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Learning steers the ontogeny of an
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Abstract Goal-directed behaviors may be poorly coordinated in young animals but, with age

and experience, behavior progressively adapts to efficiently exploit the animal’s ecological niche.

How experience impinges on the developing neural circuits of behavior is an open question. We

have conducted a detailed study of the effects of experience on the ontogeny of hunting behavior

in larval zebrafish. We report that larvae with prior experience of live prey consume considerably

more prey than naive larvae. This is mainly due to increased capture success and a modest increase

in hunt rate. We demonstrate that the initial turn to prey and the final capture manoeuvre of the

hunting sequence were jointly modified by experience and that modification of these components

predicted capture success. Our findings establish an ethologically relevant paradigm in zebrafish

for studying how the brain is shaped by experience to drive the ontogeny of efficient behavior.

Introduction
The study of animal ethology has demonstrated an instrumental role of early experience in perma-

nently embedding specific information about the environment in the developing animal, and in

extending and enhancing behavioral repertoires (Purves, 1985; Bateson, 1981).

An example of a dynamic behavior that is found to benefit from learning by experience is preda-

tion as, across diverse species, it involves predicting and responding to the behavior of another ani-

mal. In altricial species, which require an extended period of parental care, young animals learn to

hunt from direct experience, and from mimicking the behavior of parents or other conspecifics

(Danchin et al., 2004). Even in precocial species, in which hunting behavior is developed prenatally,

hunting can nevertheless be modified by experience. For example, with experience, hatching snakes

improve in their ability to capture prey (Mehta, 2009) and orb-web spiders build more effective

webs (Heiling and Herberstein, 1999). In fish, the early fine-tuning of development to the available

prey types can be critical for survival in the wild. Studies of hatchery-raised fish have found that a

lack of prior exposure to prey, before being released into the wild, can strongly reduce their chances

of surviving to adulthood (see Coughlin, 1991; Brown et al., 2003; Blaxter, 1986; Meyer, 1986;

Dutton, 1992; Cox and Pankhurst, 2000). It is unlikely that exposure to prey simply facilitates cer-

tain aspects of behavioral ontogeny that would have developed with time (Bateson, 1981), because

in at least some fish species, the detection, handling and capturing of prey is enhanced only for the

particular type of prey they have experienced (Meyer, 1986; Cox and Pankhurst, 2000;

Drost, 1987). Such evidence suggests that the ontogeny of hunting behavior relies on relevant early

experience to fully develop (Brown et al., 2003; Warburton, 2003). Learning by experience could

modify both the perceptual and the kinematic components involved in prey detection, pursuit and

capture. However, which aspects of hunting behavior are malleable by experience and how these

contribute to increasing hunting performance remains largely unknown.
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The larval zebrafish is an ideal vertebrate model for the detailed study of behavior and its associ-

ated circuits. They have a diverse behavioral repertoire that can be precisely measured (Orger and

de Polavieja, 2017; Marques et al., 2018), and neural activity can be recorded non-invasively and

at single-neuron resolution throughout the whole brain (Ahrens et al., 2013; Wolf et al., 2015;

Portugues et al., 2014; Naumann et al., 2016; Kawashima et al., 2016). Larval hunting appears as

a distinct behavioral mode that is composed of several component actions chained together into a

sequence (Borla et al., 2002; McElligott and O’malley, 2005; Trivedi and Bollmann, 2013). While

significant progress has been made in characterizing the kinematics of larval zebrafish hunting in

detail (Bianco et al., 2011; Trivedi and Bollmann, 2013; Patterson et al., 2013; Borla et al., 2002;

Mearns et al., 2020), and in describing the circuits and cell types involved in this behavior

(Bianco and Engert, 2015; Antinucci et al., 2019; Romano et al., 2015; Semmelhack et al., 2014;

Preuss et al., 2014; Muto et al., 2017; Muto et al., 2013; Henriques et al., 2019), it is not known

whether experience affects the ontogeny (Westphal and O’Malley, 2013) and effectiveness of their

hunting sequences. To address this, we used high-speed imaging and behavioral tracking of freely

swimming zebrafish larvae to compare hunting behavior and performance between larvae that have

been reared with live prey and those that have not.

Consistent with previous reports, we find that hunting episodes begin with a convergent saccade

and a turn, which accounts for a large proportion of the orienting response toward prey. The conver-

gent saccade is maintained throughout the hunting sequence during which larvae home in on the

target using a series of temporally discrete swim bouts, which successively minimize the distance to

prey, up to a point where they can perform a final capture manoeuvre. We found that experience

resulted in a modest increase in the probability of initiating hunting behavior, suggesting that the

ability to detect prey or the motivation to hunt may be influenced by prior experience. However, the

main effect of experience was a marked increase in the probability of a hunt sequence resulting in

successful capture. Detailed examination of successful hunting sequences revealed that experienced

larvae were kinematically distinct in at least two aspects. Firstly, at the onset of hunting we found

that they make an initial turn-to-prey that undershoots prey azimuth. Paradoxically, inexperienced

larvae display initial turns that do not undershoot, but rather align them more with prey azimuth.

Secondly, we find that experienced larvae are more likely to employ high-speed capture swims that

also tend to be initiated at a longer distance from prey. We show that in experienced larvae capture

speed is coordinated with distance to prey, and is also combined with undershooting in their turn-

to-prey behavior. We then identify that these coordinated behaviors contribute to the capture suc-

cess of hunt-sequences, and can be used to predict larval hunting efficiency.

Results
Zebrafish larvae were reared in one of three different feeding regimes: a live-fed (LF) group, which

received Rotifers, a group that was not-fed (NF), and a third group that received dry growth food

(DF). After 2 days of feeding, the effects of hunting experience in the LF group were examined. The

DF and NF groups served as controls for behavioral effects that can be attributed to nutritional state

(see Materials and methods). A graphical timeline of our experimental protocol is shown on Figure 1.

Consistent with previous observations we did not observe a decrease in survival rates of larvae in the

NF group (Hernandez et al., 2018). However a small, but statistically significant, effect on growth

was determined by comparing means of standard lengths (SL) (Parichy et al., 2009) at 7dpf

between groups (NF = 4.15 mm, LF = 4.37 mm, DF = 4.21 mm see Appendix 1).

Each larva was left to settle for approximately 1–2 hr before being recorded for 10 min in each

test condition: first in a dish that does not contain prey, to observe spontaneous behavior, and then

in the presence of prey to observe evoked hunting behavior (see Materials and methods). Video

recordings were then analysed using custom-written tracking software (see Materials and methods).

We defined and detected hunt events as blocks of consecutive video frames showing a persistent

convergent saccade (� 45
�) (Bianco et al., 2011; Patterson et al., 2013; Bianco and Engert, 2015;

McElligott and O’malley, 2005). We will refer to the number of detected hunt events as hunt fre-

quency or rate, as all counts were obtained from recording sessions of equal duration (10 min).

For the analysis of behavioral data we developed statistical models of behavior and employed a

Bayesian approach (see Materials and methods), which utilizes a combination of data and prior

insights to obtain updated (posterior) statistical distributions of model parameters. Unlike less
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informative methods based on point estimates of

model parameters (maximum-likelihood), our

approach is based on the analysis of their full

posterior distributions, accounting for all sources

of noise in behavioral data when comparing dif-

ferent rearing groups. Thus, Bayesian inference

provides a rigorous statistical approach to sup-

port our conclusions.

Experience increases hunt rate but
decreases hunt duration
Rearing conditions may affect the motivation to

hunt and/or the ability to detect prey

(Jordi et al., 2015; Filosa et al., 2016). Although

hunting behavior is always accompanied by eye-

vergence, eye-vergence may also occur sponta-

neously in the absence of prey. To account for

this, we compared evoked and spontaneous eye-

vergence events (referred to as hunt events from

now on) across groups. We find that in all groups

the evoked hunt-rate is markedly increased com-

pared to the spontaneous hunt rate. Figure 2A–

C show that the cumulative distribution function

(CDF) of evoked hunt frequency is clearly shifted

toward higher rates compared to the respective

spontaneous hunt frequency CDF of each group.

There were examples of larvae, across groups,

whose evoked hunt frequency was less than their

spontaneous one (Figure 2D). This reduction

could simply be due to unobserved hunt events

that occurred outside the recording system’s cen-

tral region of interest, or it may suggest prey-

induced inhibition of hunting behavior in some

individuals.

To statistically compare hunt-rates between

groups, we modeled the data using a negative

binomial distribution (see Materials and meth-

ods). The resulting model distributions appear to

capture our empirical distributions of hunt-fre-

quency very well; the lines in Figure 2A–C repre-

sent the CDFs obtained from 200 posterior

samples of the negative binomial parameters

overlayed with the hunt-frequency data used to

fit the model (open squares). The inferred hunt-

rate parameter distributions, shown on

Figure 2E, reveal that the spontaneous hunt-rates between the three groups have similar means

(�LF
Rs

¼ 3:6, �NF
Rs

¼ 3:8, �DF
Rs

¼ 3:5), with NF showing spontaneous eye-vergence with slightly higher fre-

quency (P½�NF
Rs
>�LF

Rs
� ¼ 0:60, P½�NF

Rs
>�DF

Rs
� ¼ 0:66). The evoked hunt rates for all groups are clearly dis-

tinct from the spontaneous rates, and the evoked hunt rates are similar in the DF and NF groups

(P½�NF
Re
>�DF

Re
� ¼ 0:53, near chance level). However, the estimated evoked hunt rate distributions show

that the LF group hunts with higher frequency than control groups (P½�LF
Re
>�NF

Re
� ¼ 0:71,

P½�LF
Re
>�DF

Re
� ¼ 0:74), with mean estimated evoked hunt rate for LF being �LF

Re
¼ 13:3, while these are

�NF
Re

¼ 11:9 and �DF
Re

¼ 12:1 for control groups. These findings suggest that the ability to detect prey

or motivation to hunt may be increased, albeit modestly, by prior experience of live prey. To exam-

ine likely differences in motivational state in more detail, we compared hunt durations.

Figure 1. Experimental timeline showing the different

feeding regimes during rearing and the recording of

spontaneous and evoked hunt behavior. Embryos are

separated in three dishes, with differential feeding

initiated at 4.5 dpf. Each group receives a feed once

per day (see Materials and methods). Behavioral

recording is performed at 7 dpf. Spontaneous eye-

vergence events are measured by recording individual

larvae for 10 min in the absence of prey. Live prey (» 30

Rotifers) are then added. Acclimatization in prey

conditions for a period of » 1–2 hr is followed by

recording of larvae in the presence of live prey. Live

prey is topped up to initial level prior to recording.
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Figure 2. Experience increases hunt rate but decreases total time spent hunting. Hunting effort of each group is characterized in terms of the

distribution in number of hunt events and total hunting duration recorded from the 10 min behavioral recordings. The two test conditions, in the

absence and in the presence of prey, are modeled separately to evaluate spontaneous (s) and evoked (e) hunt events, respectively. (A,B,C) Cumulative

density function (CDF) of hunt event counts per larva (open squares) reveals that hunt-event frequency increases across groups once prey is added (NF,

not-fed; DR, dry-fed; LF, live-fed). Lines indicate 200 cumulative density functions of negative binomial distributions, which have been inferred from

hunt-frequency data. (D) Box plots showing number of hunt events per larvae indicate similar spontaneous and evoked counts in each feeding group.

Connecting lines indicate that for most larvae the number of hunt events increases on addition of prey. (E) The distribution of estimated mean hunt-rate

for each group, as inferred from the models’ parameters, confirms that hunt-rates increase from spontaneous (dotted lines) to evoked (solid lines)

conditions. All groups (indicated by line color) show similar mean spontaneous hunt-rates (Rs), with a somewhat higher rate observed in NF larvae

(P½�NF
Rs
>�LF

Rs
� ¼ 0:60, P½�NF

Rs
>�DF

Rs
� ¼ 0:66). In the presence of prey, however, LF larvae are more likely to exhibit higher hunt-rates than NF and DF larvae

(P½�LF
Re
>�NF

Re
� ¼ 0:72;P½�LF

Re
>�DF

Re
� ¼ 0:75). Overall, the mean estimated group hunt-rate (events/10 min.) in spontaneous/evoked conditions were

Figure 2 continued on next page
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We measured the total amount of time spent hunting by individual larvae from each group in

each test condition and conducted a similar analysis as above, again utilizing the negative binomial.

To estimate hunt duration, we modeled the total number of video frames spent in hunting mode per

larva as the sum of statistically independent events (see Materials and methods). The hunt-duration

data show that, across rearing groups, the total amount of time most larvae spent hunting is notice-

ably increased in the presence of prey. This is clearly reflected in data and model CDFs of total time

per larvae of Figure 2F–H. However, when comparing the inferred hunt-duration distributions

between groups, we find that LF larva are more likely to spend less time in hunt-mode in both spon-

taneous (mean duration per larva (s) �LF
Ds

¼ 8:26, �NF
Ds

¼ 10:8, �DF
Ds

¼ 9:8, with P½�LF
Ds
<�NF

Ds
� ¼ 0:90,

P½�LF
Ds
<�DF

Ds
� ¼ 0:84), and evoked conditions (�LF

De
¼ 35:5, �NF

De
¼ 47, �DF

De
¼ 42:5 (s), with

P½�LF
De
<�NF

De
� ¼ 0:76;P½�LF

De
<�DF

De
� ¼ 0:72), compared to control groups. Therefore, although in the pres-

ence of prey LF larvae have higher hunt-rates to controls, they also spent less overall time hunting.

