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Abstract 

Background:  The epigenetic landscape underlying cardiovascular disease (CVD) is not completely understood and 
the clinical value of the identified biomarkers is still limited. We aimed to identify differentially methylated loci associ‑
ated with acute myocardial infarction (AMI) and assess their validity as predictive and causal biomarkers.

Results:  We designed a case–control, two-stage, epigenome-wide association study on AMI (ndiscovery = 391, 
nvalidation = 204). DNA methylation was assessed using the Infinium MethylationEPIC BeadChip. We performed a fixed-
effects meta-analysis of the two samples. 34 CpGs were associated with AMI. Only 12 of them were available in two 
independent cohort studies (n ~ 1800 and n ~ 2500) with incident coronary and cardiovascular disease (CHD and CVD, 
respectively). The Infinium HumanMethylation450 BeadChip was used in those two studies. Four of the 12 CpGs were 
validated in association with incident CHD: AHRR-mapping cg05575921, PTCD2-mapping cg25769469, intergenic 
cg21566642 and MPO-mapping cg04988978. We then assessed whether methylation risk scores based on those CpGs 
improved the predictive capacity of the Framingham risk function, but they did not. Finally, we aimed to study the 
causality of those associations using a Mendelian randomization approach but only one of the CpGs had a genetic 
influence and therefore the results were not conclusive.

Conclusions:  We have identified 34 CpGs related to AMI. These loci highlight the relevance of smoking, lipid metab‑
olism, and inflammation in the biological mechanisms related to AMI. Four were additionally associated with incident 
CHD and CVD but did not provide additional predictive information.
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Introduction
Cardiovascular disease (CVD) and more specifically 
coronary heart disease (CHD) remains the number one 
cause of death and disease burden worldwide [1, 2]. At 
the individual level, prevention is based on the estima-
tion of cardiovascular risk [3]. However, the sensitivity 
of cardiovascular risk estimation is low and a significant 

proportion of CHD events occurs in individuals classified 
as having moderate or low risk [4]. Additionally, the use 
of currently available drugs to control classical cardio-
vascular risk factors (CVRFs) does not prevent all CHD 
events, underlining the need to identify new strategies 
for reducing this residual cardiovascular risk [5]. Thus, 
information encoded in biological mechanisms should be 
unravelled to find new predictive biomarkers and poten-
tial therapeutic targets. Among these biomarkers, DNA 
methylation marks arise as emerging candidates.

DNA methylation is an epigenetic mechanism consist-
ing on chemical modifications of cytosines, mostly fol-
lowed by guanines (CpGs) [6]. Epigenome-wide association 
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studies (EWASs) make it possible to find DNA methylation 
biomarkers of different traits and outcomes. In fact, DNA 
methylation pattern is associated with multiple chronic dis-
eases [7], including CVD and CHD [8–13]. However, the 
clinical value of the identified biomarkers is still limited, 
and the epigenetic landscape underlying CVD is not com-
pletely understood.

The most common technology to assess DNA methylation 
is based on commercial arrays, which do not cover the whole 
methylome. Moreover, most current knowledge on the rela-
tion between DNA methylation and cardiovascular risk 
comes from studies based on the Infinium HumanMeth-
ylation450 BeadChip (Illumina, CA, USA; from now on, 
450 k) [14] – which has been replaced by the Infinium Meth-
ylationEPIC BeadChip (Illumina, CA, USA; from now on, 
EPIC). Compared to the 450  k, EPIC interrogates 413,745 
more methylation sites (but excludes 42,859) increasing the 
genomic coverage. Moreover, EPIC is enriched with func-
tional sites analyses such as enhancers, DNase hypersensitive 
sites, and miRNA promoter regions [15]. Thus, the new chip 
has the potential to identify novel DNA methylation-based 
biomarkers of cardiovascular events.

We hypothesized that DNA methylation is associated 
with MI risk, and that some of these epigenetic marks 
could be predictive of future risk, and have causal effects 
on cardiovascular outcomes. Thus, this study had three 
aims: 1) to unravel genomic methylation loci associated 
with myocardial infarction (MI), 2) to assess their predic-
tive capacity of cardiovascular risk, and 3) to decipher the 
causality of those associations.

