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Phagocytosis is a highly conserved aspect of innate immunity. We used Drosophila melanogaster S2 cells as a model
system to study the phagocytosis of Candida albicans, the major fungal pathogen of humans, by screening an RNAi
library representing 7,216 fly genes conserved among metazoans. After rescreening the initial genes identified and
eliminating certain classes of housekeeping genes, we identified 184 genes required for efficient phagocytosis of C.
albicans. Diverse biological processes are represented, with actin cytoskeleton regulation, vesicle transport, signaling,
and transcriptional regulation being prominent. Secondary screens using Escherichia coli and latex beads revealed
several genes specific for C. albicans phagocytosis. Characterization of one of those gene products, Macroglobulin
complement related (Mcr), shows that it is secreted, that it binds specifically to the surface of C. albicans, and that it
promotes its subsequent phagocytosis. Mcr is closely related to the four Drosophila thioester proteins (Teps), and we
show that TepII is required for efficient phagocytosis of E. coli (but not C. albicans or Staphylococcus aureus) and that
TepIII is required for the efficient phagocytosis of S. aureus (but not C. albicans or E. coli). Thus, this family of fly
proteins distinguishes different pathogens for subsequent phagocytosis.
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Introduction

Dedicated host phagocytic cells suppress microbial pro-
liferation by engulfing pathogens and subsequently engaging
additional host defenses through cytokine production and
antigen presentation [1–3]. Pathogen recognition activates
signaling pathways within the phagocytic cell that induce the
rearrangement of the actin cytoskeleton and thereby lead to
engulfment of the pathogen. For example, signaling activates
Rho family GTPases, which regulate actin assembly during
phagocytosis [4]. In addition to actin rearrangements,
insertion of new membrane occurs at the site of phagosome
assembly, contributing to the membrane protrusions elabo-
rated during engulfment [5,6]. Although the morphological
changes and cytoskeletal rearrangements that occur during
phagocytosis have been well described, there have been, until
recently, few attempts to comprehensively identify the
cellular components that are required for phagocytosis, and
these have used bacterial species [7–10]. With this in mind, we
have undertaken a systematic approach to identify host genes
required for the efficient phagocytosis of a fungal pathogen,
Candida albicans.

C. albicans is a common commensal fungal organism found
in the gastrointestinal tract and other tissues of more than
50% of healthy adults [11]. Extremes of age, injury, antibiotic
use, and a compromised immune response predispose
individuals to the development of mucosal or life-threatening
systemic infections. C. albicans is the now the fourth most
common organism detected in systemic infections [12], and
mortality approaches 35% [13]. The predisposition of
neutropenic and HIVþ patients with decreased CD4þ T cells
to C. albicans infections suggests that both innate immunity

and acquired cell-mediated immunity are involved in
mediating host resistance to C. albicans infections [3,14].
The genetically tractable fruit fly, Drosophila melanogaster, is

a well-established system for studying conserved components
of innate immunity [1,2,15]. For example, studies in Drosophila
were instrumental in revealing the significance of Toll
signaling in the innate immune response [16,17]. In addition,
Drosophila has been successfully used to study the interaction
of several human pathogens—including Listeria monocytogenes,
Plasmodia, Mycobacterium marinum, and C. albicans—with con-
served features of the innate immune system [18–22].
Drosophila plasmatocytes are macrophage-like cells and the

predominant of three distinct hemocyte types: they phag-
ocytose cell debris and invading microbes. Phagocytosis
appears important for full immunity against pathogens, as
blocking phagocytosis in imd mutant flies sensitized them to
infection with Escherichia coli [1]. The Drosophila S2 cell line is
believed to be derived from embryonic plasmatocytes and
shares many properties with plasmatocytes, including robust
phagocytosis [23]. The advent of RNA interference (RNAi)
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and the availability of genomic RNAi libraries open new
possibilities for the exploration of phagocytosis in this model
system. RNAi in S2 cells has been used to systematically study
phagocytosis of E. coli, L. monocytogenes, and Mycobacterium
fortuitum [7,9,10], and RNAi in vivo in Anopheles gambiae to
study phagocytosis of E. coli and Staphylococcus aureus [8]. In
this paper, we describe a high-throughput assay to study the
phagocytosis of C. albicans by the S2 cell line. Using this RNAi-
based screen, we have explored the roles of 7,216 evolutio-
narily conserved genes in the phagocytosis of C. albicans by S2
cells. From this screen, we identified 184 genes required for
the efficient phagocytosis of C. albicans. In many cases, we
identified multiple subunits of known protein complexes or
multiple components of known biochemical pathways. In
secondary assays, we distinguished genes specifically required
for the phagocytosis of C. albicans from those required
generally for phagocytosis. We performed additional experi-
ments with one such Candida-specific component, Macro-
globulin complement related (Mcr), a protein highly
conserved in metazoans (CG7586). We show that Mcr is
required for the efficient phagocytosis of C. albicans, but not
that of E. coli, S. aureus, or latex beads. We also demonstrate
that Mcr is secreted into the media of S2 cells and binds the
cell surface of C. albicans, presumably leading to recognition
and phagocytosis by S2 cells. We also show that Mcr exhibits
specificity in its recognition of the cell surface of C. albicans.
Mcr binds more to wild-type C. albicans than to a C. albicans
mutant (Defg1/Defg1) or to the common laboratory strain of
Saccharomyces cerevisiae (S288c), both of which are poorly
phagocytosed. Mcr has four close relatives in the Drosophila
genome, thioester proteins (Tep), known as TepI, TepII,
TepIII, and TepIV (TepI: CG18096; TepII: CG7052; TepIII:
CG7068; TepIV: CG10363). None of the four Teps is required
for efficient phagocytosis of C. albicans; however, we show that
TepII is required for efficient phagocytosis of the gram-
negative bacteria E. coli and TepIII for efficient phagocytosis
of the gram-positive bacteria S. aureus. These findings show
that different members of this conserved group of five
proteins show specificity for different pathogens and support
studies conducted in mosquito that suggested that these
proteins act as a primitive complement system targeting
pathogens for immune destruction [8,24,25].

