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Purpose. To predict visual acuity (VA) 1 month after anti-vascular endothelial growth factor (VEGF) therapy in patients with
diabetic macular edema (DME) by using machine learning. Methods. This retrospective study included 281 eyes with DME
receiving intravitreal anti-VEGF treatment from January 1, 2019, to April 1, 2021. Eighteen features from electronic medical
records and measurements data from OCT images were extracted. The data obtained from January 1, 2019, to November 1,
2020, were used as the training set; the data obtained from November 1, 2020, to April 1, 2021, were used as the validation set.
Six different machine learning algorithms were used to predict VA in patients after anti-VEGF therapy. After the initial
detailed investigation, we designed an optimization model for convenient application. The VA predicted by machine learning
was compared with the ground truth. Results. The ensemble algorithm (linear regression + random forest regressor) performed
best in VA and VA variance predictions. In the validation set, the mean absolute errors (MAEs) of VA predictions were 0.137-
0.153 logMAR (within 7-8 letters), and the mean square errors (MSEs) were 0.033-0.045 logMAR (within 2-3 letters) for the 1-
month VA predictions, respectively. For the prediction of VA variance at 1 month, the MAEs were 0.164-0.169 logMAR
(within 9 letters), and the MSEs were 0.056-0.059 logMAR (within 3 letters), respectively. Conclusions. Our machine learning
models could accurately predict VA and VA variance in DME patients receiving anti-VEGF therapy 1 month after, which
would be much valuable to guide precise individualized interventions and manage expectations in clinical practice.

1. Introduction

The International Diabetes Federation (IDF) has estimated
that 536.6 million people worldwide suffered from diabetes
mellitus (DM) while more than 140 million Chinese lived
with DM in 2021 [1, 2]. Diabetic retinopathy (DR) remains
the main complication of DM and a leading cause of blind-
ness among working-age adults [1]. Diabetic macular edema
(DME) is the most common cause of DR-related vision loss,
which is characterized by the accumulation of fluid within
the central retina and macular thickening caused by blood-
retinal barrier dysfunction [3–6]. DME affects approxi-
mately 10% of patients with DR [6, 7] and leads to visual loss

and reduction in quality of life, resulting in a substantial
socioeconomic burden if left untreated [3, 7].

Laser photocoagulation is used to be recommended as
the standard treatment protocol for DME, providing vision
stabilization but with limited efficacy in improving vision
[8]. Currently, anti-vascular endothelial growth factor
(anti-VEGF) therapy has become the first-line treatment
because anti-VEGF agents can reduce edema and thereby
prevent further structural damage and improve vision [8,
9]. Two major anti-VEGF drugs commonly used and cov-
ered by the national basic medical insurance in China are
ranibizumab and conbercept (Lumitin, Chengdu Kanghong
Biotech Corporation Ltd., Chengdu, Sichuan, China) [10].
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Many clinical studies indicated that anti-VEGF therapy was
anatomically and functionally effective, with 30% of DME
patients achieving significant improvement in best-
corrected visual acuity (BCVA) [11]. However, not all
patients respond satisfactorily to anti-VEGF injection;
approximately 31.6-65.6% of patients do not respond or
respond incompletely to anti-VEGF agents [12]. Switching
to other potentially effective treatments at an early stage is
recommended, such as intravitreal corticosteroid therapy
for patients with a suboptimal response [13]. Thus, predict-
ing the treatment response, differentiating patients who do
not respond to anti-VEGF, and determining optimal treat-
ment regimens are considered crucial.