Results
Quality control of DNA methylation data, cardiovascular 
outcomes and covariates
We finally included 391 individuals (196 cases and 195 
controls) in the REGICOR-1 sample (Girona Heart Regis-
try; REgistre GIroní del COR), 204 individuals (101 cases 
and 103 controls) in the REGICOR-2 sample, 1,863 women 
in the WHI Women’s Health Initiative) sample, and 2,540 
participants in the FOS (Framingham Offspring Study) 
sample. The main sociodemographic and clinical charac-
teristics of the three populations are shown in Tables 1 and 
2. Regarding the number of CpGs, we analysed 811,610 
CpGs in the REGICOR-1 sample, 820,183 CpGs in the 
REGICOR-2 sample, 478,369 CpGs in the WHI sample, 
and 483,656 CpGs in the FOS sample. Figure 1 illustrates 
the steps included in this study.

Association between DNA methylation and cardiovascular 
outcomes
Two‑stage EWAS on acute myocardial infarction
Discovery stage  The associations from the discovery 
stage (REGICOR-1) that were taken to the subsequent 

validation (p-value < 10–5), and their Manhattan and Q-Q 
plots are shown in the Additional file  2: Table  S1, and 
Additional file 1: Figs. S1 and S2]. In total, we identified 
68 CpGs suggestively related to MI (Additional file  1: 
Fig. S3). Model 1 provided 56 CpGs, of which three were 
also found in both model 2 and 3, and 13 in model 2. One 
additional CpG was found in both model 2 and 3, two in 
model 2 and nine in model 3.

Validation and  meta‑analysis  The association studies 
performed in the validation stage included the 68 CpGs 
suggestively related to MI. We meta-analysed the results 
of those 68 associations from both stages. We identified 
34 differentially methylated CpGs related to MI, with sim-
ilar effect sizes in all three models for most of the CpGs 

Table 1  Descriptive characteristics of the populations used 
in the two-stage EWAS on acute myocardial infarction (AMI): 
REGICOR-1 and REGICOR-2

‡ NA, missing information; AMI, Acute myocardial infarction; BMI, Body mass 
index; Hypercholesterolaemia, defined as self-reported high cholesterol levels or 
treatment; HTN, Hypertension, defined as self-reported high blood pressure or 
treatment; Diabetes, defined as self-reported diabetes or treatment
† Median (Interquartile Range)

*Mean (Standard deviation)

Variables Discovery: 
REGICOR-1

Validation: 
REGICOR-2

N = 391 NA‡ N = 204 NA‡

AMI cases/controls, n (%)‡

AMI cases 196 (50.1) 0 101 (49.5) 0

Controls 195 (49.9) 0 103 (50.5) 0

Age 63.2 (6.94) 0 61.7 (6.90) 0

AMI cases 63.0 (6.96) 0 61.6 (6.83) 0

Controls 63.3 (6.94) 0 61.7 (7.01) 0

Sex, female, n (%) 201 (51.4) 0 100 (49.0) 0

AMI cases 100 (51.0) 0 49 (48.5) 0

Controls 101 (51.8) 0 51 (49.5) 0

Smokers, n (%) 93 (24.4) 10 67 (33.3) 3

AMI cases 76 (40.6) 9 45 (45.0) 1

Controls 17 (8.76) 1 22 (21.8) 2

BMI, kg/m2*‡ 28.5 (4.75) 52 27.5 (4.87) 23

AMI cases 28.1 (4.34) 52 28.2 (5.87) 23

Controls 28.8 (5.02) 0 26.9 (3.90) 0

Hypercholesterolaemia, n (%)‡ 179 (53.0) 53 93 (51.4) 23

AMI cases 93 (64.1) 51 51 (65.4) 23

Controls 86 (44.6) 2 42 (40.8) 0

HTN, n (%)‡ 212 (57.1) 20 105 (54.1) 10

AMI cases 120 (68.2) 20 62 (68.1) 10

Controls 92 (47.2) 0 43 (41.7) 0

Diabetes, n (%) 87 (24.7) 39 44 (23.8) 19

AMI cases 56 (35.7) 39 27 (32.9) 19

Controls 31 (15.9) 0 17 (16.5) 0
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Table 2  Descriptive characteristics of the populations used in the follow-up association studies on incident cardiovascular (CVD) and 
coronary heart disease (CHD) events: Women’s Health Initiative (WHI) and Framingham Offspring Study (FOS)