These evidence combined suggest that individual hunt episodes in the LF group have become

shorter.

To verify this, we examined the duration of all detected hunt events in each condition (699 spon-

taneous and 2578 evoked), see Figure 2—figure supplement 1. Although the distribution of epi-

sode duration is rather wide in both spontaneous and evoked test conditions across groups (95% of

data between 0.5–5 s), the mean episode duration (�E) observed in the LF group is indeed shorter

than controls, in both spontaneous (P½�LF
Es
<�NF

Es
� ¼ 0:80, P½�LF

Es
<�DF

Es
� ¼ 0:75) and evoked conditions

(P½�LF
Ee
<�NF

Ee
� ¼ 0:65, P½�LF

Ee
<�DF

Ee
� ¼ 0:69).

Capture success increases with experience
We next examined whether experience affects capture success. The outcome of 1739 hunt events, in

which larvae were clearly involved in following prey, were scored while blind to rearing group (see

Materials and methods). As shown on Figure 3A, the success rate for the LF group was the highest

at 32%, with 21% for the NF group, and 18% for the DF. We then proceeded to statistically evaluate

the likelihood of this outcome by inferring the joint probability density of successful prey capture

and capture-attempts (see Materials and methods). For this, we employed a negative-binomial to

model the number of hunt-events with a capture attempt, and combined it with a binomial distribu-

tion model in order to infer the probability of capture success (q) by utilizing our labelled data of

capture outcomes (Materials and methods). Figure 3B shows that the estimated probability of a suc-

cessful hunting event is clearly increased in the LF group compared to the NF and DF groups. Con-

sistent with the ordering seen in Figure 3A, the NF group shows a slightly higher success probability

compared to the DF group, yet, due to the wide region of overlap between the two distributions,

there is a good chance the two groups have the same overall capture success probability (see figure

caption).

We estimated a distribution for the consumption rate per group using the product of hunt-rate

and probability of success (Figure 3C). Consumption estimates reveal that larvae from the LF group

have a mean consumption rate that is almost double that of the NF and DF groups. We find that DF

and NF consumption distributions overlap considerably, with mean consumption approximately 1.8

prey/10 min, while LF’s consumption distribution is centred at a mean rate of 3.6 prey/10 min.

Although both DF and LF groups received nutrition during rearing, DF show the lowest consumption

Figure 2 continued

�LF
R ¼ 3:6=14:3, �NF

R ¼ 3:8=12:3, �DF
R ¼ 3:5=12:0. (F,G,H) Cumulative function plots showing the total time spent hunting under spontaneous and evoked

conditions. Open squares show recorded data and lines indicate 200 cumulative density functions drawn from similar statistical model as in (A,B,C, see

Materials and methods). All groups show an increase in total time spent hunting when prey is added. (I) Box plots showing the amount of time spent

hunting increases from spontaneous to evoked test conditions for most larvae. (J) The estimated densities of mean hunt-duration of each group, as

inferred from the model, clearly show that on average larvae spent more time hunting in evoked conditions (solid lines) than in spontaneous (dotted

lines) conditions. Although DF and NF distributions look identical, the model reveals a noticeable shift towards shorter hunt durations (D) for LF larvae

on average in both evoked ðP½�LF
De
<�NF

De
� ¼ 0:76;P½�LF

De
<�DF

De
� ¼ 0:72Þ and spontaneous conditions ðP½�LF

Ds
<�NF

De
� ¼ 0:90;P½�LF

Ds
<�DF

De
� ¼ 0:84Þ.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Hunt episode duration shorter in LF group in both spontaneous and evoked hunt events.

Figure supplement 2. Evoked and spontaneous hunt-rates were tested in similar prey density conditions between groups.
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Figure 3. Capture efficiency is experience-dependent. (A) Proportion of successful and unsuccessful hunt events in

each feeding group based on manually labeled outcomes of hunt episodes. Ranking of proportion of successful

hunt events: LF>NF>DF. (B) We model the joint distribution of probability of capture success and number of

capture attempts (see Materials and methods). Each point represents a likely value for the estimated quantities,

and contour lines indicate their distribution. The likely distribution of success probability (q) for the LF group has a

distinctively higher mean (P½qLF>qNF � ¼ 1, P½qLF>qDF � ¼ 1) than the NF and DF groups, with P½qNF>qDF � ¼ 0:55

confirming that nutrition alone does not explain improved capture success. The distributions for the three groups

overlap considerably in terms of capture attempts, but consistent with hunt-rates in Figure 2E, the model predicts

that mean capture attempts (�C ) between DF and NF are similar (P½�NF
C >�DF

C � ¼ 0:55), but higher for the LF group

(P½�LF
C >�NF

C � ¼ 0:74, P½�LF
C >�DF

C � ¼ 0:79), with differences in mean rates being modest (�LF
C ¼ 10:9, �NF

C ¼ 9:2,

�DF
C ¼ 8:9). (C) Combining estimated hunt and success rates we plot the probability density function (PDF) of likely

consumption per group and find that the LF group’s consumption is almost double that of the NF and DF groups.

(D) CDF of hunt efficiency in terms of fraction of capture successes against capture attempts, shows a general shift

rightwards for LF, meaning fewer lower performing larvae as a result of experience. » 50% of LF larvae have

efficiency above 0.33, while that is 0.13 and 0.16 for the DF and NF groups, respectively. (E) We define a hunt

power index (HPI), as the product of efficiency and number of captured prey, in order to account for the number

of captured prey in the scoring of hunting ability (for larvae for which we recorded at least one prey capture

Figure 3 continued on next page
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performance among the three rearing groups. Our finding that both the probability of success and

the consumption rate are increased in the LF suggest that prior experience of live prey improves

hunting ability. Next, we sought to determine the distribution of hunting-ability among the larvae of

each group.

We define capture efficiency as the fraction of capture successes over the total number of capture

attempts ðNSuccess=NTotalattemptsÞ for each larva, and plot the empirical CDF in Figure 3D. This distribu-

tion suggests that experience has increased consumption rate in the LF group by reducing the num-

ber of individuals in the lowest range of hunt efficiency. However, this efficiency measure does not

fully reflect hunting performance, because it does not consider the total number of hunt events of

each larva, for example a larva succeeding in one out two attempts appears equivalent to a larva

that succeeded in 5 out of 10 attempts. For this reason, we defined a hunt power index (HPI) to fac-

tor each larva’s capture efficiency with the number of captured prey. The empirical CDFs of HPI

shown in Figure 3E reveal that (20%) of larvae in the LF group have a hunt power that exceeds the

highest HPI for larvae in NF and DF groups.

A fast capture swim is the strategy of success and experienced larvae
employ it more often
Selecting the appropriate capture strategy for the type of prey, and executing it with accuracy and

precision, will strongly affect a predator’s capture efficiency (Coughlin, 1991). At the final stage of

the hunting sequence, zebrafish larvae execute a capture manoeuvre (see Appendix 3). These cap-

ture manoeuvres vary in apparent vigour and distance to the prey from which they are initiated, and

can be divided into at least two types based on tail posture and swim speed classification

(Marques et al., 2018; Mearns et al., 2020; Patterson et al., 2013). We, therefore, explored

whether experience modifies capture strategy and whether this associates with the increased hunt-

ing performance of the LF group.

We began by manually classifying capture manoeuvres as either slow or fast, while blind to the

rearing group. Figure 4A–C reveal that in all three groups the majority of successful hunting epi-

sodes involve fast capture swims and that the majority of failed hunting episodes involve slow cap-

ture swims. Although slow capture types form the majority of capture swims in all groups, the LF

group, which has highest percentage of capture success, also has the largest proportion of high-

speed captures (LF» 41% , DF» 21% and NF» 28% ), and the highest ratio of fast captures over slow

captures in successful episodes (approximately �5 LF, �1.69 DF and �3 NF). Collectively, these

results indicate that successful captures are more likely to result from fast capture swims, and that

fast capture swims are employed more frequently and more effectively by larvae in the LF group.

However, the above breakdown was based on a subjective estimation of capture speed from which

it is difficult to establish reproducible and accurate classification criteria.

For an objective classification of capture swim types, we employed a statistical approach that

clustered captures based on their speed and distance from prey (see Materials and methods). Cap-

ture speed was measured as the peak speed (mm/s) during the last motion bout in the hunting

sequence prior to a successful prey capture (‘capture bout’), and prey distance was measured from

the tip of the mouth point prior to capture bout initiation (see Materials and methods). The speed

and distance data points were then clustered based on a model composed of a mixture of two joint-

normal distributions (see Materials and methods). We limited our analysis to successful hunting rou-

tines only (nNF ¼ 69; nLF ¼ 92; nDF ¼ 45), because in these instances the aims and outcomes of the

observed behavior were unambiguously the same. In contrast, comparing between failed hunting

sequences would be less straightforward, as failures can occur for many reasons; larvae lose track of

the target, abort hunting sequences for no obvious reason, and furthermore, the intended target

during failed hunt-sequences is not always obvious.

Figure 3 continued

attempt). A cumulative HPI distribution for each group reveals a difference in slope of LF. A subset of 20% of

individuals in the LF group have an HPI higher than top performing DF, NF larvae.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Hunting ability is not explained by larval size.
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Figure 4. Experience-dependent adaptation of capture swims. (A,B,C) Manual labeling of captures: Majority of successful hunting episodes used a fast

capture swim and these are more frequently observed in LF group. (D,E,F) Clustering peak capture-swim speed and prey-distance data points of

successful captures in fast/slow (yellow/cyan) using a mixture of two Gaussians model. Marginal density plots for prey-distance show most slower

captures executed nearer to prey than fast captures, and that most fast-captures of LF are executed further than those DF,NF. (G) Fraction of points

that are likely to be clustered as high-speed capture swims (ps) is higher in the LF group than in other groups (P½pLFs >pNFs � ¼ 1, P½pLFs >pDFs � ¼ 1), which is

in agreement with our labeled results (A–C). (H) Capture data exhibit an increase of maximum swim-speed with prey-distance. Distribution of Pearson’s

correlation (Cs�d ) by bootstrapping (80%) capture events pooled across larvae. The mean speed-distance correlation coefficient is positive in capture

data across groups (in all groups p<10�3 one sample t-test and two sample against shuffled data, see also Figure 7—figure supplement 4 for a group

level statistical model that does not pool data across larvae). (I) The correlation between the time it takes to reach prey (tprey) and prey-distance in fast-

capture swims is smaller in LF compared to NF. Distribution of Spearman’s correlation values estimated by bootstrapping (80% of pooled data across

larvae) give mean correlations of time vs distance of �CNF
d�t ¼ 0:07, �CLF

d�t ¼ 0:02, �CDF
d�t ¼ 0:168, with the LF group’s being the lowest (�CLF

d�t<�CNF
d�t two-sample

t-test p<2:2� 10
�16, P½CLF

d�t<C
NF
d�t � ¼ 0:65, and �CLF

d�t<�CDF
d�t t-test p<2:2� 10

�16, P½CNF
d�t<C

DF
d�t � ¼ 0:72), and with the lowest probability of being positive

P½CNF
d�t>0� ¼ 0:76, P½CLF

d�t>0� ¼ 0:64, P½CDF
d�t>0� ¼ 0:92. Scatter plots of tprey are shown on Appendix 4.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. The speed of fast-capture manoeuvres also depends on prey distance, and this correlation is strongest for LF data.

Figure supplement 2. The relationship between prey-distance and the speed of the capture swim could be a reflection of larvae choosing their

capture manoeuvre (fast/slow) depending on prey distance.
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The clustering results according to capture type are shown on Figure 4D–F, colored according to

cluster membership along with the respective contour lines of the joint-normal distribution model

for each cluster. In Figure 4G, the probability density of a data point being classified as a fast cap-

ture swim confirms that fast capture swims are more likely in the LF group than in the control groups.

The data also informs the model’s mean capture-speed and mean prey distance for each cluster, fast

or slow. We find that in general the cluster centers of fast capture swims are located at longer dis-

tances from prey than the slow cluster centers, while the fast capture swims of the LF group tend to

be initiated further from prey than controls (Figure 4—figure supplement 1).

Capture swim speed and distance to prey become more correlated
with experience
We next examined whether distance to prey and capture speed are related and whether this is mod-

ified by experience. A relationship between distance to prey and the peak capture speed is apparent

in the shape of the fast cluster model, at least for the LF group on Figure 4E, (captured in the mod-

els’ covariances across groups Figure 4, Figure 4—figure supplement 2A). To verify this, we mea-

sured the Pearson correlation between all prey-distance and capture-speed data points and plotted

the distribution of coefficients obtained by repeatedly sampling the correlation (n ¼ 10
3) from a ran-

dom subset of 80% of data points (bootstrapping). Figure 4H confirms that a correlation between

these variables exists overall and it is stronger in the LF group. Consistently, we find that the covari-

ance of the fast-cluster model also relates capture speed and distance to prey, Figure 4—figure

supplement 2B. Overall, our findings demonstrate that the frequency of fast capture swims, the dis-

tance-to-prey at capture initiation, and the speed-distance correlation increase as a result of rearing

with live prey.