Results

Phagocytosis of C. albicans by Drosophila S2 Cells
D. melanogaster is rapidly emerging as a model system to

study numerous human pathogens including C. albicans
[7,9,18–20,22]. To investigate whether the hemocyte-derived
fly S2 cell line efficiently phagocytoses C. albicans, we co-
incubated green fluorescent protein (GFP)–expressing C.
albicans with S2 cells, fixed the samples, and monitored
adherence and phagocytosis of C. albicans (Figure 1A). Within
a few minutes of mixing, many S2 cells were bound by C.
albicans, and some S2 cells exhibited actin-rich cytoplasmic
protrusions forming toward the C. albicans (arrows in panel i
in Figure 1A). By 30 min, evidence of C. albicans phagocytosis
was clear, with the actin cytoskeleton forming pseudopodia
engulfing the C. albicans (arrowheads in panel ii in Figure 1A).
After 1 h of co-incubation, many S2 cells had engulfed at least
one C. albicans cell (panel iii in Figure 1A). Engulfment of C.
albicans led to changes in S2 cell morphology, including

condensation and displacement of the DNA. To quantify the
phagocytosis, we scored the percentage of S2 cells that had
internalized one or more C. albicans cells (Figure 1B). Under
these conditions, approximately 50% of S2 cells phagocy-
tosed at least one C. albicans within 3 h. Phagocytosis did not
critically depend on the C. albicans cells being alive, as heat-
killed C. albicans cells were phagocytosed in significant
amounts (Figure 1B). The difference between live and heat-
killed C. albicans is probably attributable to the fact that live C.
albicans were actively dividing over the timecourse, whereas
the numbers of heat-killed C. albicans obviously did not
increase. In contrast to C. albicans, a common laboratory
strain of S. cerevisiae (S288c) was poorly phagocytosed,
indicating that there may be a specific mechanism of
recognition of C. albicans not shared by all fungi. We detected
only a low level of adherence of S. cerevisiae to the surface of

Figure 1. Phagocytosis of C. albicans by Drosophila S2 Cells

(A) The Drosophila hemocyte-like S2 cell line phagocytoses C. albicans. S2
cells were co-incubated with GFP expressing C. albicans for the indicated
times. Cells were fixed, and the filamentous actin of S2 cells was stained
with rhodamine phalloidin and the S2 cell DNA with Hoechst 33258.
(B) Quantification of phagocytosis of C. albicans and S. cerevisiae by S2
cells. S2 cells and the indicated fungal strain were co-incubated for
various times, and the percentage of S2 cells that had phagocytosed one
or more C. albicans was quantified by counting 50–100 S2 cells. The
maximum time shown is 3 h, as the levels of phagocytosis did not
significantly increase after this timepoint. Results are the average of four
experiments, and the error bars indicate the standard deviation. As
described in Materials and Methods, the 3-h results were evaluated for
statistical significance using the t-test, assuming unequal variance. As
indicated by the asterisks, the values for heat-killed C. albicans and S.
cerevisiae were statistically different from that of live C. albicans, with a
confidence level p , 0.01.
DOI: 10.1371/journal.pbio.0040004.g001
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S2 cells, indicating the reduced phagocytosis is likely due, at
least in part, to a difference in recognition of S. cerevisiae
versus that of C. albicans (unpublished data).

Identification of Genes Required for Phagocytosis of C.
albicans

As phagocytosis is such a critical element of metazoan
immune responses to invading microorganisms, we used a
library of 7,216 double-stranded RNAs (dsRNAs) representing
most of the phylogenetically conserved genes of D. melanogaster
to identify cellular components responsible for phagocytosis
of C. albicans. In an initial visual screen, S2 cells treated with
dsRNA for 4 d were mixed with GFP-expressing C. albicans.
Cells were lightly fixed without detergent to prevent perme-
abilization of the plasma membrane and stained with a
polyclonal antibody against whole-cell lysates of C. albicans
and a Cy3 conjugated secondary antibody. Under these
conditions, C. albicans cells in the media fluoresce green with
a red outline, while those phagocytosed by S2 cells appear only
green (Figure 2A). Wells were visually scored for a reduction in
the number of phagocytosed cells, visible as green-only cells
(Figure 2A). The effect of each of the 7,216 dsRNAs was
independently scored by two investigators. The small numbers
of discrepancies in the initial pass were resolved through
additional screening. In addition, wells with reduced phag-
ocytosis were further investigated to rule out a general
cytotoxic effect for a decrease in phagocytosis, as described
in Materials and Methods. In all cases, the scoring was carried
out without knowledge of the genes represented by the dsRNA.

From this screen, we initially identified 401 dsRNAs that
significantly decreased S2 cell phagocytosis of C. albicans. A
significant number of these genes represented different
subunits of large protein assemblies that carry out general
aspects of gene expression and protein turnover in the cell.
For example, we identified 45 different ribosomal subunits,
31 RNA processing enzymes, 15 general transcription
proteins, and 30 proteasome subunits (Table S1). The high
frequency of dsRNAs in these categories is not due to lack of
specificity of the approach. Indeed, the fact that we identified
so many of the ribosome and proteasome subunits indicates a
high degree of internal consistency. We reasoned that genes
involved in these generic processes are likely to influence
phagocytosis indirectly and hence have excluded them from
further analysis. We note that another screen for phagocy-
tosis of intracellular bacteria obtained and excluded a large
class of ribosome and proteasome genes [7].

We resynthesized and retested the remaining 280 dsRNAs
for reduction of C. albicans phagocytosis. For this analysis, we
quantified the efficiency of phagocytosis and rejected dsRNAs
whose effects failed to meet a specified criterion. The levels of
C. albicans phagocytosis were quantified as the percentage of
S2 cells that had phagocytosed one or more C. albicans, based
on a sample size of roughly 100 S2 cells for each dsRNA. We
defined a significant decrease in phagocytosis as anything less
than 1.5 standard deviations below the mean for untreated
cells (52%). Thus, dsRNAs that reduced the percentage of S2
cells phagocytosing C. albicans to 44% or below were scored as
statistically significant as explained in Materials and Methods.
One hundred eighty-four of the dsRNAs passed this addi-
tional test, which was more rigorous than our initial screen
(Figure 2B); thus, 96 genes, many of which were probably false
positives, were eliminated in the secondary screen. This new

set of 184 genes includes 52 genes known from prior studies
[4,6,7,9,26–28] to function in phagocytosis and 132 genes
whose roles in phagocytosis have not been previously
described. Of the genes previously known to function in
phagocytosis, Rac1, Rac2, Cdc42, other regulators of actin
dynamics, actin itself, all five CopI vesicle proteins, Syx5a (t-
Snare), Snap, PI3K, and InaC (Protein Kinase C) were
identified in the screen, thereby confirming the validity of
the methodologies (Figure 2 and Table S2). Because the
dsRNA collection represented conserved genes, many of the
biochemical functions of the genes not previously implicated
in pathogenesis can be surmised. The 184 genes in the screen
can be broken down into the following categories: (1) actin,
actin-regulating, and actin-binding proteins (21 genes); (2)
vesicle transport, including all five CopI vesicle coat proteins
(Cop), several snare proteins, and several regulators of vesicle
function (16 genes); (3) sequence-specific DNA-binding
proteins that presumably regulate gene transcription (30
genes); (4) signaling components, seven of which have been
previously implicated in phagocytosis (27 genes); (5) a set of
genes annotated as being involved in immunity and defense
against pathogens (eight genes); (6) a catchall category of
miscellaneous functions, including protein degradation,
metabolism, protein transport, and protein folding (57
genes); and (7) conserved genes having no known function
(25 genes).
Agaisse et al. and Philips et al. [7,9] described genes