‡ CHD, Coronary heart disease; CVD, Cardiovascular disease; BMI, Body mass index; LDL-C, Cholesterol in low-density lipoprotein; HDL-C, Cholesterol in high-
density lipoprotein; TG, Triglycerides; SBP, Systolic blood pressure; DBP, Diastolic blood pressure; HTN: hypertension; Diabetes, defined as previous treatment or 
glycaemia ≥ 126 mg/dl
† Median (Interquartile range)

*Mean (Standard deviation)

Variables WHI FOS CHD FOS CVD

N = 1863 NA N = 2266 NA N = 2123 NA

Age 64.2 (7.03) 0 65.7 (8.82) 0 65.3 (8.66) 0

Sex, female, n (%) 1863 (100) 0 1284 (56.7) 0 1206 (56.8) 0

CHD, n (%)‡ 914 (49.1) 0 106 (4.68) 0 _ _

CVD, n (%)‡ 984 (52.8) 0 _ _ 222 (10.5) 0

Smokers, n (%) 174 (9.46) 24 217 (9.62) 11 202 (9.56) 11

BMI, kg/m2*‡ 29.8 (5.97) 11 28.1 (5.39) 8 28.0 (5.33) 6

Total cholesterol, mg/dl* 233 (42.3) 1 189 (36.2) 1 190 (35.8) 1

LDL-C, mg/dl*‡ 152 (38.7) 31 107 (30.8) 2 108 (30.5) 2

HDL-C, mg/dl*‡ 52.2 (13.2) 1 58.3 (18.3) 2 58.7 (18.3) 2

TG, mg/d† 126 [93.0;176] 1 101 [73.0;140] 1 100 [73.0;139] 1

SBP, mmHg*‡ 131 (17.5) 0 126 (16.9) 1 125 (16.7) 1

DBP, mmHg*‡ 76.4 (9.27) 0 72.1 (9.99) 3 72.3 (9.92) 3

HTN treatment, n (%)‡ 672 (45.9) 400 1025 (45.4) 7 927 (43.8) 6

Glucose, mg/dl† 107 (38.3) 1 106 (21.8) 2 105 (21.5) 2

Diabetes, n (%) 319 (17.1) 0 307 (14.3) 126 266 (13.3) 119

Fig. 1  Flow chart of the steps included in this study
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(except cg21566642, cg05575921, cg03636183). The 34 
CpGs were located in 25 different loci (26 genes, with one 
CpG mapping to two genes) and nine intergenic regions 
(Table 3, and Additional file 2: Table S2).

Follow‑up association studies on incident CHD and CVD 
events
Out of the 34 identified CpGs associated with MI, only 12 
were available in the samples with incident cases (whose 
DNA methylation was profiled with the array 450  k). In 
total, we validated four CpGs after the meta-analysis of 
the separate association studies in the WHI and the FOS 
samples (p-value < 0.05/12 = 4.17 × 10–3): AHRR-mapping 
cg05575921, PTCD2-mapping cg25769469, intergenic 
cg21566642 and MPO-mapping cg04988978. The four 
CpGs were associated with CHD but cg25769469 was not 
related to CVD (Table 4, Additional file 2: Table S3).

Association between the identified CpGs and CVRFs
Table  5 shows the associations observed between the 
identified CpGs and classical CVRFs. The four validated 
CpGs were related to some CVRF [p-value < 0.05/(4 
CpGs*8 CVRF) = 1.56 × 10–3].

Association between MRSs and incidence of CHD and CVD
The associations between the methylation risk scores 
(MRSs) and the incidence of coronary (n = 94) and car-
diovascular (n = 222) events in the FOS population are 
shown in Additional file 2: Table S4. The median of the 
follow-up periods for CVD and CHD incidence were 7.67 
and 7.87 years, respectively. The MRSs were not associ-
ated with higher cardiovascular risk independently of the 
classical CVRFs. Consistently, the addition of any of the 
MRSs to the Framingham risk function did not improve 
its predictive capacity in the FOS cohort (Additional 
file 2: Table S4).