For successful capture, the timing of mouth opening needs to be synchronized in relation to prey

proximity such that prey enters the mouth cavity either via suction or engulfment (Drost, 1987;

Marques et al., 2018; Hernández, 2000; Coughlin, 1991). One way of achieving precision in this

timing would be to maintain a consistent distance to prey from where to execute capture swims

(Coughlin, 1991). Alternatively, the capture speed could be adjusted with prey distance in an effort

to maintain the timing from capture initiation to reaching prey constant. To evaluate this hypothesis,

we calculated distributions of Spearman correlation coefficients, by bootstrapping on 80% of the

data points, to reveal if there is relationship between the observed time to reach prey and the prey

distance, while preventing correlations being dominated by the absolute scale of the variables.

Figure 4I suggests that time to reach prey does not vary with distance travelled during the capture

swim, and this is more clearly demonstrated in the LF group’s fast capture swims. Thus, the ability to

adjust capture speed as a function of prey distance is modified by experience. Next, we examined

whether the accuracy with which larvae re-orient toward prey during pursuit may also contribute to

the LF group’s hunting efficiency.

An off-axis approach strategy develops through experience
A large turn that re-orients a larvae toward prey commonly occurs at the beginning of the hunting

sequence (Bianco et al., 2011; Trivedi and Bollmann, 2013; Patterson et al., 2013) (see

Figure 5A; Appendix 3). This initial turn is proportional to prey azimuth (Patterson et al., 2013;

Trivedi and Bollmann, 2013). We examined if the accuracy of this response is modified with experi-

ence, limiting our analysis to successful hunting for the reasons outlined above.

We first established that prey detection occurred over similar angles across the three groups prior

to the initial turn. The distributions of the initial prey-azimuths in successful hunt episodes appear

bimodal (see Figure 5—figure supplement 1), with prey detection from all groups being more likely

to occur in response to prey located 35˚-50˚ on either side of the midsaggital axis. A scatter plot of

turn response to the initial prey azimuth suggests that these two quantities are proportional (Fig-

ure 5). The ratio of these two quantities (‘turn-ratio’) is unity when larvae accurately re-orient toward

prey. We found that the data pooled from recorded hunt episodes across larvae gave a mean turn-

ratio (m± SEM) 0.80 ± 0.029 for LF group, and this was different to DF 0:98� 0:05, and NF 0:93� 0:03

(see Figure 5—figure supplement 2). To statistically evaluate potential differences we fitted a linear

model and compared turn-ratios based on the slope parameter distributions inferred from the turn

data of each group (see Materials and methods).
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The distributions of likely turn-ratios estimated by the model shown on Figure 5E confirm that

the initial turns recorded in the LF group are distinct in undershooting prey azimuth; the slope of the

regression model gives a mean 0.73 for LF, 0.87 NF, and 0.92 for DF. This undershooting behavior

recorded from the LF group is consistent with previous reports on the first-turn-to-prey of larvae

that had also been reared with live prey (Paramecia) (Trivedi and Bollmann, 2013; Patterson et al.,

2013; Bolton et al., 2019). Paradoxically, hunt events from the NF and DF groups display initial

turns that do not consistently undershoot, but rather align larvae closer to the prey’s azimuth. These

findings suggest that undershooting on the first turn to prey is a kinematic adaptation of the hunting

sequence that develops from rearing with live prey. We next examined whether experience is
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Figure 5. The angle of first turn-to-prey is experience-dependent. (A) Hunting sequences begin with eye-vergence and a turn bout that re-orients

larvae toward prey. We isolate the initial re-orientation toward prey as shown in an example hunting trajectory, which is drawn relative to the larva’s

heading and mouth position (center), and color coded corresponding to eye-vergence. A large amplitude turn that re-orients it toward prey coincides

with an increase in eye-vergence angle. Inset shows turning over time, with red highlighting the extracted first-turn behavior and light grey indicating

post-capture turn. (B–D) Prey azimuth vs magnitude of re-orienting first-turn data points along with regression lines (dark), and 5–95% confidence

intervals (light), according to a linear fit. Hunt events from the LF group show the highest deviation from dotted line, which indicate the slope of turn

angles that would precisely align larvae with prey. (E) The inferred slope density from the linear statistical regression model reveals that the mean first-

turn behavior (g) of hunt events pooled from the LF group have a lower slope than NF (P½gLF<gNF � ¼ 1), and DF (P½gLF<gDF � ¼ 1), while DF shows the

least undershooting (P½gNF<gDF � ¼ 0:90). The ranking in mean turn-ratios according to pooled data across individuals goes LF>NF>DF, but this can be

biased toward more active individuals within each group, see Figure 7 where group behavior is estimated without this bias.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. The distributions of prey azimuth at the onset of successful hunting episodes are similar between groups, and favor prey on the

lateral visual field.

Figure supplement 2. Turn-ratio histogram per group also show undershoot bias for LF.
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required for linking the initial turn behavior with fast capture swims, which were more frequent in the

LF group.

Experience combines off-axis approach and fast capture swim
strategies
The LF group exhibits a higher frequency of fast capture swims and a stronger tendency to under-

shoot in the initial turn-to-prey than controls, but whether these two behaviors are combined within

individual hunt events remains unknown. Fast capture swims and undershooting could be used inde-

pendently of one another or they could be linked either via a learned or innate association. In the

case of an innate relationship, which is immutable by experience, undershooting would lead to fast-

capture swims regardless of rearing group. Alternatively, if the association between these two

behaviors can be modified by experience, the combination of undershoot and fast-capture swim

should be unique to hunt events of the LF group.

The relationships between turn-ratio and capture-speed for each successful hunt episode are

shown on Figure 6A–C, along with densities for each of the two clusters (fast/slow) on the plot mar-

gins. An association between fast capture swims and turn ratio would manifest as a leftward or right-

ward shift in the densities shown along each plot’s top margin. A leftward shift, indicating

undershooting (turn-ratio < 1), is visible in the LF group’s turn-ratio density of the fast capture swims

(yellow) on Figure 6B while no obvious relationship between turn-ratio and capture speed is seen in

the fast capture swims of NF and DF groups Figure 6A and C. Thus, inspection of fast-cluster data-

points from successful capture episodes suggests the existence of a bias toward one side of turn-

ratio unique to the LF group.

To evaluate the evidence for a correlation between turn-ratio and capture speed, we calculated

densities of their correlation by taking multiple random subsamples (80%) from all successful hunting

data for each group and calculating Spearman’s correlation coefficients for each subsample. The

estimated correlation coefficient densities shown on Figure 6D evidently confirm that undershooting

and capture-speed are correlated in the hunt events of the LF group, while no such clear relationship

exists for the control groups’ hunt-events. Thus, experience drives the development of correlations

between undershooting and fast-capture swims, which suggests that experience is not confined to

modifying components of the hunt sequence independently but is also able to combine them.

Typical hunting behavior is distinct in experienced larvae
Our analysis so far has found that the experienced group’s hunting routines are different to control

groups’ in terms of turn-to-prey and final capture swim. However, these observations may not be

representative of typical larval behavior within each group, since the majority of successful hunt-

events analysed could be originating from an atypical minority of larvae. In this section, we go

beyond comparing pooled hunt-episodes and characterize the prevalent hunting behavior of each

group by aggregating behavioral estimates of its larvae. For this, we built a Bayesian hierarchical sta-

tistical model (Materials and methods) that provides posterior estimates for the distribution of mean

prey-capture behavior for each group of 60 larvae, based on available observations from the subset

of larvae that executed successful prey captures in each group.

Consistent with our earlier analysis, we compare mean capture behavior between groups based

turn-ratio, capture-speed and distance to prey. Figure 7A shows a 3D rendering of the resulting

posterior parameter distributions per group, according to which the LF group (green) has higher

overall capture speed and distance, and lower turn ratio (see Figure 7—figure supplement 1 for a

more detailed view of parameter space). This result is consistent with our earlier analysis of pooled

hunt events (Figures 4 and 5). Nevertheless, with this group model, we can confirm that experience

has indeed affected the hunting behavior of the larval population and we can also obtain the esti-

mated mean hunting behavior of each larva.

Capture efficiency is predicted by the combination of off-axis approach
and fast capture swims
Next, we provide evidence that the adaptations observed in the hunting routines of the experience

group can partly explain their increase in capture success. For this analysis, we only included larvae

for which we had at least five capture attempts in order to reduce the error in estimating the mean
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capture efficiency per larva. We generated a six-dimensional vector for each individual that was com-

posed of the three model-estimated values (capture-speed, capture-distance, turn-ratio), which we

have used so far to characterize hunt-behavior, along with its estimated capture efficiency, the num-

ber of capture attempts, and the empirical mean time to reach prey (tprey) during capture. These

behavioral vectors were then combined into a matrix in order to examine the relationship between

larvae of different groups using principal component analysis (PCA). In Figure 7B, we show the mul-

tidimensional space defined by six hunting variables as viewed from the reduced space of the first

and second principle components (PC). These two PCs capture approximately 62% of the total vari-

ance and approximately 50% of variance in capture efficiency. Consistent with our group model in

Figure 7A, we find that LF larvae occupy a distinct position in this space that separates them from

the control group NF/DF larvae. The LF region is pointed to by axes of capture speed, prey distance
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Figure 6. Experience associates undershooting to fast capture swims. (A,B,C) Pooled data points across larvae on capture-speed and turn-ratio. The

densities shown along the top margins suggest that fast captures (yellow, see Figure 4) are biased toward low turn-ratios (undershooting) in the LF

group, while no such preference is seen in the NF and DF groups. (D) Distribution of bootstrapped (80%) Spearman’s correlation coefficient between

turn-ratio and capture-speed; Hunt events from LF larvae show a relationship between low turn-ratio (undershoot on their first-turn to prey) with the

speed of the final capture swim (p<2:2� 10
�16 one-sided t-test, P½CLF

g�S<0�>0:99). This relationship is not innate but rather driven by experience because

although DF and NF larvae may occasionally undershoot on their first-turn to prey, this turn is not systematically associated with a fast-capture swim. NF

shows the opposite, a positive correlation (p<2:2� 10
�16 one-sided t-test, P½CNF

g�S<0� ¼ 0:35), while DF also show evidence of combining undershoot

with capture (p<2:2� 10
�16 one-sided t-test, P½CDF

g�S<0� ¼ 0:60), but correlation is not as strong as in LF (p<2:2� 10
�16 two sample one-sided t-test).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Prey azimuth prior to capture manoeuver.
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and undershoot, as well as increasing efficiency; larvae from control groups occupy the opposite

region in this behavioral space which is in the direction of lower efficiency.

This coarse alignment of efficiency with the axes for capture-speed, distance and undershoot indi-

cates that hunting efficiency may be related to, and possibly predicted by these specific hunting

behaviors. To examine this further, we employed principal component regression (Wehrens and

Mevik, 2007) and assessed the prediction capability of linear models that could utilize any combina-

tion of PCs as factors. The maximum cumulative percentage of efficiency variance that can be

explained with two PCs, given the factors we used on Figure 7B, was found to be » 32%, and the

coefficient of variation (CV) in the root mean squared prediction error (RMSEP) was CV ¼ 0:13. In

comparison, using all five PCs increased the efficiency variance explained to »40%, but also the

RMSEP CV = 0.16. The ability of these PC efficiency prediction models are shown on Figure 7C.

We have therefore obtained evidence that capture success relates to, and can be partly predicted

by utilizing covariates of hunting behavioral measurements within the first 2 PCs. Additionally, we

found that these 2 PC are loaded with combined behaviors (as in Figure 7B), revealing that
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Figure 7. Typical behavior of experienced larvae is distinct and relates to their increased capture efficiency. (A) Estimated distribution of mean hunting

behavior based on capture speed, distance to prey and initial turn for each group according to a multivariate normal hierarchical model of group

behavior. The LF group’s model has a mean capture distance (�LF
d ) in successful hunt episodes that is longer than control groups (P½�LF

d >�NF
d � ¼ 0:87,

P½�LF
d >�DF

d � ¼ 0:82). Estimated group mean capture distances (mm) are �LF
d ¼ 0:35, �NFF

d ¼ 0:23, �DF
d ¼ 0:24. LF also has the highest mean capture-

speed: �LF
s ¼ 28:2, �NF

s ¼ 17:5, �DF
s ¼ 23:3 (P½�LF

s >�NF
s �>0:99, P½�LF

s >�DF
s � ¼ 0:90). The LF mean turn-ratio �LF

g ¼ 0:85 shows the group clearly undershoots

(P½�LF
g <1� ¼ 0:96), as a result of experience as it stands distinct to controls (P½�LF

g <�NF
g � ¼ 0:80, P½�LF

g <�DF
g � ¼ 0:70), whose turn-ratios stand closer to unity

�NF
g ¼ 0:94, �DF

g ¼ 0:92. (B) PCA in larval hunting behavioral space showing the axes for hunting behavior and the position of individual larva across

groups as seen from the first 2 PCs. Larvae are positioned in this PCA space based on their mean hunt behavior (capture speed, turn-ratio, capture

distance) as estimated by the model, their mean capture efficiency (min. five capture attempts), along with their number of capture attempts and the

mean time to hit prey (tPrey). Distributions per group (contour lines) confirm separation of the LF group from controls and shift toward region pointed to

by the efficiency axis (red). Members of the LF group are shown to be more efficient hunters, they undershoot on their first turn to prey (black), and

execute fast capture swims (yellow) from a relatively longer distance to prey (cyan), thus suggesting a relationship of these behaviors with hunting

efficiency (red). (C) Linear regression model shows that two principal components of a larva’s mean behavior, as in B, can be used to predict its capture

efficiency.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Detailed sections of 3D parameter distributions shown on panel A.

