age among 22q11.2 de-
letion carriers compared with individuals with developmental 
delays or typically developing individuals (Gur et al., 2014b). In 
particular, some carriers of 22q11.2 deletions show a decline in 
IQ scores from childhood to adulthood, and the degree of this 
decline predicts the subsequent onset of psychosis (Gothelf 
et al., 2005, 2013; Vorstman et al., 2015).

Modeling CNVs

Model organisms complement human studies because spe-
cific genes or small chromosomal segments within a CNV can 
be isolated and the actual functional impact of their dose al-
terations on central nervous system functions and behaviors 
can be evaluated, which is not possible in humans. Moreover, 
the neuronal and molecular alterations caused by deletion or 
overexpression of each gene can be evaluated in model organ-
isms. Worms, flies, fish, and mice have been used as models to 
identify the causal roles of genes in the manifestation of behav-
ioral and neural phenotypes (Guna et al., 2015). However, there 
are some limitations. First, homologs of many human 22q11.2 
genes are not present in lower species. Many human 22q11.2 
protein-coding gene and microRNA homologs are not present 
in flies and worms (Guna et  al., 2015). Second, relating genes 
to behaviors that are relevant to human psychiatric conditions 
is challenging in these organisms. The behavioral repertoire of 
worms, flies, and fish is limited, and higher-order cognitive func-
tions that are affected in individuals with schizophrenia and 
ASD cannot be easily modeled. Third, there are obvious differ-
ences in the structure of the central nervous system between 
humans and flies, worms, and fish. Fourth, there are significant 
differences in the developmental stages between humans and 
those species.

Compared with those lower species, the murine and 
nonhuman primate models have fewer flaws. Many mouse 
models with large and small segmental deletions and dupli-
cation have been generated and tested. However, correlating 
behaviors to human psychiatric disorders is still challen-
ging. There is no Diagnostic and Statistical Manual of Mental 
Disorders for mice or even nonhuman primates. There is no re-
liable or objective way to model hallucinations, delusion, and 
speech in mice or nonhuman primates. The anatomical basis 
for even more elemental cognitive functions (e.g., cognitive 
flexibility) might be different between humans and such model 
organisms; the degree of brain development is quantitatively 
and qualitatively different between humans and model organ-
isms such as rodents and nonhuman primates (Cáceres et al., 
2003; Semple et  al., 2013; Rilling, 2014). Fundamental, motiv-
ational behaviors that are thought to occur across species show 
differences between species. Social behaviors in different spe-
cies are based on different sensory cues—for example, smell 
and auditory cues in rodents vs visual and auditory cues in hu-
mans. Even nonhuman primates cannot completely overcome 
such limitations.

Nonetheless, some aspects or dimensions that are not ne-
cessarily specific to a disorder can be examined in both rodents 
and humans (Morris and Cuthbert, 2012). Mice exhibit certain 
behavioral dimensions that are thought to be relevant to human 
psychiatric conditions and are thus ideal for determining the 
genetic basis for those behaviors (Hiroi et al., 2012, 2013; Hiroi 
and Nishi, 2016; Nishi and Hiroi, 2016; Hiroi, 2018). For example, 
cognitive decline, including working memory deficits, is seen 
in patients with schizophrenia, ADHD, and ASD. Impaired so-
cial behaviors are seen, in various forms, in patients with ASD, 
schizophrenia, depression, and ADHD. Prepulse inhibition (PPI) 
is disrupted in patients with schizophrenia, obsessive compul-
sive disorder, and ADHD (Geyer, 2006). Examining such effects 
in mice may identify potential substrates involved in the causal 
relationship between CNVs and some aspects of psychiatric dis-
orders (Hiroi and Nishi, 2016; Nishi and Hiroi, 2016; Hiroi, 2018).