required for the microbial entry and survival in S2 cells of
two bacteria, M. fortuitum and L. monocytogenes, by S2 cells, and
it is useful to compare the results of these screens with our
results for C. albicans. Of the 184 genes identified in our
screen, only 21 and 33 genes, respectively, are shared with
these two other screens. Most of the overlapping genes
encode actin regulatory proteins and vesicle transport
proteins, suggesting these processes are particularly impor-
tant for phagocytosis. There are several possible reasons why
the overlap among the screens is not more extensive, and they
are taken up in the Discussion.
Of the genes identified in our screen, we wished to

distinguish those specifically required for phagocytosis of C.
albicans from those with a more general role in phagocytosis.
We therefore tested all 184 dsRNAs that impaired C. albicans
phagocytosis for their effects on the phagocytosis of GFP-
expressing E. coli and yellow-green fluorescently labeled latex
beads (Figure 2C–2E). Wild-type S2 cells efficiently phagocy-
tose E. coli (Figure 2D) and, to a much lesser extent, latex beads
(Figure 2E). The phagocytosis of latex beads required much
longer incubation times to detect significant amounts of
phagocytosis, an observation that presumably reflects the lack
of pathogen-specific signals on their surface. While most
dsRNAs identified in the screen affected phagocytosis of all
three challengers, a small number affected phagocytosis of C.
albicans only. Other dsRNAs reduced phagocytosis of all three
challengers but affected C. albicans to a much greater extent
than that of E. coli or latex beads (Figure 2F; see Table S2). For
the remainder of this study, we concentrate on one dsRNA
that specifically impaired phagocytosis of C. albicans. This RNA
corresponds to a gene annotated in Flybase as Drosophila Mcr.

Mcr-Dependent Phagocytosis of C. albicans
The Drosophila Mcr protein is a member of the a2Macro-

globulin/complement family of proteins (Figure 3A). To
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confirm its selectivity for C. albicans, we quantified with a
detailed timecourse the relative phagocytosis of C. albicans, E.
coli, and latex beads by S2 cells treated with dsRNA against
Mcr or, as a control, against SCAR dsRNA (Figure 3B–3E).
SCAR is an actin-nucleating protein that is required for the
phagocytosis of C. albicans, E. coli, and latex beads (see Table
S2). RNAi against Mcr reduced phagocytosis of C. albicans, but
not E. coli or latex beads when compared with untreated cells.
In contrast, RNAi against SCAR strongly affected all three
reactions (Figure 3B–3E). To confirm that the reduction in
phagocytosis after treatment with Mcr dsRNA was indeed due
to a reduction in the Mcr gene product, we designed a second
dsRNA against the 39 untranslated region (UTR) of Mcr. RNAi
against either Mcr or the Mcr 39 UTR similarly reduced
phagocytosis of C. albicans, confirming that Mcr is indeed
important for phagocytosis of C. albicans (Figure 3F).

The Mcr/Tep Family of Proteins Determine Specificity of

Pathogen Phagocytosis by Drosophila S2 Cells
Mcr is closely related to a family of four Teps in Drosophila

[29]. Indeed, Mcr has been referred to in at least one
publication as Tep6 [30]; however, it lacks the cysteine residue
that forms the defining thioester of the Teps. TepI, TepII,
TepIII, and TepIV were represented in our library of dsRNAs,
yet Mcr was the only family member identified in the screen
as being required for phagocytosis of C. albicans. This finding
and characterization of mosquito Tep1 suggest that Mcr and
the four Teps may be involved in the phagocytosis of specific
classes of pathogens [8,25]. To test this idea, S2 cells treated
with dsRNA against SCAR, Mcr, and each of the four Teps
were tested for their ability to phagocytose three different
pathogens (Figure 4). To represent a broad spectrum of
pathogens, we used C. albicans, E. coli (a gram-negative
bacterium), and S. aureus (a gram-positive bacterium). RNAi
against SCAR reduced phagocytosis of all three pathogens
(Figure 4A–4C). Of Mcr and the Teps, phagocytosis of C.
albicans was only decreased by dsRNA against Mcr (Figure 4A),
an outcome predicted from the results of the screen.
Phagocytosis of E. coli was decreased only by TepII dsRNA
(Figure 4B), and S. aureus by TepIII dsRNA (Figure 4C). These
results indicate that Mcr and the four Teps constitute a family
of proteins, the members of which provide specificity in the
phagocytosis of different pathogens.

S2 Cells Secrete Mcr into the Culture Medium
It seems likely that Mcr is a secreted protein, since it

contains a putative signal sequence and is related to
mammalian a2M, to mammalian complement components,
and to Anopheles aTep1, all of which are known to be secreted
(see Figure 4). Cell lysates and conditioned media from S2
cells were analyzed by SDS-PAGE and Western blotting with a
primary antibody raised against a peptide located near the
amino terminus of Mcr (Figure 5A). Full-length Mcr
(approximately 200 kD) was detected in both cell lysates
and in conditioned media, indicating that Mcr is a secreted
protein. To verify that this 200-kD species is Mcr, we analyzed
its levels in cells and media that were treated with RNAi
(Figure 5B). RNAi against SCAR did not significantly change
the levels of Mcr in either cell lysate or conditioned medium,
whereas RNAi against Mcr significantly reduced the levels of
the 200-kD protein in both of them (Figure 5B). If Mcr
secretion is relevant to phagocytosis, providing Mcr in
conditioned media should alleviate the phagocytosis defect
in S2 cells treated with RNAi against Mcr. At the start of the
phagocytosis assay, untreated S2 cells, SCAR RNAi-treated S2
cells, and Mcr RNAi-treated S2 cells were diluted into either
fresh media or conditioned media (from untreated S2 cells)
and tested for phagocytosis of C. albicans (Figure 5C). SCAR
RNAi and Mcr RNAi both severely suppressed phagocytosis in
fresh media. The addition of conditioned media slightly
increased phagocytosis by SCAR-treated cells but significantly
increased phagocytosis by Mcr-treated cells to levels near
those of untreated cells. Conditioned media from Mcr RNAi–
treated cells only partially increased phagocytosis activity,
indicating that conditioned media from wild-type S2 cells is
required for a full rescue of phagocytosis (unpublished data).
These results indicate that Mcr presence in the conditioned
media is required to rescue the loss of phagocytosis by Mcr
RNAi treatment (Figure 5C). These experiments also indicate
that Mcr is efficiently synthesized and secreted by S2 cells
prior to their exposure to C. albicans.

