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A B S T R A C T

Background: Pulmonary arterial hypertension (PAH) is a rare but life shortening disease, the diagnosis of
which is often delayed, and requires an invasive right heart catheterisation. Identifying diagnostic bio-
markers may improve screening to identify patients at risk of PAH earlier and provide new insights into dis-
ease pathogenesis. MicroRNAs are small, non-coding molecules of RNA, previously shown to be dysregulated
in PAH, and contribute to the disease process in animal models.
Methods: Plasma from 64 treatment naïve patients with PAH and 43 disease and healthy controls were pro-
filed for microRNA expression by Agilent Microarray. Following quality control and normalisation, the cohort
was split into training and validation sets. Four separate machine learning feature selection methods were
applied to the training set, along with a univariate analysis.
Findings: 20 microRNAs were identified as putative biomarkers by consensus feature selection from all four
methods. Two microRNAs (miR-636 and miR-187-5p) were selected by all methods and used to predict PAH
diagnosis with high accuracy. Integrating microRNA expression profiles with their associated target mRNA
revealed 61 differentially expressed genes verified in two independent, publicly available PAH lung tissue
data sets. Two of seven potentially novel gene targets were validated as differentially expressed in vitro in
human pulmonary artery smooth muscle cells.
Interpretation: This consensus of multiple machine learning approaches identified two miRNAs that were
able to distinguish PAH from both disease and healthy controls. These circulating miRNA, and their target
genes may provide insight into PAH pathogenesis and reveal novel regulators of disease and putative drug
targets.

© 2021 The University of Sheffield. Published by Elsevier B.V. This is an open access article under the CC BY
license (http://creativecommons.org/licenses/by/4.0/)
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1. Introduction

Pulmonary arterial hypertension (PAH) is a rare but progressive
cardiopulmonary disease characterised by increased pulmonary vas-
cular resistance driven by a sustained pulmonary arterial
vasoconstriction and pulmonary vascular remodelling that leads to
right heart failure and premature death. PAH pathogenesis is progres-
sive and includes vasoconstriction, endothelial cell dysfunction, vas-
cular cell proliferation and recruitment of circulating inflammatory
cells. PAH can be further sub-categorised into seven sub-groups: Idio-
pathic PAH (IPAH), heritable PAH (HPAH), drug and toxin induced,
PAH associated with other associated diseases, PAH long term res-
ponders to calcium channel blockers, PAH with overt features of
venous/capillary involvement, and persistent PH of the newborn [1].
The molecular mechanisms of PAH are complex and include the
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Research in context

Evidence before this study

Multiple reports exist on the expression and / or function of
individual miRNAs in PAH, and reports of miRNA signatures in
other disease but when we searched PubMed database using
the terms [(“Pulmonary Arterial Hypertension” OR “PAH”) AND
(“machine learning” OR “ensemble learning”) AND (“micro-
RNA” OR “miRNA” OR “miR”)] for articles before February 20th
2021 and returned 0 results. PAH is a rare disease, and there is
often a significant lag between symptom onset and patient
diagnosis. Current clinically used blood based biomarkers are
limited to markers of cardiac stress e.g. NT-proBNP that gives
little insight into early pulmonary vascular disease, or the
molecular drivers of disease. We hypothesised applying
machine learning to microRNAs in PAH may provide novel
insights.

Added value of this study

This is the largest microRNA profiling of PAH patients with
64 treatment naïve patients (sampled at the time of diagnosis),
and 43 disease and healthy controls. It is also the first machine
learning assessment of microRNAs for PAH.

Implications of all the available evidence

Our findings extend preliminary evidence that microRNAs may
be able to classify PAH patients from controls, and suggest that
a machine learning approach may allow for the detection of
novel disease regulators.
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influence of common [2] and rare genetic variation [3], epigenetic
dysregulation of DNA methylation state, histone acetylation and
microRNA (miRNA) dysregulation [4].