Don’t Blame Behavior, Blame Experimental Designs

Variable or absent behavioral phenotypes have led some re-
searchers to claim that mouse phenotypes, especially behavior, 
are inherently variable, and therefore neuronal and anatomical 
phenotypes should be used for analyzing the impact of genetic 
variants in mouse models. This misperception has arisen partly 
due to a lack of attention to the genetic background. Low re-
producibility is not unique to behavioral phenotypes—anatom-
ical, synaptic, molecular, and gene expression phenotypes are 
equally variable and not reproducible or interpretable in mutant 
models whose genetic background is not controlled.

When genetic background is systematically biased near the 
gene of interest in wild-type and mutant littermates, different 
mouse cohorts show varied degrees of such biases; so do in-
dependently developed mutant mouse lines of the gene. Such 
mutant and wild-type mice littermates do not share equally 
shuffled alleles near the deleted gene; more alleles of embry-
onic stem cells (many are of a 129 inbred mouse line) and of 
the breeder mice (often C57BL/6J), respectively, are present in 
mutant and wild-type littermates near the target gene because 
of lower recombination rates between that gene and nearby al-
leles compared with distant alleles (Hiroi, 2018). In such mice 
or noncongenic mice, any phenotypic difference in behavior, 
anatomy, synaptic, and neurochemical functions or gene ex-
pression between wild-type and mutant mice cannot be attrib-
uted to the target gene (Gerlai, 2001; Wolfer et al., 2002; Crusio, 
2004; Zoghbi and Warren, 2010; Hiroi, 2018).

This point has been elegantly proven by a series of studies 
that have shown some reproducible phenotypic differences in 
gene expression patterns that can be truly attributed to the 
target gene when the genetic background is made increasingly 
homogeneous between mutant and wild-type littermates (Valor 
and Grant, 2007; Yang et  al., 2007; Ricard et  al., 2010; O’Leary 
and Osborne, 2011). Confounding gene expression alterations 
resulting from allelic differences between noncongenic mu-
tant and wild-type mice are likely to impact other phenotypes, 
either independently or interactively with the target genes, as 
different inbred mouse lines have different baselines for the 
shape and volume of various anatomical structures (Wahlsten 
et al., 2003; Chen et al., 2006; Routh et al., 2009), the number of 
neurons (Schwegler et al., 1996a, 1996b; Kempermann and Gage, 
2002; Yilmazer-Hanke et al., 2003; Routh et al., 2009), the shape 
and number of dendritic spines (Restivo et  al., 2006), the de-
gree of synaptic plasticity (Nguyen et  al., 2000a, 2000b; Moore 
et al., 2011), and behavioral features including PPI (Crawley et al., 
1997), working memory (Crawley et al., 1997), social behaviors 
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(Crawley et al., 1997; Faure et al., 2017), and neonatal vocaliza-
tion (Scattoni et al., 2008, 2011; Faure et al., 2017). In fact, a be-
havioral phenotypic difference appears or disappears when the 
genetic background is altered by the type of inbred mice used 
(Suzuki et al., 2009b; Hiroi et al., 2012).

One obvious solution to this problem is to make the genetic 
background homogeneous, as much as practically possible, by 
backcrossing a mutant to one inbred mouse line for over 10 gen-
erations (i.e., congenic mouse). Many well-designed studies have 
painstakingly developed congenic mutant mice. Although it is 
not possible to make the allelic differences between congenic 
mutant and wild-type littermates completely homogenous 
(Bolivar et al., 2001; Flaherty and Bolivar, 2007; Hiroi, 2018), it still 
considerably reduces interpretative uncertainty. Another more 
fundamental approach is to generate a mutant mouse with em-
bryonic stem cells derived from C57BL/6N mice and breed with 
C57BL/6N mice (co-isogenic mouse). The International Mouse 
Phenotyping Consortium (http://www.mousephenotype.org/) 
routinely generates and tests many co-isogenic mouse models 
for PPI and adult vocalization (Koscielny et al., 2014). The use of 
co-isogenic mutant mice completely eliminates the confounding 
effects of systematic bias in allelic distributions near the target 
gene. Moreover, standardized behavioral assays are applied 
by the International Mouse Phenotyping Consortium, further 
increasing the level of reproducibility and interpretability.