Specific Binding of Mcr to the C. albicans Cell Surface
To test whether Mcr can directly bind to the surface of C.

albicans cells, C. albicans cells were incubated with conditioned
media from untreated S2 cells, precipitated, washed exten-
sively, and analyzed by Western blotting using the Mcr
antibody. As shown in Figure 5D, the Mcr in the conditioned

Figure 2. Identification of Genes Required for Phagocytosis of C. albicans

(A) High-throughput assay for phagocytosis. GFP-expressing C. albicans (green) were co-incubated with S2 cells to allow phagocytosis. Cells were lightly
fixed, and non-phagocytosed C. albicans were secondarily labeled with a rabbit anti–C. albicans antibody and Cy3-labeled anti-rabbit antibody (red). S2
cell DNA (blue) was labeled with Hoechst 33258. Left panels, wild-type S2 cells; right panels: S2 cells treated with RNAi against actin (Act5C).
(B) One hundred eighty-four dsRNAs decreased phagocytosis of C. albicans. The 184 genes were categorized and plotted in a pie graph with the
number of genes in each class indicated.
(C–E) Secondary screens used to further test the RNAi-treated S2 cells specificity of phagocytosis of C. albicans (C), E. coli (D), or latex beads (E). (C)
Phagocytosis of C. albicans. GFP-expressing C. albicans (green) were co-incubated with S2 cells to allow phagocytosis. Cells were lightly fixed, and non-
phagocytosed C. albicans were secondarily labeled with an anti–C. albicans antibody and Cy3-labeled anti-rabbit antibody (red). S2 cell DNA was labeled
with Hoechst 33258 to mark the position of the S2 cell. The level of phagocytosis was quantified by counting the percentage of S2 cells that had
phagocytosed one or more C. albicans. (D) Drosophila S2 cells phagocytose E. coli. GFP-expressing E. coli (green) were co-incubated with S2 cells to
allow phagocytosis in a similar assay as (C). Cells were lightly fixed, and an anti–E. coli antibody was used to label non-phagocytosed E. coli (red). The
level of phagocytosis was quantified by counting the percentage of S2 cells that had phagocytosed one or more E. coli. (E) Drosophila S2 cells
phagocytose 2-lm latex beads. Yellow-green fluorescent latex beads were co-incubated with S2 cells to allow phagocytosis. The S2 cell filamentous
actin cytoskeleton was labeled with rhodamine phalloidin (red) and the DNA with Hoechst 33258 (blue). The level of phagocytosis was quantified by
counting the percentage of S2 cells that had phagocytosed one or more latex beads.
(F) One hundred eighty-four dsRNAs disrupt the phagocytosis of C. albicans by S2 cells. The genes required for phagocytosis of C. albicans are listed
along with the effect on phagocytosis of E. coli and latex beads. The color-based scale is given below and corresponds to the percentage of S2 cells that
phagocytosed one or more C. albicans, E. coli, or latex beads. Genes were categorized based upon function as in (B). Mean values for phagocytosis by
wild-type, untreated S2 cells were: C. albicans 52%, E. coli 56%, and latex beads 51%.
DOI: 10.1371/journal.pbio.0040004.g002
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Figure 3. Mcr-Dependent Phagocytosis of C. albicans

(A) Schematic representation of a2M-related proteins. Drosophila Mcr is compared with a close homolog in A. gambiae (Ag Mcr [Tep13]), TepI from both
Drosophila and Anopheles and the human homologs CD109, a2M, and C3. Various conserved domains are colored as indicated in the gray box. Numbers
correspond to amino acid position. The sequences of the conserved thioester domains are given below the schematic. Dm, Drosophila melanogaster;
Ag, Anopheles gambiae; Hs, Homo sapiens.
(B) RNAi against SCAR reduces phagocytosis of C. albicans, E. coli, and latex beads (row 2). RNAi against Mcr significantly decreased phagocytosis of only
C. albicans (row 3). Cells were stained as in Figure 4C–4E. Column 1, GFP expressing C. albicans—green, S2 cell DNA—blue, non-phagocytosed C.
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media efficiently bound to C. albicans and remained bound
during the extensive washing steps. The binding of Mcr to C.
albicans is specific, as demonstrated by the following two
experiments. First, the binding of Mcr shows a marked
preference for C. albicans (strain Caf2–1) over the common S.
cerevisiae lab strain S288C (Figure 6A). This observation
parallels the more efficient phagocytosis of C. albicans Caf2–
1 compared with S. cerevisiae S288c (see Figure 1B and Figure
6B). Second, the binding of Mcr shows a preference for wild-
type C. albicans over a mutant of C. albicans deleted for the
EFG1 gene, Defg1/Defg1 (see Figure 6A). EFG1 encodes a
transcriptional regulator that regulates many genes, some of
which affect properties of the cell wall [31,32]. Although we
do not know the precise defects in the Defg1/Defg1 strain, the
fact that Mcr binds more poorly to it than to a wild-type
strain argues that Mcr binding must be specific for some
feature on the C. albicans cell surface. As predicted from this
idea, we found that the Defg1/Defg1 mutant is poorly
phagocytosed by S2 cells (see Figure 6B). These experiments,
taken together, support the idea that Mcr recognizes features
of the C. albicans cell surface and that binding of Mcr to C.
albicans results in its efficient phagocytosis by S2 cells.

Discussion

Phagocytosis of invading pathogens is a critical component
of metazoan innate immune systems. In this study, we
investigate the phagocytosis of C. albicans, the most prevalent
fungal pathogen of humans, using Drosophila as a model host
organism. Drosophila has been well established as a model
system for analyzing human microbial pathogens [18–22].

Identification of Genes Important for Phagocytosis of C.
albicans by Fly S2 Cells

Although the morphological features and cytoskeletal
rearrangements underlying phagocytosis are well described,
there have been few comprehensive attempts to identify the
core requirements for phagocytosis. None of these have
investigated phagocytosis of a fungal pathogen [7–10,33].
Using a dsRNA library representing 7,216 Drosophila genes
conserved in other metazoans, we carried out an RNAi-based
screen to identify genes required for efficient phagocytosis of
C. albicans by S2 cells. Following rescreening and after
eliminating genes encoding ribosomal subunits, proteasome
subunits, general transcription factors, mRNA processing
enzymes, and other components involved in general aspects

of gene expression and protein turnover, we identified 184
genes required for the efficient phagocytosis of C. albicans by
S2 cells. Among genes well known to function in phagocytosis,
we identified actin itself, many of its regulators including
SCAR, and multiple components of the Arp2/3 complex [4].
Phagocytosis involves extensive rearrangements of the cyto-
skeleton, and the identification of these genes in the screen
was strongly predicted from prior work [4,7,9]. We also
identified all five Cops in the CopI vesicle coat and several
SNARE proteins. CopI vesicles are thought to be indirectly
required for pseudopod extension because they are required
for the maintenance of a pool of VAMP3 (vSNARE)–
containing endomembrane vesicles. These vesicles are
thought to be needed for insertion into the plasma membrane
during pseudopod formation and phagocytosis [6]. The extent
of the increase in surface area is dramatized by the large
increase in size of S2 cells when phagocytosing several Candida
(see Figure 1A). We also identified a number of previously
implicated signaling components, including PI3K, which is
required for both insertion of exocytic membranes in the
plasma membrane [27,28] and phagosome maturation [26].
It is important to note that although our screen identified