Furthermore, DME as a chronic disease requires
repeated injections of anti-VEGF drugs [14, 15]. Several
anti-VEGF treatment regimens have been developed, such
as monthly or bimonthly injections, pro re nata (PRN),
and treat and extend (TAE) regimen [16]. PRN is the most
common regimen in the treatment for DME to optimize
the treatment effects and cost-effectiveness [17]. Many ran-
dom clinical trials recommend three loading doses of anti-
VEGF injections followed by a PRN regimen, namely,
3 +PRN [17]. But in the real world, three loading injections
would be a great economic and psychological burden for
patients with DME, especially in developing countries [18].
So, ophthalmologists often practice a 1+PRN regimen,
wherein patients received one anti-VEGF injection at the
first month, and patients were observed monthly and
received repeat injections based on BCVA and optical coher-
ence tomography (OCT) imaging [18–21]. Thus, predicting
the BCVA and OCT morphological features after anti-
VEGF injection holds a huge value in the efficient manage-
ment of DME.

OCT is the cornerstone of diagnosing, assessing, and
managing DME [3]. Some OCT morphological features have
been reported to be predictors for treatment outcome after
anti-VEGF therapy for DME, including different OCT pat-
terns of DME, the status of hyperreflective foci (HF), retinal
inner layer, inner segment/outer segment (IS/OS), external
limiting membrane (ELM), and central macular thickness
(CMT) [22–24]. However, these parameters only estimated
the likelihood of good or poor treatment response; an accu-
rate prediction of BCVA after anti-VEGF therapy remains
hard in clinical practice.

Machine learning (ML), which can rapidly manage a
massive amount of information like images and clinical var-
iables, is increasingly being used for the clinical prediction
that is difficult for the physician in the field of ophthalmol-
ogy [25–29]. ML-based algorithms can predict treatment
response and treatment demand in diseases such as DR,
DME, age-related macular degeneration (AMD), retinopa-
thy of prematurity (ROP), and retinal vein occlusion
(RVO) [30]. Liu et al. have been accurately predicted post-
treatment BCVA at 1 month after three loading doses of
anti-VEGF injections in DME patients using ML [16, 31].
However, it remains to be elucidated how it can predict post-
treatment BCVA in 1+PRN treatment regimens.

Thus, the purpose of this study was to predict VA at 1
month after anti-VEGF injection using ML based on clinical

variables and OCT characters in DME patients with 1+PRN
treatment regimens. Furthermore, we optimized the predic-
tion model by using fewer features to develop an optimiza-
tion model suitable for clinical application.

2. Method

This retrospective observational study was approved by the
Research Ethics Committee, Qilu Hospital, Shandong Uni-
versity. The protocol was performed following the Declara-
tion of Helsinki. Informed consent was waived due to
anonymous data extraction with no direct patient and public
involvement in the study.

A total of 281 eyes were enrolled in the Department of
Ophthalmology, Qilu Hospital, Shandong University from
January 1, 2019, to April 1, 2021. The inclusion criteria were
as follows: (1) DME diagnosed by OCT; (2) patients aged
than18 years old; (3) patients received anti-VEGF therapy
with 1+PRN regimens (either ranibizumab 0.5mg/injection
or conbercept 0.5mg/injection) during the study period; and
(4) VA and OCT data were available pre- and postoperative
(1 month). However, it is difficult to perform follow-up visits
with a fixed date because the patients with DME are mostly
working-age population with the different worksheets, so we
determined a time range (1 month ±3 days) to ensure the
accuracy of the study. Both eyes and each injection from
the same patient were assessed independently. The eyes with
any prior intravitreal pharmacotherapy, significant cataract,
vitreous surgery, and other conditions that may influence
visual acuity such as corneal opacity, glaucoma, macular
degeneration, retinal vein occlusion, and other retinal
pathologies were excluded from the study.