Unfortunately, many studies have failed to reproduce ori-
ginal published results of noncongenic mutant mice. Some 
studies have indicated in vague terms that their mice are of 
“pure” C57BL/6J background or of “a C57BL/6J background.” 
Often the cited references therein indicate that the original 
mice are noncongenic mice. Yet the authors do not elaborate 
on what is meant by “pure” and how “a C57BL/6J background” 
was achieved; technically, a completely homogenous genetic 
background—if that is meant by “pure”—is not possible when 
starting with noncongenic mice (Bolivar et  al., 2001; Flaherty 
and Bolivar, 2007). Even when the data are reproducible in 
noncongenic mice, they might simply reflect the hard-to-break 
allelic differences near the target gene rather than the actual 
effects of target genes. Therefore, we will limit our discussion of 
mouse models to congenic or co-isogenic mice.

In Search of Individual 22q11.2 Driver Genes

Mouse models were developed to recapitulate the effects of 
human 22q11.2 duplications and deletions, small chromosomal 
segments, or individual genes on psychiatric disorders. We re-
ported the first segmental duplication model of a 200-kb human 
chromosomal segment, which included human SEPT5, GP1BB, 
TBX1, and GNB1L (Hiroi et al., 2005). This co-isogenic model was 
hyperactive, showed progressive exacerbation of hyperactivity 
in a stressful open field, and was unable to engage in reciprocal 
social interaction or building a nest. Satisfying predictive val-
idity, 3 weeks of treatment with the antipsychotic drug cloza-
pine attenuated the exacerbated, compulsive, and repetitive 
hyperactivity in these mice.

Our subsequent analysis focused on an adjacent approxi-
mately 190-kb human chromosomal segment, including 
TXNRD2, COMT, and ARVCF (Suzuki et al., 2009a). Congenic mice 
that overexpressed this segment were selectively impaired in 
the developmental maturation of working memory capacity 
from adolescence to adulthood; they were indistinguishable 
from wild-type littermates in acoustic PPI, reciprocal social 
interaction, or behaviors related to fear, anxiety, and mood. 
COMT, among the 3 encoded genes, is likely to be a contributory 

gene, as individuals with a high-activity allele of COMT show 
a blunted expansion of working memory capacity from adoles-
cence to adulthood in humans (Dumontheil et al., 2011).

These 2 mouse models demonstrated that social/repetitive 
behaviors and developmental maturation of working memory 
are selectively impacted by high gene doses of the 200-kb and 
190-kb chromosomal segments, respectively.

There are also mouse models of large hemizygous deletions 
of 22q11.2. A congenic Dgcr2-Ufd1l deletion model (Chun et al., 
2014) and a co-isogenic Dgcr2-Hira deletion model (Didriksen 
et  al., 2017) consistently showed defective acoustic PPI (see 
Figure 1B for gene locations on the murine chromosome). 
A  congenic Dgcr2-Hira deletion model (Sigurdsson et  al., 2010) 
and co-isogenic Dgcr2-Hira deletion model (Nilsson et al., 2016) 
exhibited deficits in the acquisition phase of working memory.

Known biology guided early studies of single 22q11.2 driver 
genes, and genes of unknown functions were not examined. For 
example, early studies focused on the genes involved in syn-
aptic transmission and metabolism of glutamate and dopamine 
because those neurotransmitters had been implicated in several 
psychiatric disorders. However, some results from those studies 
have been irreproducible partly because most studies used 
noncongenic mice. Moreover, known biology was also limited at 
that time. Since then, studies using congenic and co-isogenic 
mice have provided a wealth of reliable data, which have drastic-
ally revised our understanding of the contributions of individual 
22q11.2-encoded genes to dimensional behaviors of psychiatric 
disorders, and new potential genes and neurobiological bases 
have emerged (Hiroi et al., 2013; Hiroi and Nishi, 2016; Nishi and 
Hiroi, 2016; Hiroi, 2018; Zinkstok et al., 2019).