Causality of the associations between DNA methylation 
and cardiovascular outcomes
Of the four identified CpGs, only cg21566642 showed a 
genetic influence; its methylation levels in adolescence 
were associated with rs72617176 and in childhood with 
rs139595493. We did not have individual data to test the 
first and second Mendelian randomization assumptions, 
but the meQTLs were associated with the CpGs methyla-
tion levels at genome-wide significance independently of 
age, sex or ancestry principal components [16]. Only the 
Wald ratio method could be conducted, since it uses a 
single instrumental variable. The results did not support 
a causal effect of methylation at cg21566642 on either MI 
or CHD (Additional file 2: Table S5). We could not per-
form sensitivity tests for pleiotropic effects or its strength. 
The other three CpGs could not be instrumented.

Discussion
We have identified 34 methylation loci associated with 
acute MI in a two-stage EWAS, analysing ~ 850,000 CpGs. 
All but two of these MI-associated sites (cg05575921 
located in AHRR and the intergenic cg21566642) are 
newly reported. Of those, 12 CpGs could be studied in 
association with incident cases of CHD and CVD, and 
we identified four of them associated with incident CHD 
(three of them also with incident CVD). All four were 
also related to traditional CVRFs, supporting their role in 
the development of these diseases. However, their clinical 
utility as predictive biomarkers or drug targets was not 
proven.

Recently, two EWASs on incident CHD were published 
providing different findings from ours. Ward-Caviness 
et al.found nine CpGs associated with incident acute MI 
[9]. Agha et al. reported 52 CpGs related to incident CHD 
[8]. None of them was replicated in our study. This lack of 
concordance could be related to methodological differ-
ences (incident vs prevalent cases; myocardial infarction 
vs CHD; considered confounder variables; characteristics 
of the populations), and highlights the complexity of the 
study of these diseases.

CpG sites associated with acute MI events
The 34 identified CpGs showed similar effect sizes in the 
two REGICOR samples and we considered them poten-
tially relevant. Similarly, all but three CpGs (AHRR-
mapping cg05575921, F2RL3-mapping cg03636183, and 
the intergenic cg21566642) showed consistent effect 
sizes in the three models. The effect size of those three 
was reduced by half when adjusted for smoking, which 
highlights the important role of this risk factor in the MI 
context. In fact, all three sites are widely described to be 
related to smoking [17–19].

Differentially methylated genes were enriched in 
diverse molecular and physiological pathways, including 
lipid metabolism and metabolic and inflammatory dis-
eases, underlining their relevance on the pathogenesis 
of CHD. Interestingly, the SERPINA1 locus also anchors 
genetic variants related to CHD [20], and other identified 
loci present with genetic variants associated with body 
mass index (DNMT3A, ABTB2, ZBTB16, NISCH, AHRR, 
DLEU1), inflammatory biomarkers or blood cell counts 
(AIM2, ITPKB, DNMT3A, LZTFL1, PSMB7, ZBTB16, 
ACTN1, SERPINA1, MPO, DNAJC5B, CPM, DLEU1, 
ZFPM1), blood pressure (PTCD2, PSMB7, SERPINA1, 
AHRR) and lipids (SERPINA1, NISCH, DLEU1, ZFPM1)  
[21].

Nonetheless, the case–control design of our initial 
discovery sample limits the inference of the biologi-
cal sequence of the epigenetic marks, the related bio-
logical mechanisms, and the clinical event. One possible 
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scenario could be that the identified DNA methylation 
marks occurred before the acute event, as potential bio-
logical mechanisms involved in MI pathogenesis. This 
may be the case of the three CpGs that were related to 
smoking. Conversely, as blood samples of MI cases were 
collected within the initial 24 h after hospitalization, the 
other possibility could be that methylation at the iden-
tified CpGs had changed as a consequence of the acute 
event or the therapeutic procedures. If the first scenario 
can be proven in further studies, these DNA methylation 
marks could be potential predictive biomarkers of MI or 
new therapeutic targets. If they are found to be post-MI 
marks, further studies could evaluate their potential as 
biomarkers of prognosis.