Figure supplement 2. Model-estimated group correlation of capture speed and turn-ratio show LF more likely to combine undershoot with a fast

capture swims.

Figure supplement 3. Model-estimated group correlation between capture distance and turn-ratio show LF more likely to undershoot with a longer

range capture swims.

Figure supplement 4. Model-estimated correlation of capture speed and prey distance shows fed groups (LF/DF) more likely to modulate capture

speed with distance.

Figure supplement 5. PCA applied to mean larva behavior calculated empirically showing agreement with model based in B.
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increasing efficiency relies on adapting behaviors in a coordinated manner, as is the case for exam-

ple between capture-speed and prey distance.

Discussion
We have shown that first-feeding zebrafish can improve their hunting performance by engaging in

their natural hunting behavior. This can be observed as early as 7 dpf, and to our knowledge, it is

the first time experience has been shown to affect hunting ability at that early developmental stage.

Our experimental design allowed us to examine the comparative effects of different rearing diets on

hunting behavior, and disentangle the effects of growth and nutrition from those of experience. By

utilizing statistical inference to characterize the effects of rearing diet on the hunt-effort and capture

success of each group, we were are able to provide the first comprehensive evidence that differen-

ces in consumption are mostly due to experience-depended changes in hunting skill (see

Figure 3D). We then focused on identifying the behavioral aspects that lead to increased capture

efficiency. Key aspects of behavior were extracted from detailed kinematic analysis of hunting

sequences, which were then used to build a hierarchical statistical model of mean hunting behavior

per group based on the estimated mean behavior of its larva. Using these estimates of behavior, we

were able to associates capture success to coordinated adaptations of the hunting sequence by

showing that these identified aspects of hunting behavior can be used to predict hunting efficiency.

Experience-dependent changes in hunt rate, duration and efficiency
Because all hunting sequences in larval zebrafish begin with eye vergence (Patterson et al., 2013;

Bianco et al., 2011; Bianco and Engert, 2015), we could use the rate and duration of eye vergence

events to estimate hunt motivation and the ability to perceive and respond to prey. We found that

the rates and duration of spontaneous and evoked hunt events were very similar in the DF and NF

groups. However, compared to the two control groups, there was a modest increase of hunt rates in

the LF group only in the evoked conditions. This finding is consistent with previous observations that

zebrafish larvae raised with Paramecia performed prey capture behaviors more frequently than those

that had not (Patterson et al., 2013), and suggest that prior experience may condition prey

response, which would be in agreement with findings in other fish species (see Winfield and Town-

send, 1988).

However, our finding that hunt rates are not elevated in the NF group is seemingly at odds with

studies showing that starved larvae are more likely to shift behavioral decisions from avoidance to

approach (Filosa et al., 2016) and increase their food intake compared to fed larvae (Jordi et al.,

2015). This apparent discrepancy can be reconciled by the fact that we allow all feeding groups to

acclimatize with live prey for 1-2hr prior to recording in the evoked conditions. This time period has

been shown to be sufficient to overcome motivational differences between starved and fed larva, as

within 40 min differences in the bout patterns expressed between these groups become undetect-

able (Johnson et al., 2020).

Despite the increase in their hunt rate, larvae in the LF group tend to spend overall less total time

hunting than larvae in the control groups. This decrease is noticeable in both, spontaneous and

evoked conditions, and thus it may not depend on the presence of prey. Although, it is still likely

that experienced larvae become faster at catching prey and therefore more time-efficient, the evi-

dence here suggests a change in an internal timing process which is responsible for sustaining the

state of hunt activity. Indeed, the distributions for the duration of individual hunt episodes are sur-

prisingly similar between the evoked and spontaneous events of each group (Figure 2—figure sup-

plement 1), especially so in the naive group (NF).

We suggest that an intrinsic timer process, similar to the stochastic-state switching mechanism

recently proposed to underlie the switching of foraging state between exploration and exploitation

(Marques et al., 2020), is likely controlling hunt-episode duration, and allows for these to be modu-

lated by factors such as prey stimuli, satiety (Johnson et al., 2020) and experience.

We then extended our statistical model of hunt-rates to include the probability of success of each

of the evoked hunt events. This more comprehensive model revealed that the estimated mean prey-

consumption rate for the experienced group is approximately double that of control groups. This

increase in consumption was largely due to improved capture success rather than increased hunt-

rates, because the probability of a successful capture was significantly elevated in larvae from the LF
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group by » 50% compared to NF larvae, while the difference in the number of capture attempts

between the LF and NF groups was more modest ( »18%) (see Figure 3B). Thus, the effects of expe-

rience on hunting behavior are mostly seen as an increase in capture efficiency at this stage of devel-

opment (7 dpf). The superior capture efficiency of LF against the NF group is not explained by

differences in growth, because larvae in the nutrition control group (DF), which tend to be larger

than larvae in the NF group (see Appendix 1 and Figure 3—figure supplement 1), have the lowest

capture efficiency of the three groups. Therefore, the most likely explanation is that superior capture

efficiency is caused by changes to the hunting routine.

Experience-dependent modification of the first-turn-to prey and final
capture swims contribute to capture efficiency
There may be multiple paths to success, but some can be more efficient than others. Accordingly,

even when comparing hunting episodes that end up in successful captures, there may be differences

in hunting behavior between efficient and non-efficient hunters. Indeed, by comparing behavior dur-

ing successful hunting episodes alone, we were able to unambiguously identify differences in com-

ponents of the hunting sequence between experienced and control larvae.

We show that hunting sequences of experienced larvae are distinct in at least two respects.

Firstly, on detection of prey, larvae from all groups make an initial turn that accounts for a large part

of the reorienting response. However, experienced larvae make a first turn that tends to undershoot

prey azimuth, whereas larvae in the two control groups make an initial turn that brings them closer

to aligning with prey azimuth. Secondly, we find that experienced larvae are more likely to employ

high speed capture swims and that these are initiated at greater distances from prey than the con-

trol groups. Capture speed and distance are correlated, yet this correlation is highest in the hunt

events of the LF group (Figure 4H), implying that experience is necessary for tuning the vigour of

the capture swim as a function of prey distance. To verify that these behaviors are characteristic of

experienced larvae, we embedded larvae of all groups in a principal component space of hunting

behavior and found that larvae from the LF group are segregated against the NF and DF larvae,

while NF and DF strongly overlapped (Figure 7B).

Using only just two principal components we able to build a linear model that predicts larval hunt-

ing efficiency, in terms of the fraction of capture successes over total capture attempts, and there-

fore show that the identified hunting behaviors are related to the probability of capture success

(Figure 7C). Neither of the two PCs aligned with a particular hunt behavior in isolation, but rather

each component fused a mixture of first-turn-to-prey, capture speed, capture distance and number

of capture attempts. However, why does modification of capture speed or an undershoot turn-ratio

increase hunting efficiency?

Fast captures initiated from a distance reduce capture failures
Capture probability can vary with prey type as differences in their motion and escape patterns are

likely to require different capture strategies (Drenner et al., 1978; Meng and Orsi, 1991; Cough-

lin, 1991; Westphal and O’Malley, 2013). For some evasive prey species utilizing a fast capture

speed may be important (Drost, 1987; Westphal and O’Malley, 2013). There is already evidence

that Atlantic salmon, carp (Cyprinus earpio) and pike (Esox IUC US) larvae improve their capture suc-

cess by using fast capture-speeds (Coughlin, 1991; Drost, 1987). Additionally, attacking prey from

a distance can minimize the chance of being detected by prey and evoking escape responses. For

example some copepods respond to moving objects at a distance (0.5 mm–1 mm) by sensing water

disturbances (Lapesa et al., 2002). Thus, it would be beneficial to adapt the capture strategy to the

patterns of prey motion and escape responses.

However, in this study we used Rotifers, which, unlike other prey types (Drenner et al., 1978;

Drost, 1987), they are not known to exercise any effective evasive response to imminent predator

capture strikes (Coughlin, 1994; Lapesa et al., 2002; Yúfera et al., 2005). Adult Rotifers, can move

at 0.5–1.5 mm/sec ( » 1.5–2 body lengths), depending on their size among other factors

(Yúfera et al., 2005; Lapesa et al., 2002), which is in agreement with our measured estimates of

mean prey speeds (see Appendix 5).

Naturally, prey speed will affect the rate at which prey azimuth changes from the larva’s point of

view, and thus the aiming accuracy of the capture manoeuvre may be compromised by moving prey.
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The size of the effect that continuous prey motion can have on aiming accuracy can be estimated by

calculating the change in prey azimuth during the inter-bout interval preceding the capture swim,

which will be taken here to be » 200 ms (Trivedi and Bollmann, 2013; Johnson et al., 2020;

Bolton et al., 2019). A simple geometric examination reveals that changes in prey azimuth due to

prey motion scale with inverse of prey distance (see analysis in Appendix 5). Prey traveling in proxim-

ity of 0.2 mm to the larva can cause deviations in azimuth that are very likely to affect capture suc-

cess because they will move prey out of the optimal strike-zone range (±25o), observed across

successful capture episodes of all groups (Figure 6—figure supplement 1, see also Mearns et al.,

2020; Bolton et al., 2019). Although there is evidence that the larval prey tracking algorithm utilizes

prey-speed to bias the heading of the next bout towards the predicted azimuth at a future prey

position (Bolton et al., 2019), these estimates may also be compromised over short distances. A lin-

ear prediction model for prey azimuth, which utilizes perfect prey-displacement estimates, would still

suffer significant prediction errors when attempting to capture fast-moving prey in proximity closer

than 0.2 mm (see Appendix 5—figure 1B). Therefore, an increase in capture distance can lead to

improvements in capture success rates because it effectively diminishes errors in aiming caused by

prey motion, especially against faster moving prey.

Prey capture from a distance is associated with a kinematically distinct fast-capture manoeuvre

(Bianco et al., 2011; McElligott and O’malley, 2005; Patterson et al., 2013; Borla et al., 2002;

Mearns et al., 2020), during which the larva lunges forward reaching the prey in less than 100 ms

(see Appendix 4). During this short interval, larvae need to adjust the timing of the gape and suction

action to occur right in front of the prey (Coughlin, 1991; Marques et al., 2018), as otherwise, cap-

ture failures occur because the larvae hit and push the prey away (Coughlin, 1991). Indeed, the dis-

tribution for the time to max-gape reported in Mearns et al., 2020 is in agreement with our

distributions for the time to reach prey in successful captures (see timing densities in Appendix 4),

thus supporting the idea that timing of gape is coordinated against the time larvae reach the prey.

Since the gape-cycle timing is reportedly stereotyped (Hernández, 2000), we therefore suggest that

larva zebrafish adjust their swim-speed as a function of prey distance in order to coordinate the time

of reaching prey against their max-gape timing. In agreement with this, we find that the time to

reach prey is independent of capture distance (see Figure 4I), especially in the experienced group

(LF), where we also find a stronger correlation between capture distance and speed than controls.

Therefore, we contend the coordination of capture-speed and distance develops by experience to

achieve correct timing of the mouth opening such that it occurs in proximity to prey as the larva

lunges forward. However, how can larva perceive distance to prey, and know they are within capture

distance?

Turn undershoot as an active sensing strategy
We focused our analysis of turn behavior only on the initial turn towards prey because it amounts to

the largest re-orientation following prey detection and so it can be representative of the ability to

aim toward prey while being less prone to measurement error. Subsequent turn behavior follows the

same pattern of undershooting prey azimuth (Bolton et al., 2019), and thus we can take the first

turn behavior to be typical of a larva’s re-orienting behavior. We hypothesize that this undershooting

behavior is an off-axis approach strategy that enhances capture success by actively improving the

perception of prey distance.

The possession of a distance perception faculty is manifest across all phases of hunting behavior.

Prey proximity predicts prey choice when hunting is initiated in the presence of multiple targets

(Bolton et al., 2019), while the length and intervals of the swim bouts executed during prey

approach progressively shorten with prey-distance (Trivedi and Bollmann, 2013; Bolton et al.,

2019; Johnson et al., 2020), eventually leading to stopping at a distance appropriate for a capture

strike, the success of which, as we discussed in the previous section, also appears to dependent on

prey-distance. Although image size is an important feature for triggering hunting in zebrafish larvae

(Bianco et al., 2011; Romano et al., 2015), distance perception through image size may not be suf-

ficient, because vision in zebrafish is monocular with a fixed focus and so retinal image size is an

ambiguous cue for the true size of an object.