The current mouse data do not support the view that all 
22q11.2-encoded genes equally contribute to each dimension of 
mental illness (see Figure 1C). For example, there are 22q11.2 
genes that globally affect many dimensions of psychiatric dis-
orders (e.g., Tbx1). Other genes are essential for a select set 
of behavioral dimensions (e.g., Sept5, Dgcr8, Comt, and Prodh). 
Deletions of many other 22q11.2 genes have not had an effect on 
the behavioral dimensions tested so far; however, a more exten-
sive characterization of behavioral dimensions may reveal spe-
cific aspects relevant to mental illness that may be regulated by 
those genes (Hiroi et al., 2012, 2013, 2018; Hiroi and Nishi, 2016; 
Nishi and Hiroi, 2016).

Tbx1
Tbx1 encodes a transcription factor and is 1 of the 4 protein-
coding genes encoded in the 200-kb segment that we identified 
(Hiroi et al., 2005). When compared with wild-type littermates, 
congenic Tbx1 heterozygous mice scored lower in reciprocal 
social interaction and a working memory index and higher in 
anxiety-related behaviors. They also exhibited higher levels 
of an approach response to a nonsocial object at 2 months of 
age (Hiramoto et al., 2011). While cases of human Tbx1 muta-
tions exist and are associated with ASD (Gong et al., 2001; Paylor 
et al., 2006; Ogata et al., 2014), they carry additional mutations 
and other variants (Ogata et al., 2014); therefore, a causal role of 
TBX1 in ASD could not be definitively established. Our mouse 
studies complemented this limitation of the human studies.

Atypical behaviors in Tbx1 heterozygous mice start to appear 
as early as on postnatal day 8.  The sequence of vocal calls is 
altered in Tbx1 heterozygous pups, which lowers the incentive 
for mothers to approach them (Takahashi et al., 2016). In these 
mice, the atypical call sequence at the age of postnatal day 8 
serves as a predictor for atypical social and cognitive dimen-
sions at adolescence. This is consistent with the observations 

http://www.mousephenotype.org/
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made in babies incipient for idiopathic ASD—those that were 
eventually diagnosed with ASD had emitted atypical cries 
(Esposito et al., 2017). As atypical cries among incipient ASD ba-
bies are often prognostic of the future outcome, such neonatal 
behavioral dimensions can be utilized to understand the mech-
anistic basis of the developmental trajectory of ASD (Esposito 
et al., 2017; Kikusui and Hiroi, 2017; ÓBroin, 2018).

Adult neurogenesis has emerged as a potential mechanistic 
basis for low working memory capacity. Tbx1 protein expres-
sion is enriched in adult neural progenitor cells in the ado-
lescent mouse brain (Hiramoto et al., 2011). When this gene is 
overexpressed in adult neural progenitor cells in the hippo-
campus, the mice exhibit a blunting of working memory cap-
acity at 2 months of age; however, the same treatment has no 
detectable effect at 1 month of age (Boku et al., 2018). These ob-
servations suggest that Tbx1 might impact the developmental 
maturation of working memory capacity via its effects on adult 
neurogenesis in 22q11.2 duplication cases. This might model the 
adult onset of working memory deficits seen in adult ASD pa-
tients, but it is unlikely that human TBX1 plays a role in the early 
onset of cognitive impairments in patients with ID.