Often insidious at onset, PAH is usually rapidly progressive and
patients frequently experience significant delays between initial symp-
tom onset, diagnosis (right heart catheter) and treatment, with little
improvement to these delays over that past 20 years [5,6]. Screening
for PAH in connective tissue diseases (CTDs), including systemic sclero-
sis (SSc) where up to 10-15% of patients develop PAH has been shown
to be beneficial [7] with several screening tools now available (reviewed
in [5] recommended [8]). Screening for other forms of PAH is required,
and the identification of blood-based biomarkers may help identify
patients at risk earlier and reveal drivers of disease [5,9]. Current clini-
cally used blood based biomarkers are limited to markers of cardiac
stress e.g. N-terminal pro B-type Natriuretic Peptide (NT-proBNP) that
gives little insight into early disease, or the molecular drivers of disease.

MicroRNAs (miRNA) are small, non-coding RNA molecules found
in tissues, blood and plasma. They have been shown to be dysregu-
lated in PAH, and contribute to the disease process in animal models
[10�12]. Blood based miRNA biomarkers can be collected without
the need for invasive tissue biopsy, and are present in plasma and
serum in a stable form. However, with as many as 2300 miRNAs regu-
lating biological processes [13], identifying those relevant for diagno-
sis of PAH can be computationally challenging.

Machine learning as a field has progressively improved our ability to
find relevant features in large and high-dimensional data sets collected
from genomic studies [14]. Supervised machine learning methods have
been used successfully to develop classifiers for disease diagnosis, as
well as to identify potential disease biomarkers [15]. Specifically in PAH
we have previously utilised machine learning approaches to study
molecular drivers of, and biomarkers for PAH [9,16�18]. In this study,
we identify miRNA biomarkers associated with PAH selected using a
consensus of four different supervised machine learning feature selec-
tion techniques. We assess the potential of miRNAs as a diagnostic tool
by creating binary predictive classification models, and assessing the
accuracy of these models. Further insight into the role of miRNAs in the
pathogenesis PAH and potential candidates for therapeutic intervention
is revealed through the analysis of miRNA target genes and pathways
in human lung and whole blood transcriptomes.

2. Methods

2.1. Cohort overview and sample collection

We collected 83 unique plasma samples from sequentially con-
sented patients with suspected pulmonary hypertension and con-
trols, obtained according to the Declaration of Helsinki, with local
research ethics committee approval and informed written consent
from all subjects from the Sheffield Teaching Hospitals Observational
study into Pulmonary Hypertension, Cardiovascular and Lung disease
Biobank (STH-Obs, UK REC 18/YH/0441). Patient samples were
obtained from the diagnostic right heart catheter and were PAH-
treatment naïve. From the 83 samples, 18 patients with SSc-associ-
ated PAH (SSc-PAH) and 10 SSc patients without PH (SSc-without
PH) were incorporated into the PAH patient groups and controls
respectively. All patients with SSc were of the limited cutaneous sub-
type. The rest of the Sheffield samples were comprised of 34 IPAH
patients and 21 healthy controls. An additional 24 patient and
healthy control samples were obtained from the Imperial College
London Pulmonary Hypertension sample collection (UK REC 17/LO/
0563) and included in the study to remove a single centre bias. All
samples were collected between 2007 and 2013, then stored in
plasma at -80oC until the miRNA extraction. The cohort comprising
all available samples meeting these criteria at the time of miRNA
extraction, was randomly assigned to training (two-thirds) and vali-
dation (one-third) sets, matched for age, sex and WHO functional
class, with demographics seen in Table 1. The training set was used
to build models, which were evaluated in the validation set to mini-
mise overfitting bias. Principal component analysis showing the clus-
tering of patients can be found in Supplementary Figure 1.

2.1.1. Plasma preparation and RNA isolation
Total RNA was isolated from 1 ml of Citrate plasma using the Nor-

gen total RNA slurry format extraction kit (Norgen Biotek Corp. Can-
ada). RNA was concentrated using the RNA Clean and Concentrate-5
kit (Zymo Research Corp, U.S.A). Detailed methods can be found in
the Supplementary materials.