CpG sites consistently related to prevalent and incident 
CVD events
Twelve of the 34 identified CpGs could be evaluated in 
prospective samples and four of them were also related to 
incident cases of CHD. cg21566642 maps to an intergenic 
region, and cg05575921, cg04988978 and cg25769469 
annotate to AHRR, MPO and PTCD2, respectively. To 
our knowledge, these CpGs were not associated with car-
diovascular events in previous EWAS reports.

cg21566642 and cg05575921 were highly and inversely 
associated with smoking, which is supported by previ-
ous EWAS [18, 19]. We have also previously reported 
both CpGs as related to age-independent cardiovascular 
risk [13], and they have been related to all-cause mortal-
ity in an EWAS [22]. cg05575921 was further associated 
directly with cholesterol in high-density lipoproteins 
(HDL-C) and inversely with cholesterol in low-density 
lipoproteins (LDL-C) and triglyceride levels in our study. 
This CpG has been related to both CHD prevalence and 
incidence in a candidate gene study [23].

cg04988978 and cg25769469 annotate to MPO and 
PTCD2, respectively. Both CpGs were associated directly 
with HDL-C and inversely with triglyceride and glucose 
levels. MPO encodes the myeloperoxidase, which pro-
motes atherosclerotic lesions by enhancing APOB oxida-
tion within low-density lipoproteins [24] and was causally 
associated with incident cardiovascular outcomes [25]. 
One CpG located within PTCD2 was previously identi-
fied to be associated with hypertension in obstructive 
sleep apnea patients [26], and genetic variants in this 
gene have been related with blood pressure [21].

MRSs as predictive CVD biomarkers
To assess the value of the four identified CpGs as pre-
dictive biomarkers, we followed the AHA recommenda-
tions [27]. However, neither we observed an independent 
association between the MRSs and the incidence of CVD 

events in the FOS, nor we observed an improvement in 
the predictive capacity of the Framingham risk func-
tion when including this score. This highlights the chal-
lenge of novel biomarkers to improve cardiovascular risk 
prediction.

Causality of the associations between methylation loci 
and cardiovascular outcomes
The four CpGs associated not only with acute MI, but 
also incident CHD, may suggest that DNA methylation 
changes at those loci occur prior to the event. However, 
this association does not guarantee whether differen-
tial DNA methylation at those loci has a causal effect on 
CHD. Mendelian randomization can be used to ascer-
tain this causal relationship. However, this approach 
could only be undertaken for cg21566642. Although 
a non-causal relationship was suggested, this must be 
interpreted with caution as there was a single genetic 
instrumental variable, and we cannot discard that the 
meQTL is in linkage disequilibrium with the causal vari-
ant for CHD, reverse causation or horizontal pleiotropy 
using this framework [28, 29]. Moreover, cg21566642 
showed a genetic influence in childhood and adolescence, 
while CHD events typically occur during adulthood.

Strengths and limitations
The main strength of our study is that it is the first two-
stage EWAS on MI to be based on more than 800,000 
CpGs across the genome. Moreover, we aimed to vali-
date our findings in prospective samples of CHD and 
CVD as a proxy of MI. Also, we aimed to prove the clini-
cal relevance of our findings. However, some limitations 
should be acknowledged. First, two thirds of the CpGs 
identified in the initial case–control study could not be 
assessed in the incident studies as the methylation arrays 
differed in the number of CpGs (EPIC VS 450 k, respec-
tively). Second, we used self-reported information about 
cardiovascular risk factors in the case–control study, as 
an event such as MI modifies risk factor levels during 
the acute phase. Third, we cannot infer causality since 
changes in methylation could have occurred as a conse-
quence of the acute phase and disease management of 
the MI event. We aimed to perform MR studies of the 
association between the identified CpGs and cardiovas-
cular events, but available methylation Quantitative Trait 
Loci (meQTL) datasets are still limited. Last, our study is 
based on populations of European origin and the results 
cannot be extrapolated to other populations.

Conclusion
Our study provides 34 novel DNA methylation loci 
related to MI. The results shed some light on the molec-
ular landscape of MI, highlighting the importance of 
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traditional CVRFs and inflammation in the develop-
ment of CHD. Our results question the relevance of DNA 
methylation as a predictive biomarker.

Methods
Study design and populations
We designed an EWAS using three populations: the 
Girona Heart Registry (REGICOR, REgistre GIroní del 
COR), the Women’s Health Initiative (WHI), and the 
Framingham Offspring Study (FOS). We first performed 
a two-stage EWAS on acute MI using two independent 
age- and sex-matched case–control studies designed in 
REGICOR. Then, we validated the results in the other 
two populations with incident cases of CHD and CVD.