the majority of genes previously implicated in phagocytosis it
did not identify all of them. For example, although three
subunits of the Arp2/3 complex were identified in the screen,
four were not, even though their corresponding dsRNAs were
present in our library. There are several possible explanations
for this type of failure, including poor RNAi, potentially
lethal effects of certain RNAs, and the timing of RNAi
treatment. For example, in the case of profilin, the timing of
RNAi treatment was critical for detecting its role in
cytokinesis [34]. Thus, genes present in the library but not
identified in our screen can be rigorously excluded from
having a role in phagocytosis of C. albicans only through
additional experimentation. In any case, the fact that the
screen, which was carried out blindly with respect to the
identities of the dsRNAs, identified many known components
of phagocytosis confirms the validity of the approach. It also
implicates the large number of remaining genes as having
important roles in this process. All 184 genes identified in the
screen are summarized in Table S2. Taken as a whole, these
genes represent a number of different cellular processes,
including cytoskeletal rearrangements (21 genes), vesicle
transport (16 genes), signal transduction (27 genes), and
transcriptional regulation (30 genes) (see Results and Tables
S1 and S2). We also identified three looser categories of

albicans—red; column 2, GFP-expressing E. coli—green, S2 cell DNA—blue, non-phagocytosed E. coli—red; column 3, latex beads—green, S2 cell
DNA—blue, S2 cell actin cytoskeleton—red.
(C) dsRNA against both SCAR and Mcr decreases phagocytosis of C. albicans. S2 cells were treated with dsRNA against SCAR and Mcr as described in
Materials and Methods and then co-incubated with C. albicans for the indicated times. The percentage of S2 cells phagocytosing one or more C.
albicans was quantified and plotted. The 3.5-h timepoints were analyzed using a t-test assuming unequal variance. Those values that differ significantly
from untreated cells (p , 0.01) are indicated by asterisks.
(D) Mcr dsRNA does not reduce phagocytosis of E. coli. S2 cells were treated with dsRNA against SCAR and Mcr and then co-incubated with E. coli for the
indicated times. The percentage of S2 cells phagocytosing one or more E. coli was quantified and plotted. The 3.5-h timepoints were analyzed using a t-
test assuming unequal variance. Those values that differ significantly from untreated cells (p , 0.01) are indicated by asterisks.
(E) Mcr dsRNA does not reduce phagocytosis of latex beads. S2 cells were treated with dsRNA against SCAR and Mcr and then co-incubated with green
fluorescent latex beads for the indicated times. The percentage of S2 cells phagocytosing one or more latex beads was quantified and plotted. The 3.5-h
timepoints were analyzed using a t-test assuming unequal variance. Those values that differ significantly from untreated cells (p , 0.01) are indicated by
asterisks.
(F) An additional dsRNA against the 39 UTR of Mcr was generated and tested for disruption of C. albicans phagocytosis. S2 cells were treated with RNAi
directed against both the coding region and the 39 UTR of Mcr and then co-incubated with C. albicans for the indicated times. The percentage of S2
cells phagocytosing one or more C. albicans was quantified and plotted. The 3.5-h timepoints were analyzed using a t-test assuming unequal variance.
Those values that differ significantly from untreated cells (p , 0.01) are indicated by asterisks.
DOI: 10.1371/journal.pbio.0040004.g003
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genes: a set of genes encoding diverse functions in metabo-
lism, protein turnover, and transport (57 genes); a set of genes
annotated in Flybase as implicated in defense (eight genes);
and a set of genes of unknown function, despite their being
conserved among metazoans (25 genes).
Giot et al. [35] described a partial interaction map of

Drosophila proteins, based largely on two-hybrid experiments.
If the genes identified by our screen are superimposed on this
map (keeping in mind that, because the interaction map is
incomplete, many genes are simply not represented in the
map), they form a highly interactive network that covers only
a portion of the total map space (Figure 7). Many of the newly
identified components can be seen to interact directly or
indirectly with a known component of phagocytosis. From
this analysis, many testable predictions can be made regard-
ing the roles of specific gene products identified in the
phagocytosis screen. For example, an unstudied transmem-
brane protein with predicted Ser/Thr kinase activity
(CG5790) interacts with bCop and therefore may be directly
involved in vesicle transport during phagocytosis or may be
critically regulated by vesicle transport. A second example
covers the target of rapamycin (TOR) kinase signaling
pathway. Although Drosophila TOR itself was not represented
in our library, our RNAi screen identified many pathway
members, including PI3K, SNF1A (AMPK), S6K, TSC1, Gigas
(TSC2), InaC (PKC), and MTS (PP2A) (see Figure 7). This
pathway includes two TOR complexes, one responding to
growth factors, nutrients, and energy (ATP) and leading to
changes in cell size and number and the other regulating
actin organization by an unknown mechanism [36]. Our
results suggest that phagocytosis is closely connected to the
TOR pathway and could impinge upon this unknown
mechanism. Many additional insights and predictions regard-
ing the role of individual gene products in phagocytosis can
be gleaned from this type of analysis. We view the list of 184
genes implicated in phagocytosis as a resource that will
stimulate future approaches and discoveries.
In evaluating the results of any RNAi screen, it is of interest

to compare them with analogous screens. Two 2005 analyses
examined the ability of an S2 cell line to support intracellular
infection by M. fortuitum and L. monocytogenes [7,9]. Of the 184
genes identified in our screen, 21 genes were shared with the
M. fortuitum screen and 33 with the L. monocytogenes screen.
The overlapping genes encoded key components of actin
dynamics and vesicle transport; as described above, both
processes are well known to have critical roles in the uptake
of pathogens and inert particles, and perhaps these two
groups of genes define the core processes of phagocytosis.
The lack of a more extensive overlap might be due to certain
technical differences in the screens (different RNAi libraries,
different screening protocols, or different significance
thresholds, etc.). However, we believe that much of the
difference is due to the nature of the pathogen investigated.
M. fortuitum and L. monocytogenes are intracellular bacterial
pathogens, whereas C. albicans is a fungal pathogen that is not
believed to proliferate intracellularly. Indeed, genes whose
role we have characterized in the most detail (Mcr and Tep