During data processing, clinical data such as gender, age,
baseline VA, and 1-month VA after anti-VEGF injection, as
well as the preoperative OCT image features were extracted
manually. Quantitative evaluations of OCT images were
evaluated on horizontal OCT images within a 3000μm
diameter around the foveal center, including central macular
thickness (CMT), number of cysts, and the shortest distance
of cysts from the fovea, the vertical length of the largest cyst.
The CMT was defined as the distance between the internal
limiting membrane and the retinal pigment epithelium
(RPE) at the fovea. The number of intraretinal cystoid
spaces with a width larger than 50μm was counted. All
the features were measured using the caliper tool built into
the OCT software (Zeiss) by two experienced technicians (Y
Zhang and M Wei) who were masked to any clinical data of
the patients; no significant difference was found between the
different datasets by calculating the Pearson correlation.
The following morphologic features were also assessed,
including diffuse retinal thickening (DRT), cystoids macular
edema (CME), serous retinal detachment (SRD), posterior
hyaloid traction (PHT), traction retinal detachment
(TRD), disorganization of retinal inner layer (DRIL), dis-
ruption of external limiting membrane (ELM), disruption
of inner segment/outer segment (IS/OS), the presence of
epiretinal membrane (ERM), exudation or hemorrhage,
and hyperreflective foci (HF).
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This batch of data consists of 281 samples, which are
composed of 18 features and 2 labels. These features are
almost nonlinear data. For the VA prediction, all baseline
data were analyzed and processed, and the proportion of
the training set and validation set were divided into 80%
and 20%, according to the admission time, respectively.

To predict the logMAR VA of patients with anti-VEGF
therapy, we tested six regression algorithms with state-of-
the-art performance in each adaptive domain. They are
listed as follows: linear regression (LR), SVM, K neighbors
regressor, random forest regressor (RF), ridge regressor,
and LR+RF [26–28, 32–34]. And we established and opti-
mized the LR+RF with the data. The workflow diagram is
shown in Figure 1.

To quantitatively evaluate the model performance, we
applied two evaluation indicators, mean absolute error
(MAE), and mean square error (MSE). MAE is calculated
as the average value of the absolute error of the prediction
results, which directly reflects the deviation of the predicted
values from the actual values and shows the capability of the
models. The MSE is calculated as the average value of the
square of the error of the prediction results, which showed
the robustness of the models.

At the beginning of the 1-month VA prediction, a corre-
lation matrix was established for all baseline data to ensure
that there were no redundant features (Figure 2). We found
that the CME was significantly correlated with the number
of cysts and the vertical length of the largest cyst during
the data processing. Then, the random forest algorithm
was established to output the feature importance, which
showed that CME and the proportion of the other 4 features’
importance were less than 0.01 (Figure 3). After the initial
data exploration, 5 features were deleted, and 13 features
were retained for model training.

During the training process, a grid-search module was
applied to optimize the model parameters. The experimental
results showed that the LR and RF models trained by the
selected features performed best. To evaluate the perfor-
mance of these two models, the VA values predicted by the
LR and RF were compared with the values predicted by the
other algorithms, including SVM, K neighbors regressor,
and ridge regressor. In addition, these two models were fur-
ther combined into an ensemble algorithm by applying a
stacking integration framework to obtain a model with bet-
ter predictive performance and robustness. At the first layer
of stacking, a random forest regression model is trained by

Clinical features Imageological features

Machine learning

(i) Linear Regression(LR)

(ii) SVM

(iii) KNeighborsRegressor

(iv) Random Forest (RF)

(v) Ridge Regressor

(vi) LR+RF

Basic data

(i) 226 eyes (Train data)

(ii) 57 eyes (Test data)

(i) Age

(ii) Gender

(iii) VA Baseline

(iv) VA 1 month

Data
VA 1 
month

(i) Train data

(ii) VA 1 month

(iii) VA Variance

Evaluation of models

OCT of DME patientsMedical records

Figure 1: Overall study workflow. Workflow diagram showed the training overview for the visual acuity prediction model.
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the selected data. And then, the first layer outputs and the
training set were then put into the linear regression model
for training; thus, a combined LR+RF model based on
stacking framework is obtained.

After completing the initial detailed investigation, we
designed another model that would be more conveniently
applied for VA variance predictions. The variance of VA
was defined as the difference value between 1-month visual
acuity and baseline visual acuity. The steps of data process-
ing, the algorithms used, and the model evaluation proce-
dure were the same as in the previous model.