Case–control studies of acute MI in REGICOR
The sample used in the discovery stage (REGICOR-1) 
involved 416 individuals (208 MI cases and 208 con-
trols). The sample in the validation stage (REGICOR-2) 
comprised 208 individuals (104 cases and 104 controls). 
Cases were selected from patients who were consecu-
tively attended for a first acute MI in the reference hos-
pital of the monitored area, in the province of Girona, in 
the northeast of Spain. Women were overrepresented to 
achieve their inclusion as 50% of our sample. Controls 
were participants in a population-based survey per-
formed in the same monitored area. They were randomly 
selected from those attending the 2009–2013 follow-up 
visit (n = 4980), and matched by age and sex with the MI 
cases. All participants were of European descent and pro-
vided informed written consent. The study was approved 
by the local ethics committee (2015/6199/I; 2018/7855/I) 

and meets the principles expressed in the Declaration of 
Helsinki and the relevant Spanish legislation.

Samples with incident cases of CHD and CVD
The WHI sample is a case–control study nested in a 
cohort. The FOS sample is a prospective cohort study. 
Both samples were available in the database of Genotypes 
and Phenotypes (http://​dbgap.​ncbi.​nlm.​nih.​gov; Project 
Number #9047). The graphical abstract shows the design 
and flow-chart of this study.

Assessment of cardiovascular outcomes
The outcomes assessed were acute MI in REGICOR, and 
incident CHD and CVD in the WHI and FOS samples. 
Additional details are provided in the Additional file  1: 
Methods.

Assessment of DNA methylation
DNA methylation was assessed genome-wide from 
peripheral blood with commercial arrays from Illumina 
(CA, USA). The Infinium MethylationEPIC BeadChip, 
covering over 850,000 CpGs, was used in the REGICOR 
samples. The Infinium HumanMethylation450 Bead-
Chip, covering over 480,000 CpGs, was used in the WHI 
and FOS samples. A detailed quality control pipeline for 
the methylation data is available in the Additional file 1: 
Methods. Methylation status at each CpG was reported 
by β-values [30].

Covariates
In the REGICOR case–control studies the follow-
ing covariates were considered: self-reported smok-
ing, diabetes, hypercholesterolemia and hypertension 

Table 5  Associations between the identified CpGs and classical cardiovascular risk factors (CVRFs) in the fixed-effects meta-analyses of 
the four samples

*BMI, Body mass index; HDL-C, Cholesterol in high-density lipoprotein; LDL-C, Cholesterol in low-density lipoprotein; TG, Triglycerides; SBP, Systolic blood pressure; 
DBP, Diastolic blood pressure; SE, Standard Error

CpG Smoking BMI* HDL-C* LDL-C* TG* Glucose SBP DBP*

cg21566642 − 1.61 9.55 × 10–3 7.69 × 10–4 − 1.10 × 10–3 − 4.17 × 10–4 2.32 × 10–4 2.30 × 10–3 7.97 × 10–3 Coefficient

4.22 × 10–2 2.65 × 10–3 1.21 × 10–3 4.09 × 10–4 1.95 × 10–4 4.20 × 10–4 9.02 × 10–4 1.67 × 10–3 SE*

 < 2.2 × 10–16 3.21 × 10–4 5.24 × 10–1 7.11 × 10–3 3.22 × 10–2 5.81 × 10–1 1.08 × 10–2 1.78 × 10–6 P

cg05575921 − 1.61 1.17 × 10–2 4.36 × 10–3 − 1.35 × 10–3 − 7.09 × 10–4 1.86 × 10–4 2.15 × 10–3 7.54 × 10–3 Coefficient

4.22 × 10–2 2.46 × 10–3 1.11 × 10–3 3.77 × 10–4 1.79 × 10–4 3.87 × 10–4 8.23 × 10–4 1.52 × 10–3 SE*

 < 2.2 × 10–16 2.22 × 10–6 8.22 × 10–5 3.39 × 10–4 7.63 × 10–5 6.30 × 10–1 9.06 × 10–3 7.69 × 10–7 P

cg25769469 − 9.01 × 10–2 − 1.12 × 10–2 6.76 × 10–3 2.47 × 10–4 − 1.38 × 10–3 − 1.52 × 10–3 − 2.35 × 10–3 − 4.17 × 10–3 Coefficient