Figure 4. The Mcr/Tep Family of Proteins Determine Specificity of

Pathogen Phagocytosis by Drosophila S2 Cells

(A) S2 cells were treated with dsRNA against SCAR, Mcr, or one of the
Drosophila Teps and co-incubated with C. albicans. The percentage of S2
cells phagocytosing one or more C. albicans was quantified and plotted.
(B) The S2 cells treated above were also co-incubated with E. coli, and
phagocytosis was quantified.
(C) The RNAi-treated S2 cells above were co-incubated with S. aureus,
and phagocytosis was quantified. In all graphs, the 3.5-h timepoints were

analyzed using a t-test assuming unequal variance. Those values that
differ significantly from untreated cells (p , 0.01) are indicated by
asterisks.
DOI: 10.1371/journal.pbio.0040004.g004
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genes) were not uncovered in these other screens, and we
failed to detect the CR gene that was the focus of one of these
reports [9]. These results suggest that important features of
the recognition or phagocytosis process may be relevant to
some pathogens, but not others. Reciprocally, it should be
emphasized that not all of the genes scored are likely to be
directly involved in phagocytosis. For example, as noted by
Ramet [10], the Serpent transcription factor, which was
detected as required for phagocytosis in the screen for E. coli
phagocytosis and our screen, is required for differentiation of
hematopoietic cells and appears to be defective in phagocy-
tosis because of a general change in cellular phenotype. By
directing our attention to genes that are pathogen specific,
we hope to favor the identification of genes directly involved
in the recognition process. We are particularly interested in
the eight gene products identified in our screen and
annotated in Flybase as being involved in the defense

response, as they represent a variety of different types of
proteins, none of which had previously been shown to be
required for phagocytosis, and none of which were identified
in the M. fortuitum and L. monocytogenes screens [7,9]. Several of
these genes have established roles in immunity, including an
IjB homolog, Cactus, two peroxidases involved in reactive
oxygen metabolism, and Cyp33, which is expressed in T cells
and regulates gene expression. In other cases, the annotation
of these genes was based simply upon the expression pattern
of homologous genes in other organisms. For example, the
mammalian homolog of CG4615 is expressed in macrophages
but not in monocytes. Two of these eight genes, Mcr and
Cyp33, appear to be specifically required for the phagocytosis
of C. albicans when compared with E. coli.

Mcr and Related Proteins
An original aim of our work was to understand how a

particular pathogen, C. albicans, is efficiently phagocytosed by

Figure 5. S2 Cells Secrete Mcr into the Culture Media

(A) Mcr is secreted into the culture media. Whole-cell lysates were prepared from S2 cells (lane 1) and compared to Schneider’s medium with 2% FBS
(lane 2) or Schneider’s medium with 2% FBS collected from S2 cells (conditioned media, lane 3) by immunoblotting with an anti-Mcr antibody.
(B) RNAi against Mcr depletes Mcr protein from cell lysates and from the conditioned media. Cell lysates and conditioned media were collected from
wild-type S2 cells or cells treated with RNAi against Mcr or SCAR and probed by immunoblotting with an anti-Mcr antibody.
(C) Conditioned media rescues the phagocytosis defect of Mcr RNAi-treated cells. Wild-type S2 cells or cells treated with RNAi against Mcr or SCAR were
plated in new Schneider’s medium with 10% FBS or conditioned media with 10% FBS from wild-type S2 cells and incubated with C. albicans for various
times. The percentage of S2 cells that had phagocytosed one or more C. albicans was quantified and graphed. A t-test was used to test the statistical
significance between wild-type cells in new media versus SCAR- or Mcr RNAi–treated cells in new media and wild-type cells in conditioned media versus
SCAR- or Mcr RNAi–treated cells in conditioned media (see Materials and Methods). An asterisk indicates comparisons that showed statistically
significant differences (p , 0.01). Mcr RNAi–treated cells in wild-type-conditioned media were not significantly different from wild-type cells in
conditioned media.
(D) Mcr interacts with C. albicans cells. C. albicans was co-incubated either with new media containing 2% FBS or conditioned media containing 2% FBS
from wild-type S2 cells for 2 h, washed, and analyzed by immunoblotting with anti-Mcr. Lane 1, S2 cell lysates; lane 2, new media; lane 3, conditioned
media; lane 4, C. albicans incubated in new media; lane 5, C. albicans incubated in conditioned media.
DOI: 10.1371/journal.pbio.0040004.g005
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fly S2 cells. As described, we tested which of the 184 genes
identified in this study were specific for C. albicans and which
were required more generally for phagocytosis. To this end,
we rescreened the 184 dsRNAs for effects on the phagocytosis
of E. coli and latex beads. Although C. albicans and E. coli are
taken up much more rapidly than beads, phagocytosis of
beads could be reproducibly measured over longer incuba-
tion times. Most of the 184 dsRNAs inhibited phagocytosis
generally, although several had a much greater effect on C.
albicans (see Figure 2). We chose one of these C. albicans–
specific genes, Mcr, for further analysis.

Mcr is a member of the a2 macroglobulin/complement

family (see Figure 3A), which includes at least 11 family
members in humans. Members include secreted protease
inhibitors (a2M, PZP) and components of complement (C3,
C4A, C4B, and C5). Several other family members (CD109,
CPAMD8, Ovostatin 1, Ovostatin 2) have fewer well-charac-
terized functions. The prototypical member, a2 macro-
globulin (a2M), binds to secreted proteases, including those
of pathogens, leading to their uptake and inactivation by host
cells. Human a2M also interacts with cytokines to regulate
their distribution and activity [37]. The complement cascade
is an ancient response to pathogens that triggers opsoniza-
tion of a pathogen, formation of a membrane-attack
complex, and in vertebrates the activation of the adaptive
immune system [38]. Historically, the complement cascade
was thought to reside only in vertebrates; however, studies
suggest its presence in lower eukaryotes, including ascidians
and sea urchins [39], and studies in mosquito documented
immune functions of the complement-related Teps [8,24,25].
Drosophila encodes five proteins that are closely related to

the human a2M/complement family of proteins. These are
Mcr, the component identified in our screen, and also TepI,
TepII, TepIII, and TepIV. The human protein most closely
related to the Mcr-Tep family is CD109, a GPI-anchored
protein whose function has not been fully explored [40,41].
Teps are expressed in Drosophila larvae and adult flies upon
infection by E. coli [29,42]. The function of the Teps is
probably best understood in the mosquito A. gambiae. A.
gambiae Tep1 (aTep1) is required for phagocytosis of E. coli by
a mosquito cell line [25]. aTep1 is secreted, proteolytically
processed, and a fragment adheres to E. coli through
formation of a thioester bond. During infections of adult
mosquitoes by Plasmodium berghei parasites, aTep1 binds the
surface of the parasite. RNAi knockdown of aTep1 allows
more parasite oocysts to survive in the midgut of the
mosquito, suggesting that aTep1 plays a critical role in killing
malarial parasites [24]. This aTep1-dependent killing of
malarial parasites occurs in a compartment devoid of
hemocytes and does not involve phagocytosis. The findings
suggest that aTep1 may target a microbe to multiple immune
defense pathways [24]. The Tep1 thioester bond is presumed
to form at a conserved thioester domain (GCGEQN) that is
found in all four Drosophila Teps, aTep1, human CD109, and
other members of the human a2M/complement class of
proteins. Mcr and a close relative in A. gambiae lack the critical
cysteine through which these covalent bonds are formed.
In this study, we show that Mcr is secreted by S2 cells and

binds tightly to C. albicans in the absence of S2 cells. The
defect in phagocytosis caused by Mcr RNAi can be reversed
through the addition of conditioned media from normal S2
cells, suggesting that secreted Mcr may be the active Mcr
required for efficient phagocytosis of C. albicans. Unlike aTep1
or complement in mammals [25,38,39], we did not detect any
evidence of proteolytic processing of Mcr, suggesting that the
full-length protein is the active form. This may be related to
the fact that Mcr lacks the critical cysteine residue present in
the Teps and presumably does not form thioester linkages.
Mcr appears specific for the phagocytosis of C. albicans, as its
reduction by RNAi had little or no effect on phagocytosis of
E. coli or S. aureus. Moreover, Mcr binding exhibits specific
recognition for C. albicans compared to even closely related
fungi. Thus, Mcr binding shows a marked preference for C.
albicans over the common S. cerevisiae lab strain S288c. In