A potential way to resolve this ambiguity is to utilize cues arising from a target’s velocity, as this

will depend on observer’s distance like in the well-known motion-parallax phenomenon. Although

prey velocity cues obtained passively during inter-bout intervals are likely used (Trivedi and

Lagogiannis et al. eLife 2020;9:e55119. DOI: https://doi.org/10.7554/eLife.55119 16 of 39

Research article Developmental Biology Neuroscience

https://doi.org/10.7554/eLife.55119


Bollmann, 2013), these would provide ambiguous distance estimates because prey-speed can vary

significantly even among prey of the same species (see Appendix 5—figure 1A). In contrast, actively

sensing target distance by observing the change in the target’s azimuth during self-motion could

partly resolve this ambiguity, provided the target is positioned at relative offset angle to the larva’s

heading. Moving straight toward a target will not produce any change in azimuth (see Appendix 5—

figure 1C), while a given non-zero initial offset angle will change depending on the prey’s distance

and the travel distance of a motion bout.

Similar active-sensing techniques (Egelhaaf et al., 2014; Ahissar and Assa, 2016) are employed

by insects that have been reported to move in particular angles to objects in order to generate optic

flow and discern their proximity. Generally, off-axis approach strategies can extend beyond vision

and may represent navigational trade-offs. For example, an off-axis strategy has been shown to

improve object localization in echo-locating Egyptian fruit bats, and in these bats, it appears this

strategy represents a strategical trade-off between positional accuracy and detection range

(Yovel et al., 2010). In our case, the undershooting strategy may present a trade-off between mini-

mizing the distance travelled to reach prey and the perceptual accuracy of prey distance.

This prey approach strategy predicts that bout-motion and distance perception operate in real-

time closed-loop (Ahissar and Assa, 2016) and is consistent with evidence that larval bouts are not

ballistic but utilize visual feedback during motion (Portugues and Engert, 2011; Portugues et al.,

2015; Jouary et al., 2016), and with evidence that loss of visual feedback during approach can

impair larvae from reaching capture distance (Jouary et al., 2016).

The retina could be directly computing the speed of moving edges (Portugues et al., 2015),

while tuned specifically to prey-like stimuli by integrating retinal image motion with image size,

which is in agreement with evidence that specific combinations of stimulus size and speed are

required for hunting initiation (Bianco and Engert, 2015; Barker and Baier, 2015;

Semmelhack et al., 2014; Antinucci et al., 2019). To generate this extra distance perceptual cue,

which is based on image motion, would require that during forward bouts prey position is at an off-

set angle. From this, the prediction arises that prey located off-axis is more likely to be captured,

which is consistent with the evidence from the distribution of prey-detection azimuths of successful

hunting episodes (see Figure 5—figure supplement 1, which is bimodal although evidence from

freely swimming larvae shows that hunting is initiated against prey in the frontal visual field just as

well [Bianco et al., 2011; Bolton et al., 2019; Bianco and Engert, 2015; Jouary et al., 2016]). Curi-

ously, other studies have observed similar bimodal distributions of prey-detection azimuth that are

not conditioned on hunting outcome (Bianco et al., 2011; Romano et al., 2015; Antinucci et al.,

2019), we are not sure what underlies these discrepancies between studies, but it may relate to

whether the criteria used for detecting hunting initiation are solely based on eye-vergence or

whether unilateral tail bends (J-turns) are also used.

Learning the components of efficient behavior
Understanding the structure of learning is dependent on obtaining a valid description of how differ-

ent hunting strategies can arise. We cannot exclude the possibility that larvae posses an adaptive

toolbox (see Todd and Gigerenzer, 2012; Todd and Gigerenzer, 2007) of distinct, preset, hunting

strategies. This would imply that the role of learning is to utilize experience to find the best match

between the set of available hunting behaviors and the particular foraging environments a larva

encounters. Alternatively, efficient hunting behavior could be the result of a learning process that

progressively adapts the behavioral parameters of an innate hunting routine. In this case, adapted

behavior may be manifested through incrementally modifying multiple independent behavioral

parameters (see Portugues and Engert, 2011; Ahrens et al., 2012; Severi et al., 2014), or even a

single behavioral parameter could suffice to explain multiple aspects of adapted behavior, if behav-

ioral control turns-out to be low-dimensional. For example, modifying turn behavior could cause

changes in the visual feedback obtained during prey pursuit (see previous section), and this could be

causing changes in the kinematics of motion bouts, which have been shown to be affected by

changes in visual input (Portugues and Engert, 2011; Trivedi and Bollmann, 2013; Jouary et al.,

2016). In either case, the evidence here suggest that learning does not seem to modify individual

behavioral components of the hunting sequence independently.

This conclusion is based on the observation that undershooting and fast long-range capture

swims are strongly correlated most often in larvae raised with live prey (Figure 7—figure

Lagogiannis et al. eLife 2020;9:e55119. DOI: https://doi.org/10.7554/eLife.55119 17 of 39

Research article Developmental Biology Neuroscience

https://doi.org/10.7554/eLife.55119


supplement 2, Figure 7—figure supplement 3). This correlation is in not intrinsic, long-range cap-

ture swims are not an inevitable consequence of undershooting, because the opposite correlation

(overshoot with fast-capture swims) also exists and is most often seen in prey-naive animals (NF,DF).

The evidence also supports that the relationship between undershoot and capture speed is adjusted

with experience (Figure 7—figure supplement 2), something we believe is an indirect consequence

of a tendency to adjust capture speed with distance (Figure 7—figure supplement 4). Nevertheless,

this relationship between capture speed and distance is also affected by experience (compare DF,LF

against LF), something we posit relates to achieving suitable gape-timing for engulfing prey as larvae

lunge forward during fast capture swims. We find that hunting strategies that combine fast capture

swims executed from a longer distance are more likely to lead to consumption of prey (Figure 7B,

Figure 4), and thus their ontogeny could be based on positive reinforcement through operant condi-

tioning (Skinner, 1938). Undershooting on the other hand does not lead to an immediate reward,

so how does experience reinforce and combine these two strategies?

Taking into account that undershooting could improve prey-distance perception during approach

(see previous section) then the possibility arises that this behavior could be reinforced independently

of hunting outcome, provided perception of prey during self-motion could be of intrinsically positive

value (see Kawashima et al., 2016). Perhaps the simplest explanation is that correlations arise

through the reinforcement of a shared gain control input, whose conditional reinforcement results in

increasing all of these behavioral responses simultaneously. Alternatively, undershoot behavior could

be independently reinforced by letting the conditioned stimulus that triggers the fast-capture swims

also act as a reinforcing stimulus. This idea is based on higher-order learning processes, such as sec-

ondary conditioned reinforcement, or second-order conditioning, according to which stimuli paired

with primary reinforcers acquire reinforcement properties themselves. A mechanism that allows for

stimuli that predict rewards to become rewards themselves is believed to underlie the construction

of adaptive and arbitrary long behavioral sequences (Skinner, 1938; Williams, 1994; Enquist et al.,

2016).

However, previous attempts to establish classical or operant learning in larval zebrafish, by pairing

visual cues to electric shock, failed to show learning at this early stage (Valente et al., 2012). A dif-

ferent, classical conditioning study showed enhanced tail response to the conditioned stimulus after

pairing a tactile stimulus on the side of the body with a visual cue of a moving spot (Aizenberg and

Schuman, 2011). Thus, although in theory a form of arbitrary behavioral chaining could be used to

generate efficient behavior in a wide variety of experienced conditions (Enquist et al., 2016), it

would appear here that learning is constrained to expecting specific information about the environ-

ment to instruct the parameters of particular behavior of the developing animal (Bateson, 1981;

Todd and Gigerenzer, 2007). In this case, early foraging experience could allow larvae to learn and

adapt their behavior to the food sources available in their environment. Although natural variability

in learning speed is expected, our analysis on individual larvae suggests that the effect of a brief

(two days) hunting experience is to rescue, or trigger the maturation of, initially ineffective hunting

behavior. This is supported by the distribution of hunt efficiency (Figure 3D) in LF showing relatively

lower numbers of low efficiency hunters compared to controls, which suggests that perhaps larvae

with the lowest hunting efficiency are the ones who mostly benefit from early experience.

Finally, it is worth mentioning that the behavioral parameters of the control groups DF and NF

are not always matching, and DF is also learning to adapt to its foraging conditions. For example DF

has distinct capture speed and distance behavior to NF (Figure 7—figure supplement 4), while

there is a small probability this may be counterproductive to its capture efficiency against live prey

(Figure 3B).

The neural basis of an adaptive hunting routine
Localizing the neural circuits that support experience-dependent changes to evoked hunt-rates

(Figure 2E) draws attention towards the pretecto-hindbrain and the pretecto-hypothalamic path-

ways. This is because both of these have been associated with the release of hunting behavior in

response to visual prey stimulation (Muto et al., 2017; Semmelhack et al., 2014; Antinucci et al.,

2019; Filosa et al., 2016), and thus changes in their activity could be underlying the modulation of

hunt-rates.

Yet, a companion study, which imaged the brains of partially restrained larvae (7 dpf) during

hunt-initiation, did not find differences in tectal and pre-tectal activity between experienced and
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naive larvae (Oldfield et al., 2020). Nevertheless, consistent with the higher evoked hunt-rates of

experienced larvae, the functional connectivity between optic tectum and pre-tectum appears to

increase, along with the probability that pretectal activation is followed by eye-vergence

(Oldfield et al., 2020). The main difference observed was that forebrain activity (telencephalon and

the habenula) in experienced larvae was higher during eye-vergence (hunting) compared to naive lar-

vae. Further, ablation of the forebrain, in experienced larvae, demonstrated that although forebrain

recruitment is not necessary for initiating hunting, it does contribute to the frequency of these events

(Oldfield et al., 2020). Combined with evidence of increased functional connectivity between tectal

periventricular neurons (PVN) and the forebrain’s telencephalon in experienced larvae

(Oldfield et al., 2020), it appears that experience-dependent adaptations to the hunt-rate are mani-

fested via a tectal pathway that goes through the forebrain. This pathway appears to operate in par-

allel to those supporting innate hunt initiation, reflecting an organizational principle according to

which pathways may be functionally classified into those supporting innate behavior and others sup-

porting learned adaptations to it.

How can the forebrain modulate hunt-rates? The forebrain’s diencephalon contains modulator

neurons whose activity is correlated to multiple sensory modalities and to locomotor behavior

(Jay et al., 2015; Lambert et al., 2012; Reinig et al., 2017). In terms of their effect on locomotion,

evidence from ablation experiments suggest that diencephalic dopaminergic neuron recruitment

could only explain changes in general swimming activity, and not finer locomotor behavior during

prey approach (Jay et al., 2015), while detailed studies using tactile and visual stimuli suggest that

dopaminergic action on swimming behavior maybe indirect, through sensory and proprioceptive

processes (Reinig et al., 2017). In light of these prior studies, it would appear that the dopaminergic

neurons of the diencephalon are not part of pathway that can stimulate hunt initiation. Perhaps a

better candidate would be a forebrain pathway that targets the serotonergic system, which has

been shown to be involved in modulating the release of hunting in response to visual prey recogni-

tion in a manner that depended on a larva’s feeding-state (Filosa et al., 2016) or its internal foraging

state (Marques et al., 2020). Identifying whether the activity of this system is also modified by expe-

rience could help to further unravel the neural processes that allow for experience to modify hunt-

rates.

Similarly, experience dependent changes to turn-behavior (undershoot) may be supported by a

pathway that runs parallel to the one known to control visual-evoked orienting turns towards prey.

Visual-evoked orienting turns towards prey have attributed to the tectal-hindbrain pathway, which

forms a sensory-map with a functionally segregated anatomy, of distinct descending retinotopically

organized projections for approach and avoidance behavior, that can signal graded visual-evoked

orienting turns towards prey (Helmbrecht et al., 2018; Orger, 2016; Fajardo et al., 2013;

Orger et al., 2008; Romano et al., 2015). However, the development of this sensory-map is gener-

ally not driven by visual experience (see Marachlian et al., 2018; Pietri et al., 2017), and, in agree-

ment with this, the tectal activity maps for prey location are not altered by experience

(Oldfield et al., 2020). Given this evidence, changes in the tectal encoding of prey position do not

underlie the differences in turn-behavior between prey-naive and experienced larvae observed in

this study.

We posit that the modulation of turn-gain is most likely manifested downstream, perhaps at the

level of reticulospinal neurons via the modulatory action of a pathway that runs parallel to the pri-

mary tectal-hindbrain one, such as the aforementioned diencephalic dopaminergic neurons

(Reinig et al., 2017). However, further experiments would be required to establish if forebrain activ-

ity is associated to undershooting behavior in order to support this hypothesis.