3. Result

Descriptive data of the study population are provided in
Table 1. The VA values (logMAR) predicted by machine
learning models were compared to the ground truth (i.e.,

the outcome as recorded during follow-up) (Tables 2). In
the comparative analysis, the ensemble algorithm (linear
regression + random forest regressor) exhibited the highest
accuracy in VA and VA variance predictions, outperforming
the linear regression, SVM, K neighbors regressor, random
forest regressor, and ridge regressor models. So, all subse-
quent analyses were conducted based on the ensemble
algorithm.

The predicted values were compared with the closest VA
measurements available. In the first model, when all data
collected from electronic medical records and OCT were
considered, the MAEs of the VA predictions with respect
to the ground truth were 0.153logMAR (within8 letters),
and the MSEs of the VA predictions with respect to the
ground truth were 0.045logMAR (within 3 letters), respec-
tively. The optimization model achieved a comparable level
of predictive power with fewer features, the MAEs of the

VA Basaline

Correlation of all features

Sex

1.0

0.8

0.6

0.4

0.2

0.0

–0.2

Age

DRT

CME

SRD

PHT

TRD

Presence of epiretinal membrane

DRIL

Disruption of ELM

Disruption of IS/OS

Presence of HRF

Exudation /Hemorrhage

CMT

Number of cysts

Shortest distance of cysts from fovea

Vertical length of the largest cysts

V
A

 B
as

al
in

e

Se
x

A
ge

D
RT

CM
E

SR
D

PH
T

TR
D

Pr
es

en
ce

 o
f E

pi
re

tin
al

 m
em

br
an

e

D
RI

L

D
isr

up
tio

n 
of

 E
LM

D
isr

up
tio

n 
of

 IS
/O

S

Pr
es

en
ce

 o
f H

RF

Ex
ud

at
io

n 
/H

em
or

rh
ag

e

CM
T

N
um

be
r o

f c
ys

ts

Sh
or

te
st 

di
sta

nc
e o

f c
ys

ts 
fro

m
 fo

ve
a

V
er

tic
al

 le
ng

th
 o

f t
he

 la
rg

es
t c

ys
ts

Figure 2: Correlation matrix of all baseline data. A correlation matrix was established for all baseline data to exclude redundant features.
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VA predictions with respect to the ground truth were 0.137
logMAR (within 7 letters), and the MSEs of the VA predic-
tions with respect to the ground truth were 0.033 logMAR
(within 2 letters), respectively. The details of predictions
with SVM, K neighbors regressor, random forest regressor,
and ridge regressor models are shown in Table 2. Besides,
to predict the response of vision more detailed after anti-
VEGF, we built another model to predict the changes of
VA after treatment; accuracy of VA variance prediction at
1 month is shown in Table 3 and Figure 4.

Figure 5 showed the differences between the predicted
and ground truth VA values, which were the VA values mea-

sured 1 month after anti-VEGF. The VA measured at base-
line was the most important predicted factor for 1-month
VA prediction in both original and optimization models.
However, in the prediction of the variance of VA, the
CMT and age were the most important predicted factors.
Details of feature importance are shown in Figure 3.

4. Discussion

The present study developed an ensemble ML system to pre-
dict VA at 1 month after anti-VEGF injection in DME
patients treated with 1+PRN regimens and an ensemble
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Figure 3: Relative importance of different features for VA and VA variance predictions. The plot showed the weight of different features
for the VA (a, b) and VA variance (c, d) prediction task. The blue bar indicated how important the feature was for the model on the
different test runs.
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model for the variance of VA prediction. We demonstrated
that the VA can be accurately predicted within a very small
error of 2-8 letters (1-2 lines on EDTRS visual chart) based
on18 features from electronic medical records and OCT
images using ML algorithms. Based on these two models,
we could accurately predict the visual benefit of DME
patients treated with 1+PRN regimens, evaluate the efficacy
of the anti-VEGF therapy, and determine whether to change
the treatment strategy.