Dgcr8
Dgcr8 is another 22q11.2 gene that impacts more than one 
known dimension. Heterozygous mice are impaired in acoustic 
PPI, working memory, and spatial memory; however, anxiety-
related behaviors are not affected. Dgcr8 impact on social inter-
action has not been examined (Fénelon et al., 2013; Ouchi et al., 
2013; Chun et al., 2017). Potential mechanisms through which 
Dgcr8 deficiency alters behavioral dimensions include adult 
neurogenesis (Ouchi et al., 2013), disturbances in microRNA ex-
pression (Fénelon et al., 2013; Chun et al., 2017), short-term syn-
aptic plasticity in the cortex (Fénelon et al., 2013), and synaptic 
transmission of the thalamocortical projection (Chun et  al., 
2017).

Comt
Although Comt is one of the 22q11.2 genes that is hemizygous 
in 22q11.2 deletion cases, heterozygous or homozygous de-
letion of this gene does not recapitulate the impacts of the 
whole genome deletion, suggesting that a low dose of Comt does 
not, by itself, contribute to the dimensions of 22q11.2 deletion 
cases. Homozygous deletion of Comt also has no effect on PPI 
(O’Tuathaigh et al., 2012; Koscielny et al., 2014). Neither homo-
zygous nor heterozygous deletion of Comt affects sociability 
(O’Tuathaigh et  al., 2010, 2012). Heterozygous or homozygous 
deletion of Comt has no detrimental effect on working memory 
(Papaleo et al., 2008; O’Tuathaigh et al., 2010).

Our recent work implicates adult neurogenesis as a potential 
mechanism through which a high gene dose of COMT blunts the 
developmental maturation of working memory capacity at ado-
lescence (Suzuki et al., 2009a; Boku et al., 2018). This mechanism 
could be targeted for cognitive improvement in the duplication 
cases of 22q11.2. The methylating action of COMT on catechol-
amines and other catechol-carrying molecules might underlie 
this action of COMT overexpression on working memory.

Sept5
Congenic Sept5 homozygous mice have lower basal levels of 
social interaction compared with wild-type littermates (Harper 
et  al., 2012; Hiroi et  al., 2012). This observation is consistent 
with one reported case of SEPT5 and GP1BB deletion with de-
velopmental delays (Bartsch et al., 2011). Sept5 inhibits excess 
release of dopamine and glutamate and contributes to the 

formation of axonal and dendritic arborization (Beites et  al., 
1999, 2001; Dong et al., 2003; Yang et al., 2010). However, social 
interaction is enhanced when Sept5 is overexpressed in the 
dorsal hippocampus and amygdala in mice (Harper et al., 2012); 
this suggests that high doses of this gene, at least in these 2 
structures, do not faithfully recapitulate 22q11.2 hemizygous 
deletion and duplication cases.

Genes encoding synaptic functions and activity-regulated 
cytoskeleton-associated proteins are considered to be func-
tional categories for schizophrenia-associated CNVs (Marshall 
et al., 2017). SEPT5 is implicated in cytoskeletal organization and 
synaptic transmission (Beites et al., 1999; Yang et al., 2010) and 
is a component of the biological pathways of synaptic genes 
implicated in schizophrenia with CNVs (Marshall et  al., 2017) 
and in 22q11.2 Gene Interaction Network and 22q11.2-linked 
pathway interactions (Bassett et al., 2017) in humans. However, 
homozygous or heterozygous deletion of Sept5 in mice does not 
impair PPI, a sensorimotor gating dimension of schizophrenia 
(Koscielny et al., 2014). Similarly, proteome analyses in humans 
with 22q11.2 hemizygosity identified SLC25A1 and its family 
members as critical for synaptic morphology and plasticity 
and mitochondrial functions (Gokhale et  al., 2019). However, 
deletions of these genes do not impair PPI in mice (Figure 1) 
(Koscielny et al., 2014). These observations in humans and mice 
may not be conflicting because PPI is just one dimensional as-
pect of schizophrenia and is not a proxy for clinically defined 
schizophrenia. Sept5 and SLC25A1 deficiency might have a ra-
ther selective effect on some unidentified behavioral dimen-
sions in patients with schizophrenia.