Such turn-to-prey experiments are generally feasible and can be combined with functional imag-

ing on partially restrained animals using virtual or real prey (Bianco et al., 2011; Jouary et al., 2016;

Oldfield et al., 2020). By monitoring tail movement we may be able to infer the larva’s intended

turn magnitude (Jouary et al., 2016) with sufficient accuracy, and the relationship between turn-

gain and forebrain activity. The mechanisms behind forebrain behavioral control could then be fol-

lowed up by examining the potential role of descending dopaminergic action on turn-gain (see

Lambert et al., 2012, but see Reinig et al., 2017). However, if forebrain circuits are involved in

expressing both naive and experienced behavior incommensurably, then ablations may not be par-

ticularly revealing because behavioral aberrations would then be observed in both groups, naive and

experienced. We posit that appropriately timed, optogenetic investigations of gain-of-function could
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be more revealing on whether the forebrain controls the turn-to-prey gain during prey pursuit. We

anticipate that the above pathways may also be involved in the kinematic adaptations of prey

approach that result in increasing prey capture distance. Whole-brain imaging experiments com-

bined with a closed-loop visual stimulation (Jouary et al., 2016) could be utilized to look for the

brain structures that correlate with the changes in bout kinematics, such as bout duration

(Severi et al., 2014), that drive changes in capture distance between naive and experienced larvae.

Although it has been possible to identify the learning centers of short-term motor adaptation

(Ahrens et al., 2012), finding the circuits that support the longer term learning process presented

here may prove more challenging. One reason is that contrasting brain activity between successful

and failed capture episodes is not guaranteed to reveal the learning centers, because the required

timescales of reward signaling are not yet known. Even if learning is steered by capture outcomes,

and differences in brain activity following successful and failed capture manoeuvres reveal the cir-

cuits of learning, this would still require whole-brain imaging during unconstrained hunting behavior

– something that is quite challenging technically.

Fortunately, the zebrafish community has already achieved such feats (Cong et al., 2017;

Kim et al., 2017), with the first data of brain activity indicating a few seconds of sustained activity in

hypothalamus, midbrain, and hindbrain following prey capture (Cong et al., 2017), while more

recently, activation of hypothalamic dopaminergic neurons has been associated with capture success

(Marques et al., 2020). However, imaging during unconstrained behavior is no panacea, because

making causal inferences could become harder in comparison to more constrained experimental

designs, which provide more control. For example, similar sustained hypothalamic dopaminergic

activity has been previously observed in partially restrained animals following vigorous motor activity

(Reinig et al., 2017), so fast-capture manoeuvres may be sufficient to explain some of the brain

activity observed during unconstrained prey capture. Faced with behavioral variability, unknown pro-

cess timescales and the lack of tightly controlled conditions it may prove difficult to ascertain how

patterns of brain activity relate causally to adapted behavior.

We suggest that before attempting to identify the circuits of learning using imaging, it might be

prudent to first behaviorally establish the reward signals and their timescales. We cannot rule out

the possibility that exposure to prey may be sufficient for the ontogeny of improved hunting skills. In

addition, relevant reward signals may not immediately follow capture success, but might be associ-

ated to food digestion or growth, and thus operate over longer time-scales. Future research focus-

ing on important stimulus and timescale aspects in the ontogeny of efficient hunting behavior could

shed light to the mechanisms of learning.

Conclusion
In summary, we have demonstrated that prior experience of live prey modifies and associates com-

ponents of the larval zebrafish hunting sequence in manner that improves their capture success. Our

findings suggest that the ontogeny of hunting behavior relies on learning by experience to fully

develop. Combined with prior attempts that failed to show conditioning in larval zebrafish

(Valente et al., 2012), it appears that learning may be constrained to particular tasks at this early

stage, but nevertheless it is sophisticated enough to alter a multidimensional behavioral parameter

space so that innate goal-oriented behavior is improved. Such interactions between an innate behav-

ior and learning are very common to the ontogeny of behavior (Hinde, 1973) and it is likely that the

general learning principles, which allow experience to shape brain development, are conserved

across species (Warburton, 2003). This study will pave the way for using zebrafish to study the neu-

ral circuits and mechanisms of learning that transform ethologically relevant experience into efficient

natural behavior.

Materials and methods

Rearing
Fertilized embryos under natural spawning were collected at 10.30am from a mass embryo produc-

tion system (MEPS), where they are developmental stage synchronized within 15-min collection inter-

vals. These were visually inspected and 17 healthy embryos are selected and placed in each of three

9-cm Petri dishes, which were filled with 35 ml Daneau and labeled at random to define the rearing

Lagogiannis et al. eLife 2020;9:e55119. DOI: https://doi.org/10.7554/eLife.55119 20 of 39

Research article Developmental Biology Neuroscience

https://doi.org/10.7554/eLife.55119


group (NF,DF,LF). The embryo dishes were maintained in an incubator under the same conditions.

of 28.5 in system water (pH 7.3, conductivity 550 mS) on a 14:10 hr light:dark cycle. On 1 dpf non-

developing embryos were cleared (usually 0–3 dead ones), and from that day on the dish where

cleared of debris and had half the water replaced on a daily basis.

Feeding initiated just prior to 5 dpf, around the time when larvae begin to initiate hunting, and

continued until the beginning of 7 dpf with a single feed each day between the hours of 3 and 4 pm.

Live-fed (LF) received » 200 live Rotifers (Brachionus plicatilis) (sized between 0.3 mm and 0.05), usu-

ally in 1–3 ml of 2 ppm water, the volume depended on the density of the culture on the day. The

Non-Fed group (NF) received 2 ppt salt water, to control for treatment and salinity, in a volume

matched to one supplied to the Rotifer fed dish (LF, 1–3 ml) on that day. The health or survival of

the NF group was not impacted up to 7 dpf during which time their yolk-sack energy store appears

sufficient to keep them healthy, and this is in agreement with studies showing that survival rates

remain unaffected even if feeding commences on 8 dpf (Hernandez et al., 2018). The Dry-fed (DF)

group receives grounded growth food suspended in the same amount of 2 ppm salt water as the

one delivered to other groups. The DF food is grounded with mortar and pestle (Sera Micron or Ket-

ting Gemma 75), then suspended in 2 ppm water and centrifuged in 800 rpm for 20 s. The suspen-

sion, which mostly contains particles smaller than Rrotifer typical size, is used for feeding such that

the visual experience of moving dots is minimized for the DF group but nevertheless they receive a

nutrition.

Behavioral recording
At 7dpf individual larvae from each group were transferred to 35 mm petridishes (5 ml Daneau) and

were allowed to acclimatize for 40 min-2 hr in the test conditions prior to each video recording. The

recording protocol’s timeline is shown on Figure 1. Each larvae was recorded in two test conditions.

First settled and recorded in a prey-free (empty) arena and then, following the addition of » 30 live

Rotifers, larvae are left to settle prior to being recorded with live prey conditions. For the empty test

conditions, individual larvae where randomly picked from the 9 cm group rearing dish, washed by

transferring to a clear Daneau bath, and then transferred to their individual 35 mm dish containing 5

ml of filtered Daneau water, so that free-floating impurities that could trigger hunt events are mini-

mized. For the live-prey test conditions, we added » 30 live rotifers to the same dish as above, and

then topped up prey numbers prior to placing the dish on the recording rig. Once the dish was

transferred onto the recoding rig, we let it settle for 5–10 min before starting the recording

software.

Our recording setup is dark-field illuminated via a custom made light-ring composed of 7 infrared

(835 nm) emitting diodes (VSMY98545) that helped provide high-contrast images of both small prey

particles and larval features. These are arranged appropriately such that illumination is uniformly dis-

tributed by the converging IR light beams onto the area of the circular 35 mm petridish, therefore

eliminating light fluctuations and canceling any directional preferences arising from NIR light sources

(Hartmann et al., 2018). We provided a total of » 250 mW to the light-ring and tried to keep power

low to avoid any thermal currents in the water. Below the arena sits a Chameleon 3 FLIR camera,

with 50 mm/F2.8 lens kit MVL50M23, supplemented by a 5 mm lens spacer (CML05) to provide x3.5

magnification, and an long-pass filter so as to record in IR only. Above the arena sits a frosted-glass

on which visible light is diffusely reflected from a directed lab-bench light source, set-up on either

side of the rig (see Appendix 2). This provided sufficient lighting for the larvae to be able to see and

track prey.

Video recording was controlled via custom recording software that allowed us to limit the total

recording time to 10 min and to minimize video data, by not recording when the larva is not within a

central region of interest (ROI). This was set to a 25 mm diameter circle in the center of the 35 mm

circular petridish. Behavior was recorded at 410 images per second with a resolution 640 � 512.

Raw image sequences were then converted into compressed video files using the highly efficiency

H.264 compression codec. Recording events were automatically triggered when an object of suffi-

cient size (> 120px area) entered the central ROI, thus ignoring behavior near the edges of the

arena. Each triggered recording event was set to have a minimum duration of 30 s., and an initial

recording event is automatically triggered at the start of each experiment, even if the larva is not

within the ROI for this event. This initial short clip allows us to automatically estimate and verify the

number of prey at the start of each experiment. If a larva was still within the ROI at expiration of the
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10 timeout period, the recording time was automatically extended up to a maximum of 2 min to

wait for the larva to exit the ROI. This aimed to avoid the 10 min timeout interrupting an ongoing

hunting episode. If a larvae triggered no recording events in the empty conditions it was then

rejected and replaced by a new one on which the recording protocol was restarted, beginning with

settling in empty conditions.

Recording began at 11 am and continued throughout the day usually ending around 10pm. Dur-

ing the day, room temperature varied from 21˚C to 26˚C. Recordings from all groups were being bal-

anced for time of day, to control for circadian and temperature effects, as well as batch variability,

by recording the same number of larvae per group on each recording day. In order to determine the

appropriate sample size, we performed a standard power calculation requiring an effect size on

hunting efficiency of 0.5 (z-score), significance level of 5% and power 80%, resulting in approximately

60 animals per group based on a two-sample t-test. Overall, our dataset includes 15 batches, in total

180 larva (60 for each rearing group), which were obtained between 16 Nov 2017 and 21 August

2018. Behavioral tracking was conducted offline and was extracted from collected videos using cus-

tom video analysis software.

Behavioral tracking
Larva body tracking
Custom tracking software was written in C++, using QT for GUI development and OpenCV’s image

processing routines (Bradski, 2000). A background model is computed by employing OpenCV’s

mixture of Gaussians (MOG) background model on the initial 100 frames of video with a learning

rate of 1/400, which is then set to a nominal rate of 1/1000. On each video frame, after extracting

foreground objects, we filtered for blob area to identify a rectangular frame region that contains the

larva. Because larva heads are very similar, we found that the orientation and position can then be

easily and quickly located within this subregion using template matching. We compiled a small (20)

library of larva head samples sized 22 � 33 px and replicated each sample across 360 rotations with

a resolution of 1˚. We then utilized these in our tracking software to do template matching and iden-

tify the position and rotation of the larva’s head. The identified template rectangle framed the eyes

and swim bladder, and its center, which was located near the anterior end of the swim bladder, was

used as the reference point for tracking the larva’s position.

Eye tracking
We isolate head segment as matched by template. We upsample the head image, doubling image

width and height, then we obtain a mean intensity value by sampling points along a elliptic arc pass-

ing through both eyes. We obtain three threshold values after ranking the sampled intensities the

median, the 60 and the 85 percentile values, which are then used to to threshold the head image to

segment the eyes at different intensities. The edges from each of the thresholded images is then

extracted using Laplace edge detection. These are then combined and passed on to the ellipse

detection algorithm. We isolate the detected edges from each eye separately by splitting the edges

images into left and right panes. These are then independently processed by our customized imple-

mentation of a fast ellipsoid detection algorithm (Xie and Ji, 2002). The ellipsoids are scored based

on the number of edge pixels they overlap with, and the highest scoring ellipsoids are considered to

provide the best fit for eye shape. The angle of each eye is then read out as the angle of each eye’s

major axis relative to the body orientation. Noise from each of eye-angle trajectories is then sup-

pressed during the data processing stage by passing the eye-data through a 4th order Butterworth

low-pass digital filter (cut-off »28 Hz) Eye vergence is computed as left eye - right eye angle, letting

clock-wise being positive angles.

Tail motion
The tail motion is tracked by fitting a spine of 8 points that approximates tail length and curvature.

We employ two methods for fitting the tail spine. The first is employed on every video frame and it

uses pixel intensity to adjust spine points to detect tail midline by utilizing the fact that the tail

appears brighter than background in our images. The image of the larva is Gaussian blurred, and

the algorithm adjusts existing spine segment angles to track the center of mass of image intensity.