With the increasing number of DME patients and anti-
VEGF injections worldwide, it is crucial to make cost-

effective treatment regimens to prevent visual loss and
reduce the economic and time burden [16, 17]. The
1+PNR regimen, which used monthly evaluation either
clinical or imaging and as-needed treatment to reduce the
number of injections, demonstrated a noninferior visual
improvement at 1 year along with significantly fewer injec-
tions [18–20]. Real-world data show a poor compliance with
treatment among DME patients, and patients undergo lower
treatment intensity of anti-VEGF injection compared with
patients in random clinical trials [14, 15]. This is partly
because patients are uncertain of treatment outcomes and

Table 1: Patient demographics.

Demographics Training data Test data P value

Eyes 226 55 N/A

Age (years) 56:57 ± 10:12 53:38 ± 10:41 0.89

VA (baseline) 0:585 ± 0:316 0:576 ± 0:332 0.90

VA (endpoint) 0:540 ± 0:342 0.536± 0.331 0.94

VA (variance) −0:029 ± 0:265 −0:031 ± 0:271 0.90

Diffuse retinal thickening 153 38 N/A

Cystoids macular edema 114 29 N/A

Serous retinal detachment 56 16 N/A

CMT 358:36 ± 225:39 348:42 ± 221:47 0.88

DRILL 195 41 N/A

Presence of HRF 53 15 N/A

Exudation or hemorrhage 112 29 N/A

VA, visual acuity; values are presented as the means ± standard deviations at baseline in different groups (in logarithm of minimum angle of resolution
[logMAR] units). CMT, central macular thickness; DRIL, disorganization of retinal inner layer; HRF, hyperreflective foci.

Table 2: Accuracy of visual acuity predictions.

Algorithm learner
MAE MSE

All features Selected features All features Selected features

Linear regression (LR) 0.153 0.149 0.048 0.046

SVM 0.272 0.359 0.140 0.188

K neighbors regressor 0.222 0.195 0.076 0.060

Random forest regressor (RF) 0.168 0.153 0.050 0.042

Ridge regressor 0.183 0.159 0.058 0.046

LR+RF 0.153 0.137 0.045 0.033

MAE, mean absolute error; MSE, mean square error; accuracy (VA in logMAR) of VA prediction at 1 month after anti-VEGF compared with the ground
truth.

Table 3: Accuracy of visual acuity variance predictions.

Algorithm learner
MAE MSE

All features Selected features All features Selected features

Linear regression (LR) 0.188 0.188 0.069 0.069

SVM 0.254 0.349 0.111 0.208

K neighbors regressor 0.187 0.202 0.065 0.071

Random forest regressor (RF) 0.193 0.185 0.071 0.069

Ridge regressor 0.188 0.187 0.069 0.069

LR+RF 0.169 0.164 0.059 0.056

MAE, mean absolute error; MSE, mean square error; accuracy (VA in logMAR) of VA variance prediction at 1 month after anti-VEGF compared with the
ground truth.
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anxious about the high cost of anti-VEGF therapy [14, 15].
So, an accurate prediction of posttreatment VA for anti-
VEGF therapy is paramount to obtaining better compliance
for multiple anti-VEGF injections, especially in 1+PRN reg-
imens. It can not only help ophthalmologists to make better
treatment plans but also help patients to reduce psychologi-
cal pressure and manage the expectations.