Figure 6. Specific Binding of Mcr to the C. albicans Cell Surface

(A) Wild-type C. albicans, S. cerevisiae, or Defg1/Defg1 mutant C. albicans
were co-incubated with conditioned media containing 2% FBS from
wild-type S2 cells for 2 h, washed, and analyzed by immunoblotting with
anti-Mcr antibody. Lane 1, conditioned media; lane 2, new media; lane 3,
Mcr bound to wild-type C. albicans; lane 4, Mcr bound to S. cerevisiae;
lane 5, Mcr bound to Defg1/Defg1 mutant C. albicans.
(B) Quantification of phagocytosis of C. albicans wild-type and mutant
strains and S. cerevisiae by S2 cells. S2 cells and the indicated fungal
strain were co-incubated for various times, and the percentage of S2 cells
that had phagocytosed one or more C. albicans was quantified by
counting 50–100 S2 cells. Results are the average of four experiments,
and the error bars indicate the standard deviation. The 3.5-h timepoints
were analyzed using a t-test assuming unequal variance. Those values
that differ significantly from untreated cells (p , 0.01) are indicated by
asterisks.
DOI: 10.1371/journal.pbio.0040004.g006
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addition, Mcr binds significantly more to wild-type C. albicans
than to a C. albicans mutant (Defg1/Defg1) that has altered cell-
wall properties. Both S. cerevisiae and the C. albicans Defg1/Defg1
mutant are poorly phagocytosed by S2 cells, further support-
ing the idea that Mcr plays a critical role in recognizing wild-
type C. albicans and promoting its subsequent phagocytosis.

Given that Mcr appears specific for C. albicans phagocytosis,
we also investigated the possible roles of the four closely
related Drosophila Teps. RNAi directed against TepII specif-
ically reduced phagocytosis of E. coli, a gram-negative
bacterium, and RNAi directed against TepIII specifically
reduced phagocytosis of S. aureus, a gram-positive bacterium.
None of the Tep reductions had any effect on phagocytosis of
C. albicans. Thus this family of five closely related proteins
collectively functions to promote the phagocytosis of a
diverse set of pathogens, with individual family members
showing specificity for certain classes of pathogens.

Unbiased screens for the genes required for specific
pathogen recognition should give a broad view of the
mechanisms targeting innate immune responses. Our studies
implicate Mcr as one important contributor to the recog-
nition of C. albicans. This result is supported by other findings
suggesting that the related Teps have a similar role. The Teps
have been shown to be related to complement, and in the
mosquito A. gambiae, Tep1 is required for the phagocytosis of
E. coli by mosquito 5.1* cells and killing of the malaria
parasite in vivo [24,25]. Our analysis of the different
Drosophila Teps show that they too are specialized in the
recognition of different pathogens. But what of the other

genes showing C. albicans–specific effects? Much remains to be
done to determine whether recognition is combinatorial with
different genes contributing to different branches of the
recognition, or whether, like the complement system of
mammals, recognition by Mcr is complex, involving multiple
components in the recognition and the signaling.

Materials and Methods

Strains and plasmids. The C. albicans CAF2–1 strain (URA3/
ura3::kimm434) was used for most experiments [43]. GFP–C. albicans
expresses GFP under the control of the ADH1 promoter [44]. The
deletion strain Defg1 (Dura3::kimm434/Dura3::kimm434 Defg1::hisG-
URA3-hisG/Defg1::hisG) has been described previously [45]. The S.
cerevisiae wild-type strain used was MATa S288c [46]. GFP–E. coli
(DH5a) expresses GFP under the control of the bacterial ribosomal
promoter [47,48]. Shirley Lowe (University of California, San
Francisco, United States) kindly provided S. aureus.

Cell culture. Drosophila S2 cells were cultured in Schneider’s
medium (Invitrogen, Carlsbad, California, United States) supple-
mented with 10% fetal bovine serum (FBS), penicillin, and
streptomycin (pen/strep).

RNAi. The dsRNA library used in this screen has been described
previously [48]. S2 cells were plated into 96-well plates at a density of
50,000 cells per well in a culture volume of 150 ll per well. dsRNA was
added to a final concentration of 10 lg/ml, and the cells were
incubated for four days at 25 8C to allow depletion of the
corresponding gene product.

Phagocytosis screen. Primary screen: 1 3 105 dsRNA-treated S2
cells were plated in 96-well plastic tissue culture plates in 150 ll of
Schneider’s medium with 10% FBS and pen/strep. FITC-labeled
(VWR, West Chester, Pennsylvania, United States, 5mg/ml), GFP-
expressing C. albicans was added to each well containing S2 cells at a
density of 23105 C. albicans per well and incubated for 2 h at 25 8C. S2
and C. albicans mixtures were transferred to glass-bottom, Concana-

Figure 7. Genes Identified in the Screen as Being Required for Phagocytosis of C. albicans Were Superimposed onto a Drosophila Genomic Yeast Two-

Hybrid Interaction Map

Interactions are displayed, and several pathways are outlined. Dark-blue circles indicate genes identified as reduced phagocytosis of C. albicans, with
light-blue circles indicating genes present in the two-hybrid map but not identified in the phagocytosis screen. Several functional groups are circled as
indicated. This diagram represents only a portion of the complete two-hybrid map [35], indicating that the genes identified in the phagocytosis screen
affect a limited number of cellular processes.
DOI: 10.1371/journal.pbio.0040004.g007
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valin A–coated 96-well microplates (Greiner Bio-One, Longwood,
Florida, United States) and incubated for 1 h. Cells were fixed and
processed as described below. Wells were visually screened for an
apparent decrease in phagocytosed C. albicans (green-only) cells. Both
SLS and EF independently screened all wells without knowledge of
the identity of the dsRNAs. The few discrepancies between SLS and
EF screens were resolved with further analysis. In wells with fewer
phagocytosed C. albicans, further examination of the S2 cells was
performed to rule out cytotoxic effects. dsRNAs were eliminated
from further analysis if there were no remaining S2 cells. In wells with
fewer S2 cells than normal, the well was examined further for
phagocytosis by the remaining S2 cells. In many of these wells, the
remaining S2 cells still phagocytosed C. albicans normally, and those
were not scored as having a phagocytosis defect.