Each spine segment is taken in order, starting from the most anterior-proximal spine segment, and
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then pixel intensity i is sampled along the arc of drawn from rotating the spine-segment across

angles within � ¼ �40 � � � 40 from its current position. Center of mass is calculated in vector contain-

ing 80 intensity sample points COMi ¼
P

80

r¼0
r � ir=

P

r ir The segments orientation is fixed to the

angle with the maximum sampled intensity. The second method is employed more irregularly (every

four frames), and it aims to position the spine within the limits of the body contour but additionally

to fix spine length appropriately. This method uses a variational method to best position the eight

point spine within a simplified, smoothed, larval contour shape made up of 90 points. By varying the

spine parameters of length and angle, a Jacobian of matrix is computed and then a gradient in

parameter space is computed. Gradient descent minimizes a cost function defined to be the sum of

the distances of each spine point from the closest contour edge with an additional cost for fitting

short tail lengths, therefore favoring the fitting of longer spines that are contained within the con-

tour. The extracted angles of each spine segment is then noise filtered, during the data processing

stage, through a Butterworth fourth-order band-pass filter (4–123 Hz).

Detecting hunt events and labelling
Hunt events were detected via eye-vergence (Bianco et al., 2011). We define the start of hunting

episode as the time when eyes verge beyond 45˚ with each eye being at least 19˚ inwards, and the

end as the time when they diverge back out of the above range. Eye vergence needs to last at least

100 video frames (recording at 410 fps), and hunt-events need to be at least 300 frames apart, oth-

erwise they are concatenated. The isolated video frames from the hunt events detected in evoked

(prey) test conditions were played back to an independent observer, who was blind to the rearing

group. They were allowed to observe the hunt-event for as long as they needed and then they were

given a choice of labels to assign to the outcome of the event that included: Capture success with

strike, Capture success no strike, Capture failure no strike, Capture failure with strike, Failure no

strike (larva reached near the target and aborted or failed), No target (indicating events where no

prey could be seen to be tracked).

Bout detection and first turn to prey
Our data analysis was conducted via custom scripts in R (R Development Core Team, 2019). We

identify the start of hunting episode as the time when eyes verge beyond 45˚ with each eye being at

least 19˚ inwards. Larval speed is measured by tracking the center of the detected head template

position (see above), and smoothed using a low pass Butterworth filter (24 Hz). The capture bout is

the last bout prior to the head of the larva passing from the position of the prey, and we exclude

any bout that sometimes can occur immediately following prey capture (Marques et al., 2018). In

the case that hunting mode is initiated in conditions where there are multiple prey in the direction

the larva faces, we consider the hunt initiation to be prior to the turn that unambiguously identifies

the prey item that is being tracked and which the larva will attempt to capture.

Measuring larva size and prey distance
The distances are calculated based using an estimate of mm per pixel in the video calculated by

measuring the diameter of the 35 mm dish on screen in pixels. This mm/pixel ratio was estimated to

be 35/790, that is, approximately 44 mm per pixel, and this scaling was used for all measurements of

length and distance from images. For reference, single pixel errors translate to an error distance of

approximately 0.05 mm.

Larval body lengths were measured on snapshots of larvae in straight posture by taking a straight

line from the edge of the mouth-point to the point where the tail point vanishes (Appendix 1—fig-

ure 1A). Distances to prey were measured at the onset of the capture bout from the tip of the

mouth point, while larval capture speed was tracked via a point on the head located near the ante-

rior end of the swim bladder. Given our image resolution, single pixel errors are » 10% when it

comes to measuring distance from prey. Nevertheless, our measured distance from prey at the time

of the capture strike are comparable to previously reported ranges (Marques et al., 2018).

Bayesian statistics and notation
For a given dataset D described by a model M, Bayesian inference allows us to quantify the posterior

distributions of model parameters (q) according to the Bayes’ theorem:
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Pð�jD;MÞ ¼
PðDj�;MÞ �Pð�jMÞ

PðDjMÞ

where PðDj�;MÞ and Pð�jMÞ correspond respectively to the data likelihood and the prior distribution

of the model parameters. The denominator PðDj�;MÞ, also known as model evidence, defines the

normalization factor of the posterior distribution.

We employed a probabilistic programming R package RJags (Plummer, 2019) which allows us to

estimate posterior distributions using the Markov Chain Monte Carlo method (MCMC). With this

approach we can generate random samples distributed according to the posterior distribution of

the model parameters and use them to calculate averages and uncertainties of relevant variables. In

the next sections, when modeling prior distribution and data likelihood we used the following

parametrization of standard probability distributions:

. Normal distribution: Nð�; tÞ, with mean m and precision t ¼ 1=s2 defined as the inverse of the
variance.

. Negative binomial distribution: NBðp; rÞ, with 0<p � 1 being the probability, and r being the
size parameter (r � 0)

. Gamma and inverse gamma distributions: Gammaða; bÞ; InvGammaða; bÞ, with shape a and rate
b.

Finally, in the text and figure captions we evaluate probabilities of the form P½a<b�, where we

compare posteriors between two conditions by taking a large number n samples from each MCMC

and count the number of samples where a>b, and then normalize by n to get an estimate of P.

Statistical modeling of hunt rates
We counted the number of detected hunt-episodes recorded for each larvae in spontaneous and

evoked test conditions (as described in Materials and methods) and then used Bayesian inference to

estimate the mean hunt-event rate for each group. Here, a single Poisson is not sufficient to model

the occurrence of hunt events in a group of larvae, but instead a model that assumes a mixture of

Poisson processes of various rates li is required to characterize hunt-activity in the group’s popula-

tion. This mixture of rates aims to account for natural behavioral variability in hunt-rates, expected

even among larvae of the same rearing group and test conditions. For this, we employed a Gamma-

Poisson mixture, where the number of hunt events h conditional to hunt rate l in each recording

time period (fixed to 10 min) is distributed as a Poisson distribution

pðhjlÞ ¼
lhexpð�lÞ

h!
;

while hunt rates within the population are Gamma distributed

pðl;a;bÞ ¼
ba

GðaÞ
la�1 expð�blÞ:

with hyperparameters a and b.

With this setting, the marginal distribution on the number of hunt events is a negative binomial

NBðr ¼ a; p ¼ bð1þ bÞ�1Þ, which provides a simple model with two parameters to characterize and

regress each group’s mixture of hunt rates. In particular, we can express the mean hunt rate as

l¼
a

b
¼
rð1� pÞ

p

Once we infer appropriate parameters of NBðr;pÞ that fit the hunt rate data h of each group, we

can then use those parameters to extract a distribution for the mean hunt-rate. Specifically, the

model we used was h¼NBðr;qÞ with priors for q¼Uð0;1Þ and r¼Gammað1;1Þ, while the

Gammaða;bÞ distribution’s parameters, shape and rate respectively, can be recovered as

b¼ q=ð1� qÞ and a¼ r.

The model code is available on GitHub (Lagogiannis, 2020; copy archived at https://github.com/

elifesciences-publications/ontogenyofhunting_pub).
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Statistical modelling of hunt duration
We model the total hunt frames that a larva spends hunting during the recording interval. We take

the total number of frames in a video in which a larvae was engaged in hunting-mode to be a sto-

chastic quantity composed of individual hunt-frame events that occur with a rate lf . By counting the

number of hunt-frames, the model of hunt-duration becomes equivalent to the hunt frequency

model above, which counts the number of hunt-mode onsets for each larvae, and thus the negative

binomial can be used here as well. Instead of counting hunt-events, we here count the total number

of video frames each larvae spent in hunting mode. Note, we excluded larvae that produced no

hunt events, and thus had a total hunt duration of zero frames. This is because hunt events are

defined to have a minimum frame duration of 100 frames, and larvae without any detected hunt

events make the hunt-duration distribution discontinuous.Using a model very similar to the one used

for hunt-rates (Materials and methods) we estimated the density of mean hunt-duration through the

negative binomial � ¼ Rfpsrð1� qÞ=ðqÞ, where Rfps is the fps of video acquisition (410 fps), while q

and r are the inferred model parameters from the duration data.

Statistical modeling of hunt efficiency
We define the capture efficiency of each larva as the fraction of hunt events it performed that ended

with successful capture, over the total number of hunt events in which prey capture was attempted.

Larvae which did not perform any capture attempts are excluded from this analysis.

We utilized the earlier hunt-rate model (Materials and methods), to model the distribution of cap-

ture attempts h of each larval group,

h~NBðr;qÞ (1)

q~Uðl;uÞ l¼ 0; u¼ 1 (2)

r~Gammaða;bÞ a¼ 1; b¼ 1 (3)

here it is extended to infer the probability ps of successfully capturing a prey. For this, we used a

binomial distribution to model the number Ns of successful captures in the 10 min recording period

Ns ~Bðps;hÞ (5)

ps ~Betaða;bÞ a¼ 1; b¼ 1: (6)

which depends on the total number of events h. By using Bayesian inference, we estimated the dis-

tribution of capture probability ps for each group independently.

Linear regression of turn to prey behavior
The data used for this model are the magnitude of the first turn toward prey f and the prey azimuth

q, prior to the larva turning toward the prey. Data points are pooled for each rearing group. We

characterized each group independently using a linear model and performed a Bayesian analysis of

the linear coefficients, which enables us to compare rearing groups using their posterior distribu-

tions. The linear regression model for each group is defined as:

f~ Nðb0 þb1�;1=s
2Þ; (7)

which assumes the errors are independent and identically distributed as normal random variables

with mean zero and variance s2, for which we used an inverse gamma prior

s2 ~ InvGammaðs; rÞ; s¼ 5; r¼ 2 (8)

while for the linear coefficients we used

b0 ~ Nð�; tÞ �¼ 0; t¼ 2 (9)

b1 ~ Nð�; t1Þ �¼ 0 (10)

t1 ~ Gammaða;bÞ a¼ 1; b¼ 1 (11)

Our aim is to update the initial guess distributions for the model’s b0;b1;s
2 for each rearing

group according to its relevant data points. We then report and compare the density estimates for
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the slope parameter b1 of each group’s model, after smoothing using a Gaussian kernel (BW =

0.01), on Figure 5E.

Classification of fast and slow capture swims
The final motion with which a prey is captured is executed with a range of speeds indicating differ-

ence in vigour. Broadly speaking, we observe two types of capture motions, a stereotyped fast

speed capture swim, which is usually successful executed with the larva standing at some distance to

the prey, and a weak bite capture, which can only be successful if executed when the prey is very

close or touching the larva.

Our tracking system is not able to automatically give us reliable and accurate information on the

distance to prey prior to capture, as small position errors get magnified due to low video resolution.

Thus, we decided to conduct supervised tracking of the specific hunt events, to minimize errors but

also verify the validity of our data. The video frames during final capture were re-analyzed and the

distance from the edge of the mouth-point d to the prey position was measured with the help of a

user distance measurement tool that we built into our tracker (see Materials and methods). These

distances were then used as data on distance to the prey at prior to the capture bout. Capture

speed s is measured as the peak speed of the final bout occurring between the frames starting from

the frame of capture bout onset (on which the prey-distance is manually measured) and up to the

first time the larva’s speed goes below a motion detection threshold (4 mm/sec) in the frames pro-

ceeding the time of when the larva’s centroid has reached the closest point to the prey.

Capture speed sc and distance to prey dc were modeled using a mixture of two bi-variate normal

distributions to accommodate slow and fast events labeled using the index c ¼ fs; f g:

sc

dc

0

B

@

1

C

A
~N

�c
s

�c
d

� �

;
sc
s
2 �csc

ssd

�csc
ssd s2

d

 !" #

; (12)

where �c
s and �c

d are respectively the mean speed and distance to prey, sc
s and sc

d the standard devi-

ations and �c is the correlation coefficient between speed and distance for each cluster c. We used

the following priors on the mean and covariance parameters

�s
s ~Nð�; tÞ �¼ 5; t¼ 10

1

2 (13)

�s
d ~Nð�; tÞ �¼ 1=2; t¼ 10 (14)

ss
s ~Uða;bÞ a¼ 0; b¼ 2 (15)

sd ~Uða;bÞ a¼ 0; b¼ 1 (16)

�s ~Uða;bÞ a¼�1; b¼ 1 (17)

for the slow group and

�f
s ~Nð�; tÞ �¼ 35; t¼ 10

1

2 (18)

�f
d ~Nð�; tÞ �¼ 1=2; t¼ 10 (19)

sf
s ~Uða;bÞ a¼ 0; b¼ 10 (20)

sd ~Uða;bÞ a¼ 0; b¼ 1; (21)

�f ~Uða;bÞ a¼�1; b¼ 1 (22)

for the fast group, with a narrow ss to add the prior belief that low capture speeds are positioned in

narrow range at the lower end in the range of capture speeds observed. The prior on group mem-

bership was 0.5 for fast and slow capture.

The standard deviation for capture speed is wider and is representing the prior belief that fast

capture speeds occupy a wide range of speeds above the slow captures modes. Indeed beyond

slow captures, capture speeds do not appear stereotyped and are seen to vary probably in relation

to other parameters such as distance to prey. Note the prior for distance to prey is set identically for

both clusters and as such we expect the data to inform the mean distance of each cluster.

The probability of membership on either cluster c 2 0; 1 for fast/slow is estimated from a normal

distribution with as pf ¼ N
P

Iðci ¼ 1Þ=N; 0:03ð Þ, where Iðci ¼ 1Þ is equal to 1 if data point i has been
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assigned to the fast cluster. Data points were assigned to the fast cluster if the expected cluster

membership label was E½c�>0:7, otherwise they were considered as slow capture swims.