5.08 × 10–2 2.64 × 10–3 1.20 × 10–3 4.11 × 10–4 1.93 × 10–4 4.17 × 10–4 9.10 × 10–4 1.69 × 10–3 SE*

7.65 × 10–2 2.32 × 10–5 1.92 × 10–8 5.48 × 10–1 8.75 × 10–13 2.69 × 10–4 9.97 × 10–3 1.36 × 10–2 P

cg04988978 − 7.29 × 10–2 − 1.15 × 10–2 5.28 × 10–3 3.59 × 10–4 − 1.19 × 10–3 − 1.88 × 10–3 − 2.88 × 10–3 − 3.54 × 10–3 Coefficient

5.15 × 10–2 2.64 × 10–3 1.20 × 10–3 4.08 × 10–4 1.92 × 10–4 4.15 × 10–4 9.02 × 10–4 1.67 × 10–3 SE*

1.57 × 10–1 1.26 × 10–5 1.08 × 10–5 3.80 × 10–1 5.79 × 10–10 5.97 × 10–6 1.41 × 10–3 3.47 × 10–2 P

http://dbgap.ncbi.nlm.nih.gov
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(Additional file 1: Methods). In the WHI and FOS stud-
ies self-reported smoking and glycaemia, total and HDL 
cholesterol, and blood pressure measurements were con-
sidered. Moreover, we inferred the peripheral blood cell 
counts with the FlowSorted.Blood.450  k R package [31]. 
We also estimated two surrogate variables for unknown 
sources of potential technical or biological confounding 
using the sva R package [32].

Statistical analysis
All statistical analyses were performed using R version 
3.4.0. The codes of the Singularity images used to run the 
EWASs in the high performance computing system of the 
Hospital del Mar Medical Research Institute are avail-
able in the repositories at https://​github.​com/​regic​or/​
methy​lation_​ami/. A detailed description of the statistical 
methods is provided in the Additional file 1: Methods.

Association between DNA methylation and cardiovascular 
outcomes
Logistic regression was used in the analyses in the REGI-
COR and WHI samples, while Cox regression was used 
in the FOS sample. We considered the cardiovascular 
event (acute MI, CHD or CVD) as the outcome and DNA 
methylation as the exposure.

We defined three models. Model 1 was adjusted for 
estimated cell counts and two surrogate variables (plus 
age and ethnicity in the WHI sample, plus age and sex 
in the FOS samples). Model 2 was additionally adjusted 
for smoking. Model 3 was further adjusted for diabetes, 
hypercholesterolemia and hypertension.

In order to reduce epigenomic inflation, we corrected 
the coefficients, the standard errors and the p values 
using the bacon R package if necessary [33]. The bacon 
R package controls for bias and inflation using a Bayesian 
method based on the estimation of the empirical null dis-
tribution and was used in previous EWAS [33–35]. We 
used coefficients and standard errors from the regres-
sion models as the input data and we set a random seed 
at 123.

We selected those associations from the discovery stage 
(REGICOR-1) with a corrected p-value < 10–5 for assess-
ment in the validation stage (REGICOR-2). Moreover, we 
performed a fixed-effect meta-analysis of the corrected 
effect sizes observed in both stages, weighted by the 
inverse of the variance. Thereafter, we studied the associ-
ation of the identified CpGs with incident CHD and with 
CVD events in the WHI and the FOS samples, separately. 
The results from both samples were meta-analysed (for 
CHD and CVD, separately). We used the Bonferroni cri-
teria to correct for multiple comparisons (0.05 divided by 
the number of probes analysed in each specific analysis).

Association between the identified CpGs and CVRFs
We analysed whether the methylation levels of the identi-
fied CpGs were associated with individual CVRFs in the 
four samples using multiple linear regression, and then 
meta-analysed the results. We defined DNA methylation 
as the outcome and adjusted for age and sex in the case of 
the REGICOR and the Framingham populations, and for 
age and ethnicity in the WHI sample. In the case of the 
REGICOR samples, the continuous variables were only 
available for the control individuals. We meta-analysed 
the results from the four populations using a fixed-effects 
meta-analysis weighted by the inverse of the variance. 
The p value threshold was estimated as 0.05 divided by 
the multiplication of the number of CVRFs and the num-
ber of CpGs assessed.