Previous studies have investigated the predictive factors
of treatment outcomes after anti-VEGF therapy in eyes with
DME, including OCT data and clinical data [18, 31, 35–38].
OCT images are essential for managing the treatment strat-
egy of DME, which provides a way to objectively detect the
treatment response [22–24, 35]. Data obtained from OCT
images, such as different OCT morphologic characteristics
of DME, retinal thickness, the height of cysts, DRIL, hyper-
reflective foci, and the integrity of ELM and IS/OS, have
been shown as the predictors of treatment responses follow-
ing anti-VEGF treatment [22–24, 35]. In the present study,

our results showed that CMT, vertical height of the largest
cysts, and the number of cysts were important predictive fac-
tors for VA prognosis in patients with DME. It was an
advantage that CMT and the intraretinal cysts on OCT
images were easily evaluated visually during clinical practice.

In the real world, exhaustive clinical data collection is
not cost-effective and does not adapt properly to clinical
practice. Although several baseline demographics and ocular
findings were evaluated, the treatment benefit was found to
associate with only a few features, such as age, gender, base-
line VA, HbA1c levels, and prior panretinal photocoagula-
tion (PRP) [36, 37]. However, some studies showed that
there was a lack of correlation between HbA1c and post-
treatment VA because real-time HbA1c levels reflected the
blood glucose control in the previous two months and not
prospectively after administering treatment [38]. Further-
more, it is unknown why prior PRP is negatively associated
with improvement of VA, which may be due to the macular
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Figure 4: Comparison of VA and VA variance predictions in different models. The plot showed the performance of the different algorithms
for the VA (a) and VA variance (b) prediction task.
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ischemia [38]. Since PRP is a part of the treatment regimen,
it is not possible to separate the effect of PRP from anti-
VEGF treatment on the VA outcomes [8]. Thus, only three
clinical variables including age, gender, and baseline VA
were used to develop the predictive model in this study.
Baseline VA and age were found to have a critical impact
on visual outcomes following anti-VEGF treatment in DME.

In addition to appropriate predictors, the applications of
algorithms were equally important for VA prediction. Linear
regression is the process of estimating unknown values
based on multiple known data [27, 39]. It assigns a factor
weight to each known data so that the final prediction results
approximate the real results [27]. In the fitting, the most
appropriate weight parameters are assigned to each feature
to achieve prediction results more accurately. Random forest
is an ensemble learning algorithm, which is emerging among

the other algorithms mainly resulting in its random and for-
est structure [27, 33]. On the one hand, its bootstrap mech-
anism can resist overfitting since the sample training is
stochastic. On the other hand, forest is a combination of tree
structures that could fit nonlinear data more accurately [33].
With the statistics of feature importance in random forest, it
shows that some features are more advantageous for the pre-
diction [27, 33]. The experiment result “MAE and MSE”
shows that the screened features on all models compared
with all data improved significantly, especially linear regres-
sion and random forest.

What’s more, due to the advantages of linear regression
and random forest, the stack architecture was used to com-
bine the two models [25, 32, 33]. Firstly, the random forest
could be utilized to extract the hidden information of some
important features, and then these data can be fitted with
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Figure 5: Visual acuity prediction fitting curve in different models. (a) fitting curve for VA predictions; (b) fitting curve for VA variance
predictions.
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the final output prediction results by linear regression [32,
33]. LR+RF model has better indicators in comparing
among any single model, and it can be seen that the predic-
tion of the model is relatively close to the true value in the
fitting curve.

There are several limitations in our study. The first lim-
itation is that the sample size was rather small and more and
longer follow-up data are still necessary to improve the per-
formance of our prediction models. We could try to predict
the response of anti-VEGF in patients with DME using deep
learning with more paired OCT images. Secondly, extracting
measurement data manually from OCT is a very labor-
intensive and time-consuming undertaking. With the addi-
tional OCT data, we will likely be able to use more data-
hungry approaches like deep learning for predicting VA.

An accurate prediction of posttreatment visual response
to anti-VEGF therapy remains challenging in clinical prac-
tice. ML could accurately predict VA and VA variance 1
month after the anti-VEGF therapy in DME patients treated
with 1+PRN regimens, and the optimization model could
be more easily applied by ophthalmologists. This will be
invaluable to guide precise individualized interventions and
manage expectations.
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