When the genetic background of Sept5 homozygous mice 
was experimentally altered using different inbred mouse lines, 
the degree of social interaction deficits changed (Suzuki et al., 
2009b; Harper et al., 2012; Hiroi et al., 2012). Because of wide vari-
ations between individual SNPs in the genome, epistatic inter-
actions between a CNV and SNPs outside or inside a CNV might 
phenotypically manifest differently among carriers. This may 
explain the diverse clinical diagnoses of the 22q11.2 CNV.

Prodh
Deletion of Prodh alone does not cause PPI deficits in a congenic 
genetic background (Paterlini et al., 2005). Further, a co-isogenic 
Prodh mouse is normal in PPI (Koscielny et  al., 2014). Male 
co-isogenic Prodh homozygous mice exhibit atypical adult vo-
calization; female homozygous mice are normal (Koscielny 
et al., 2014). Because adult vocalization was measured in many 
experimental settings such as open field, transparent tube, and 
cylinder and collectively analyzed in this assay, it is not clear 
whether such atypical vocalizations in males were an adverse 
reaction to stress or expressions of anxiety; it is not an expres-
sion of interactive social behavior, as no second mouse was pre-
sent in any of the experimental settings.

Almost all genes encoded in the 22q11.2 CNV have some 
neuronal and molecular functions; however, mouse data in-
dicate that not all encoded genes contribute to dimensions 
of psychiatric disorders. From a phenotypic perspective (see 
Figure 1C), genes that have been found to reduce PPI include 
Gp1bβ and Dgcr8; PPI is not affected by the deletion of Prodh, 
Dgcr2, Mrpl40, Sept5, Comt, Tango2, Ranbp1, and Rtn4r. Working 
memory is negatively affected by the deletion of Mpril40, Tbx1, 
and Dgcr8; Comt deletion improves working memory. Sociability 
or reciprocal social interaction is reduced by the deletion of 
Sept5 and Tbx1, but not by Comt deletion. Neonatal vocaliza-
tion under a maternal separation test is negatively impacted 
by the heterozygous deletion of Tbx1. Adult vocalization under 
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stress- or anxiety-provoking settings is reduced by the dele-
tion of Prodh; the deletions of Dgcr2, Slc25a1, Sept5, Gp1bβ, Comt, 
Tango2, Ranbp1, and Rtn4r have no obvious effect. Anxiety-
related behaviors are induced by the deletion of Tbx1 but not by 
the deletion of Sept5, Comt, or Dgcr8.

There are 22q11.2 genes that induce robust anatomical 
abnormalities (e.g., Dgcr2 and Ranbp1) (Paronett et  al., 2015; 
Molinard-Chenu and Dayer, 2018) without affecting PPI or adult 
vocalization (Koscielny et  al., 2014). It is possible that the be-
havioral dimensions affected by such anatomical alterations 
have not yet been identified and examined. As more phenotypes 
are characterized, a more complete picture is likely to emerge. 
Nonetheless, neuronal, molecular, or gene expression pheno-
types in the mouse brain should have an effect on behavioral 
dimensions before they can be safely considered as factors that 
contribute to the development of human psychiatric disorders 
(Hiroi et al., 2013; Hiroi and Nishi, 2016; Nishi and Hiroi, 2016; 
Hiroi, 2018).

Conclusions

CNVs have provided much hope for a deeper understanding 
of the mechanistic basis of mental illness. The pleiotropic ac-
tions of a CNV on many psychiatric disorders might challenge 
and revise the current paradigms of distinct psychiatric dis-
orders. We are, however, still constrained by our limited tech-
nical capability to fully tap the potential of CNVs to improve 
our understanding of mental illness and develop better thera-
peutic options. Nonetheless, some hypotheses have emerged 
from mouse models of CNVs. An in-depth characterization of 
CNV-encoded genes in brain biology and their behavioral mani-
festation in mouse models is a prerequisite to reconstruct the 
precise functional gene-behavior relationship and to develop 
mechanism-based therapy for the various dimensional aspects 
of mental illness.
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