Secondary screens with C. albicans: the 280 positive dsRNAs were
resynthesized and rescreened with more rigorous standards by
visually quantifying the number of S2 cells phagocytosing. Briefly, 1
3 105 dsRNA-treated S2 cells were plated in 96-well plastic tissue
culture plates in 150 ll of Schneider’s medium with 10% FBS and
pen/strep. FITC-labeled (VWR, 5mg/ml), GFP-expressing C. albicans
was added to each well containing S2 cells at a density of 5 3 105 per
well and incubated for 2 h at 25 8C. S2 and C. albicans mixtures were
transferred to glass-bottom, Concanavalin A–coated 96-well micro-
plates (Greiner) and incubated for 1 h. Phagocytosis assays were
performed using similar conditions for DH5a E. coli expressing GFP
(5ll of an overnight saturated culture per well, phagocytosis for 2 h at
25 8C), and yellow-green fluorescently labeled 2-lm latex beads
(Sigma, St. Louis, Missouri, United States, 2 3 106 beads per well,
phagocytosis for 20 h at 25 8C). Cells were fixed and processed as
described below. While the overall efficiency of phagocytosis varied
between experiments, phagocytosis by wild-type S2 cells was highly
consistent within each experiment. For this reason, all secondary
screen phagocytosis assays were completed in 1 d with the same batch
of S2 cells. S2 cells were counted and scored for having phagocytosed
one or more C. albicans, E. coli, or latex beads. As described in the
Results, we used a significance threshold of 1.5 standard deviations
below the mean for these secondary screens. A t-test was used to
compare the percentage of phagocytosis of six wild-type wells to a
value of 44% for the dsRNA-treated wells. The significance values (C.
albicans p¼0.012, E. coli p¼0.001, latex beads p¼0.005) indicated that
these criteria are reasonably stringent, and 44% represents a
statistically significant threshold.

Phagocytosis assays. dsRNA-treated S2 cells (1 3 105) were plated
in 96-well plastic tissue culture plates in 150 ll of Schneider’s
medium with 10% FBS and pen/strep. GFP-expressing C. albicans was
added to each well containing S2 cells at a density of 53105 C. albicans
per well and incubated for various times at 25 8C. S2 and C. albicans
mixtures were transferred to glass-bottom, Concanavalin A–coated,
96-well microplates (Greiner) and incubated for 1 h. Phagocytosis
assays were performed using similar conditions for DH5a E. coli
expressing GFP (5 ll of an overnight saturated culture per well), S.
aureus (30 ll of a FITC-labeled overnight culture per well), or yellow-
green fluorescently labeled 2-lm latex beads (Sigma), 1 3 106

beads per well. Cells were fixed and processed as described below.
S2 cells were counted and scored for having phagocytosed one or
more C. albicans or other pathogen. All graphs represent the mean 6
the standard deviation of at least four counted samples. The
difference between wild-type and RNAi treatments was statistically
analyzed by t-test assuming unequal variances. A p-value , 0.01 was
considered significant.

Immunofluorescence and microscopy. After co-incubation, the cell
culture media was aspirated and allowed to dry for 2 min. Cells were
fixed with 1% formaldehyde in PBS for 5 min, washed with 13 PBS,
and blocked with 5% FBS in PBS for 2–4 h. The cell surfaces of C.
albicans, E.coli, or S. aureus were detected with primary antibodies
raised against whole C. albicans (Biodesign, Saco, Maine, United States,
Cat# B65411R), whole E. coli (Biodesign, Cat# B47711G), or whole S.
aureus (Biodesign, Cat# B65881R). Primary antibodies were visualized
with Cy3-conjugated goat anti-rabbit or rabbit anti-goat antibodies
(Jackson ImmunoResearch, West Grove, Pennsylvania, United States).
In each case, pathogens were considered phagocytosed if they were
not visualized with their corresponding antibody. DNA was visualized
with Hoechst 33258, and filamentous actin was detected with
rhodamine-coupled phalloidin (both from Molecular Probes, Eugene,

Oregon, United States). Immunofluorescent images were taken with a
Zeiss Axiovert 200M microscope using AxioVision software (Carl
Zeiss, Oberkochen, Germany). Images were processed using Zeiss
AxioVision 3D Deconvolution software, and figures were assembled
with Adobe Photoshop and Illustrator (Adobe Systems, San Jose,
California, United States).

Western blotting. S2 cells were harvested as described [48], and
conditioned media were collected from cells grown for 48 h. Cell
lysate and conditioned media were separated by SDS-PAGE and
analyzed by Western blotting. Mcr was detected by using a polyclonal
rabbit antibody generated against a peptide in the amino half of Mcr
(CGQTNPSDRPPYRTDSGS) (Bethyl Laboratories, Montgomery,
Texas, United States). To detect Mcr interactions with C. albicans, 5
3 107 C. albicans, mutant strain or S. cerevisiae, were incubated in 3 ml
of new Schneider’s medium with 2% FBS, or in conditioned media
with 2% FBS, for 2 h. C. albicans cells were washed one time with
media and one time with wash buffer (0.05% NP-40, 120 mM NaCl, 50
mM Hepes [pH 7.5], and 5 mM EDTA) and loaded on SDS-PAGE gel
with SDS-sample buffer and analyzed by Western blotting with the
Mcr antibody.

Supporting Information

Table S1. Genes Not Further Followed Up with Secondary Assays

dsRNAs that decrease the phagocytosis of C. albicans but were not
followed up in further studies, including genes involved in general
transcription, translation, RNA processing, and the proteasome.

Found at DOI: 10.1371/journal.pbio.0040004.st001 (207 KB DOC).

Table S2. Measurement of the Percentage of S2 Cells Phagocytosing
after Treatment with dsRNA against Individual Genes

dsRNAs that decrease the phagocytosis of C. albicans. Column 3,
closest human homolog; column 4, function of Drosophila protein if
known, function is based upon mammalian or other homologs if
Drosophila protein function unknown; column 5, genes that have
previously been implicated in phagocytosis; columns 6–8, the
percentage of S2 cells that have phagocytosed one or more C. albicans
(C.a.), E. coli (E.c.), or latex beads (beads). 50–100 S2 cells were counted
for each condition.

Found at DOI: 10.1371/journal.pbio.0040004.st002 (679 KB DOC).

Accession Numbers

The FlyBase (http://flybase.bio.indiana.edu/search/) accession numbers
for the genes and gene products discussed in this paper are Mcr
(FBgn0020240), TepI (FBgn0041183), TepII (FBgn0041182), TepIII
(FBgn0041181), and TepIV (FBgn0041180). The NCBI Entrez (http://
www.ncbi.nlm.nih.gov/gquery/gquery.fcgi) accession number for A.
gambiae Ag Mcr (Tep13) is EAA12257.2.
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