Statistical modelling of group behavior
We built a hierarchical statistical model to estimate mean group behavior that is based on model

estimates of mean hunting behavior per larva. This is a generalization of our earlier model of cap-

ture-speed and distance, only here the top level structure is single multivariate normal distribution

that models Xg, a vector containing estimates of mean capture speed S, distance to prey D and turn-

ratio T for each larva. Details of this model and example code can be found in the code repository

https://github.com/kostasl/ontogenyofhunting_pub/blob/master/stat_3DLarvaGroupBehaviour.r

(Lagogiannis, 2020).

PCA of larval hunting behavior and predicting efficiency
Principal component analysis can reduce the dimensions needed to describe a large set of corre-

lated predictor variables to a smaller, less correlated set of covariates, that nevertheless maintains

most of the information in the larger set. A subset of the resulting covariate components can then

be used to regress an outcome variable, effectively producing a model that predicts a response

based on a subset of principal components.

The process of obtaining principal components involves constructing a covariance matrix A of our

observation data and then calculating its eigen decomposition. For our analysis, we constructed a

matrix of vectors, each one representing the hunt behavior of each larvae estimated from measure-

ments taken from successful hunt episodes alone. For each larva i we defined vector

~vi ¼ he; n;EðcÞ;EðdÞ;EðgÞi, where n ¼ Ns þ Nf is the capture attempts recorded for larva i, e ¼ Ns=n

denotes its capture efficiency, EðdÞ is the mean distance to prey estimated from the onset of the

capture bout across a larva’s hunt events, and EðgÞ is mean turn-ratio at the initial turn towards prey.

For Figure 7, we derive the expected values per larva from the results of our earlier group model

(see Materials and methods), while in Figure 7—figure supplement 5 we used empirical means

(EðxÞ ¼
P

n xi=n) to estimate the mean hunt behavior. In order to ignore any scale effects of covari-

ance on PCA, we standardized the variables using

_xi ¼ xi��x=sx: (23)

With the exception of turn-ratio where �x ¼ 1, �x was set to the mean value of each behavioral

variable x calculated across larval vectors.

Each principal component packs correlated variables that could possibly act as better predictors

and provide compact regression models in situations where there many predictor variables and rela-

tively few samples. We used the pls package (Wehrens and Mevik, 2007) in R (R Development

Core Team, 2019), to conduct principal component regression of larval efficiency using a linear

model and the principal components of matrix of hunt behavior estimators of ~vi. The algorithm

reported that using three PCs gave the smallest root mean square prediction error with coefficient

of variation CV = 0.133, capturing 31.7% of efficiency variance.
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Appendix 1

Feeding regimes have detectable effects on growth
To test whether the different feeding regimes influence the development and growth of larvae we

measured body lengths, as shown on Figure 1, for each feeding group from 7dpf images of larvae

taken from the recording videos (n ¼ 37 NF,n ¼ 40 LF and n ¼ 57 DF). Figure 2K–M show distribu-

tion of measured body lengths in the different feeding regimes, while Figure 2N estimates the

mean larva lengths of each feeding group using a Gaussian model, and we find these are very close

between groups. The probability density for each feeding group (Figure 2K) show small but distinct

differences in mean body length, with live-fed larvae showing a statistical significant different mean,

0.2 mm longer on average from the not-fed group. These results also reveal that the dry-fed group

does indeed receive some nutritional value from the feeding regime we provided, and thus can act

as control for the effects of nutrition.
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Appendix 1—figure 1. Analysis of larval length shows small statistical differences in mean length,

with larvae on live-prey being the longest. (A) Larval length is measured in pixels from mouth point

to edge of tail on video frames when the larva is not in hunting mode and in straight posture. As the

tail-fin is not visible or measured, our measurements are equivalent to the established

developmental measures of standard-length (SL) (Parichy et al., 2009), which we convert from

pixels to mm using an estimate of the mm/px calibration of our setup. (B–D) Distribution of body

lengths in the different feeding regimes. Dotted black lines indicate kernel density smoothed

distributions of measured larva lengths (Gaussian kernel BW = 0.1) and solid lines show 30 samples

of likely body length distributions based on a Gaussian model fit, whose parameters (m,s) were

estimated from the data using Bayesian inference. (E) The estimated probability densities of mean

body length based on Gaussian model fitting. The estimated mean SL of each feeding group (NF =

4.15 mm, LF = 4.37 mm, DF = 4.21 mm) are distinct, (P½LF>NF�>0:99), (P½LF>DF�>0:98) and

(P½DF>NF�>0:97), with LF having the largest mean length, being larger to NF by �LF�NF » 0:2 mm and

�LF�DF » 0:1 mm.

The relationship of larval length against hunting ability is examined in n Figure 3—figure supple-

ment 1, showing that hunting ability is not correlated to larval size in controls, but only in live-food

reared fish. This suggests that hunting ability can explain larval growth while the differences in larval

size found within each group do not affect prey capture ability, at this stage in development. Inter-

estingly we find evidence that larger DF larvae are likely worse hunters, suggesting that the skills for

feeding on dry food are counter productive against live-prey.
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Appendix 2

Recording apparatus
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Appendix 2—figure 1. Behavior imaging system. Behavior is recorded from below a 35 mm

petridish arena, with the camera connected to custom software such that after triggering a default

recording event at the start experiment, subsequent recordings events are triggered when the larva

is within a circular region of interest (ROI). An a long-pass filter is fitted on the camera lens, and a

custom IR light-ring illuminates the arena uniformly. Diffused light is used to illuminate the arena,

that obtained via lab-bench light-source pointing upwards onto a frosted glass that sits above the

arena. The event ROI is set such that Behavior is recorded only when larval is sufficiently away from

the edge of the petridish. The recording session timeout is 10 min, beyond which time new

recording events are not triggered. The maximum duration of recording events is limited to two

mins. If the larva is still in the ROI after those 2 min, and the maximum experimental period (10 min)

timeout has not been exceeded, then a new recording event is initiated.
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Appendix 3

Hunting sequence tracker frames

Appendix 3—figure 1. Example frames from a hunting sequence being tracked via our software

showing initial detection of prey, turn to prey, approach and capture. The eye vergence angle is

detected and shown at the top right of the screen.

Appendix 3—video 1. Re-tracking a successful capture event within a custom ROI: slow playback

speed x1/16.

https://elifesciences.org/articles/55119#A3video1
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Appendix 4

Capture travel-time to prey against capture distance
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Appendix 4—figure 1. The time it takes to reach prey for successful fast capture swims does not

strongly depend on the distance from which these are executed. Points are coloured according to

the classification in capture speed as in Figure 4 Yellow: fast-capture swims, cyan:slow capture

swims. In all groups the time to reach prey is longer for the capture swims that were clustered as

slow, while for fast-captures swims the timing is more compactly distributed below 0.15 s.

Maintaining such timing would require adjusting capture speed with prey-distance. It appears that

LF (B) can regularly do this even for prey distances beyond 0.4 mm, where successful hunt episodes

from NF, DF (A,C) are rare. The overall distributions of time-to-reach prey match the ranges of

maximum gape-timing reported in Mearns et al., 2020, and therefore support the hypothesis that

time of maximum gape is synchronized to the time the larva reaches/hits prey during a capture

swim.
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Appendix 5

Calculating the sensitivity of prey azimuth � to distance r
We would like to analyse how the relative prey motion can affect the aiming accuracy of larvae, and

how this is influenced by the prey speed and its relative position.

Figure 1 depicts how prey azimuth q is modified differently depending on whether a prey is origi-

nally located at distance a1 (near) or a2 (far), before it travels a distance b orthogonally to the larva’s

midline. It is easy to see that the prey that was originally near at a1 is the one that causes a larger

change in prey-azimuth d� after it travels distance b. Therefore, assuming prey travels at a speed

Db=Dt, the azimuth’s angular velocity �0, will also dependent on prey distance. This movement could

significantly affect aiming accuracy, and therefore capture success, depending on whether prey

speed is sufficient to cause large deviations in � during movement over the last inter-bout interval

preceding the capture swim.

To examine this, we let a,b be Cartesian coordinates of prey relative to the position of a larva’s

mouth, with a denote the straight line distance pointing along the larva’s heading extending from

the midline, and b being the prey distance normal to this midline axis (see Appendix 5—figure 1).

We define a function for prey azimuth � ¼ f ðb; rÞ (the bearing angle to prey), with r being the

straight line distance to prey, and proceed to obtain the total derivative, which we can use to make

make a linear approximation of change of q about prey position (a,b).
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Appendix 5—figure 1. The aiming accuracy prior to a capture swim is strongly dependent on cap-

ture distance for the observed prey speeds. (A) The distribution of mean prey travel speeds is

estimated by measuring the total displacements per second from a random sample of videos each

containing approximately n » 15� 30 freely swimming Rotifers. By analysing tracks of prey motion we

estimated mean travel speeds by excluding track regions where prey is not moving (prey

displacement is <0.05 mm/sec), and obtained the distribution of mean speeds using kernel density

methods (BW = 0.1). This is a skewed distribution, with overall mean prey speed estimated at 0.46

(mm/sec) SE: 0.007, and maximum of 2.5 mm/sec. (B) To maintain prey azimuth within the range of

observed in successful captures (ie., ±25˚), assuming prey is moving at average speed ( » 0.5 mm/

sec), then capture distance needs to be >0.2 mm. This is shown by calculating the changes in q

(dots) between prey moving from initially in front of the larva at a distance a ¼ r, with b0 ¼ 0 (ie.

� ¼ 0) to different positions b1 during a typical interbout interval of 200 ms. The lines show how our

linear approximation model, which uses the derivatives evaluated at position bo, r, capture the

growth of D� with increasing prey displacement (Db) and decreasing distance r. (C) Diagram showing

how for prey moving at a fixed speed b the angular velocity of prey azimuth increases with distance
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from the larva. Thus, corrections to aiming prior to executing a capture swim become harder when

the prey is closer, as they increase with r�2 (see text).

We first derive an expression for how sensitive prey azimuth � is depending on prey distance r,

(at some position b), as q�
qr
. Noting that

a¼ r cosð�Þ (24)

b¼ r sinð�Þ (25)

�¼ sin�1ðb=rÞ (26)

we begin can capture the change in angle � as the derivative with respect to r:

q�

qr
¼�

b

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2ð�Þ
q

¼�
b

r2
ffiffiffiffiffiffiffiffiffiffiffiffi

1� b2

r2

q

(27)

which hints that prey azimuth angle changes inversely proportional with the square distance r, and

thus for prey located a distance beta off the midline axis changes in prey distance, Da can dispropor-

tionally effect prey azimuth.

Next, we need to consider changes in azimuth given prey movement , assuming that prey moves

a distance Db during the inter-bout interval preceding a capture swim. For this we follow a proce-

dure similar to the above to obtain

q�

qb
¼

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�b2=r2
p

r
(28)

shows azimuth is inversely proportional to distance. Using the above derivatives about we can then

obtain a linear approximation function for the change in azimuth D� against a prey moving a distance

b, assuming its initial position is at ðb0; rÞ.

D�ðbÞ ¼ b
q�ðb0 ;r0Þ

qr

dr

db
þ
q�ðb0;r0Þ

qb

� �

(29)

where

dr

db
¼

b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 þ r2
p : (30)

Appendix 5—figure 1B plots this linear approximation function in comparison to calculated

changes using Equation (26) within a ranges typical prey travel speeds and capture distances. The

linear approximation begins to fail over faster prey speeds at small distances, it nevertheless cap-

tures the essential point that over close prey distances r<0:2mm relatively fast moving prey can

cause large azimuth changes of over 40˚. Our calculated results are in agreement with prior reports

that the angular velocity of prey azimuth monotonically increases from 21˚ to 67˚, between the 1 st

and 4th prey-pursuit bout (Trivedi and Bollmann, 2013).

Given that in most successful capture events (>75 %) we find prey being between � ¼ �25
� azi-

muth (see Figure 6—figure supplement 1), moving prey at that proximity is most likely difficult to

catch and could partly explain the differences in capture success between DF (naive) and LF (experi-

enced) groups. For example, prey moving tangentially, across the horizontal field of view, at a prey

distance of 0.2 mm, common to the DF group, with an average prey speed (0.5 mm/sec) (Figure 1)

will generate a 26˚ deviation in prey azimuth during a typical inter-bout interval (200 ms); increasing

the distance by Dr ¼ 0:25 mm, towards a range typical of LF capture swims, will reduce the deviation

in azimuth from 26˚ down to 12˚; If we assume prey is twice as fast, at 1 mm/sec , the above devia-

tions would typically become 45˚ for DF, and 21˚ for LF.

Further, the comparison shows that over longer prey distances (r ³0:2 mm), the linear function can

predict the change in azimuth with approximately less than <5˚ error, yet this error is magnified to
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18˚, at 0:1£r<0:2 mm, and to 43˚ when considering capture distances as close as r » 0:05 mm. This

means that a simple linear control rule that is based on prey-speed could be used to accurately

anticipate prey position (see Bolton et al., 2019), provided prey is tracked at sufficient distance

that exceeds 0.2 mm.
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