Methylation risk scores (MRSs) and predictive capacity
We developed two weighted MRSs based on the CpGs 
identified, each of them using the results from the meta-
analyses of incident CHD or CVD, respectively. We eval-
uated the association between these scores and CHD and 
CVD incidence, respectively, in the FOS sample, using 
Cox regression. All analyses were adjusted for age, sex, 
diabetes, smoking, systolic blood pressure, hypertensive 
treatment, and levels of total cholesterol and HDL-C [36]. 
We also assessed the potential added predictive value of 
including the MRSs in the Framingham risk function. 
We evaluated the increase in the discrimination and the 
reclassification.

Causality of associations between DNA methylation 
and cardiovascular outcomes
We took a two-sample Mendelian Randomization studies 
using the MR-Base platform [37]. We used the MRInstru-
ments R package to select the instrumental variables, and 
then, the TwoSampleMR R package. First, we considered 
those methylation-level quantitative trait loci (meQTL) 
from the Accesible Resource for Integrated Epigenomic 
Studies (ARIES) project [16] included in the MR-Base 
database [37]. Then, we interrogated their association 
with MI and with CHD using summary statistic data 
from a meta-analysis of GWAS on CHD [38]. A more 
detailed description of the analysis is included in the 
Additional file 1: Methods.

Abbreviations
450 k: Infinium HumanMethylation450 BeadChip; MI: Myocardial infarction; 
CHD: Coronary heart disease; CVD: Cardiovascular disease; CVR: Cardiovascular 
risk; CVRF: Cardiovascular risk factor; EPIC: Infinium MethylationEPIC BeadChip; 
EWAS: Epigenome-wide association study; FOS: Framingham offspring study; 
MRS: Methylation risk score; REGICOR: REgistre GIroní del COR; WHI: Women’s 
Health Iniciative.
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Additional file 2: Table S1. Discovery stage of the EWAS on acute 
myocardial infarction (REGICOR-1 sample). Model 1 was adjusted for 
estimated cell counts and two surrogate variables. Model 2 was further 
adjusted for smoking status. Model 3 was additionally adjusted for 
diabetes, hypercholesterolemia and hypertension. Coefficients, standard 
errors and p-values are given for each model before and after the correc‑
tion of the inflation using the bacon R package. Suggestive significant 
associations (p-value<10-5) are in bold. The total number of suggestive 
significant associations in each model is given.  Table S2. Meta-analyses 
of the results from the discovery (REGICOR-1) and the validation stage 
(REGICOR-2). Model 1 was adjusted for estimated cell counts and two 
surrogate variables. Model 2 was further adjusted for smoking status. 
Model 3 was additionally adjusted for diabetes, hypercholesterolemia and 
hypertension. Coefficients, standard errors and p-values of REGICOR-1 
are those corrected with the bacon R package. Significant associations 
(p-value<6.17 × 10-8) are highlighted in bold. The total number of signifi‑
cant associations in each model is given. Table S3. Meta-analysis of the 
results from the follow-up association studies performed in the samples 
with incident cases of cardiovascular (CVD) and coronary heart disease 
(CHD).  Model 1 was adjusted for age, estimated cell counts and two 
surrogate variables (plus ethnicity in WHI and sex in FOS). Model 2 was 
further adjusted for smoking status. Model 3 was additionally adjusted for 
diabetes, hypercholesterolaemia and hypertension. Significant associa‑
tions (4.17 × 10-3) found in the fixed-effects meta-analysis are highlighted 
in bold. The total number of significant associations in each model is 
given. Table S4. Utility of the methylation risk scores (MRS): association 
with cardiovascular (CVD) or coronary (CHD) incidence and assessment of 
their predictive capacity. MRSs were based on the results from model 1 of 
incident CHD and CVD. Analyses of the association with the CVD or CHD 
incidence were adjusted for age, sex, total cholesterol and HDL-C levels, 
diabetes, smoking status, systolic blood pressure, and hypertensive treat‑
ment, which are the cardiovascular risk factors considered in the Framing‑
ham risk function. Analysis of the improvement in the predictive capacity 
of the Framingham function was performed with and without the 
corresponding MRS. Table S5. Results of the Wald ratio method applied to 
determine the causality between the identified CpGs and coronary heart 
disease or myocardial infarction.
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