2.1.2. Microarray profiling and preprocessing
Agilent single colour miRNA arrays miRbase v.19 (Agilent Tech-

nologies, UK), which can detect up to 2006 humanmiRNAs, were per-
formed on purified and concentrated plasma RNA in 2015. Raw
microarray signals were normalised using the quantile method
within the robust mean array (RMA) method from the R package Agi-
Microrna (v.2.14.0) [19], correcting for the background signal. MiR-
NAs were then filtered, keeping only those expressed in at least 10%
of arrays, leaving 393 miRNAs. Expression levels were log2 trans-
formed and all subsequent calculations were performed on this value.
MiRNAs were filtered down to 179 by those which have been qPCR
confirmed to exist by Exiqon, and therefore, we can assume they can
be accurately quantified by the Agilent array. We further eliminated
features with high mean absolute correlation, using a correlation
matrix method. For each feature, the mean absolute correlation based
on pair-wise correlations was calculated. If a pair-wise correlation
was > 0.7, the feature with the greater mean absolute correlation
was removed, using the caret package (v6.0-86) in R. Where two
miRNAs are highly correlated both with each other and disease sta-
tus, and both are kept in the model, there is a danger that both may



Table 1
Basic demographics for a cohort of healthy controls (HC) and patients with PAH from Sheffield and Imperial, profiled for miRNA expression.
Patients with systemic sclerosis (SSc) included in both the HC and PAH classification sets. Not all metrics available for all patients. For missing val-
ues, see Supplementary table 1.

Training Set Validation Set
HC + SSc without PH IPAH + SSc-PAH HC + SSc without PH IPAH + SSc-PAH

No. Sheffield samples 14 + 7 23 + 11 7 + 3 11 + 7
No. Imperial Samples 8 + 0 8 + 0 4 + 0 4 + 0
Total sample no. 29 42 14 22
Mean age at sampling (years) 54.1 (14.5) 56.5 (14.3) 51.6 (11.7) 57.4 (15.3)
Female (%) 12 + 6 (58.1%) 18 + 6 (57.1%) 7 + 3 (71.4%) 8 + 6 (63.6%)
Alive 5 years follow up (%) 28 (97%) 28 (65%) 14 (100%) 9 (43%)
WHO Functional class (1,2,3,4) - (0,6,33,3) - (0,3,17,2)
Patients on immunomodulatory agent at sampling 4 2 2 2
Mean Pulmonary Arterial Pressure (mm Hg) 54.9 (15.6) 49.4 (13.7)
Pulmonary vascular resistance (dynes) 870 (488) 753 (448)
6 minute walk distance: Imperial only (m) 202 (158) 378 (59)
ISWD: Sheffield only (m) 214 (169) 248 (246)
Cardiac Output (L/min) 4.8 (1.4) 5.0 (2.0)
Mean pulmonary arterial wedge pressure (mm Hg) 10.4 (3.8) 10.8 (3.2)

Continuous variables described as mean (standard deviation)
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be considered insignificant, potentially missing an important signal.
We carried forward our downstream analysis with 42 miRNAs after
filtering. The workflow is described in Fig. 1.

We used PCA and t-SNE analysis to visibly explore the data. PCA
analysis was carried out using prcomp in R without scaling the data,
and a t-SNE analysis was run using the Rtsne package.

2.2. Statistical analysis

2.2.1. Multivariable microRNA selection and model building
All statistical analyses were carried out using R (v4.0.0) [20]. We

used both a multivariable and univariable approach to selecting miR-
NAs. In the multivariable approach, we used four separate feature
selection methods simultaneously to identify candidate biomarkers,
with the intersection amongst the methods considered the significant
Fig. 1. Machine learning methodology for the identification of miRNAs wh
miRNAs. In each instance, parameters were tuned using 10-fold
cross-validation (repeated 10 times) on the training set. For each of
the feature selection methods, we subsequently used a supervised
machine learning approach for binary classification to create predic-
tive classification models, based on features selected from the pro-
spective cohort study. For further details on the parameters used, see
the code available on github at https://github.com/niamherrington/
microarray-miRNA. The guidelines of the transparent reporting of a
multivariable prediction model for individual prognosis or diagnosis
(TRIPOD) statement were followed (Supplementary Table 2).

Random forest using Boruta. Boruta is a feature selection random for-
est wrapper algorithm designed to identify all relevant variables in a
classification framework [21]. We performed 300 iterations of the
random forest normalised permutation importance function to
ich may play a role in PAH, and the assessment of their target genes.

https://github.com/niamherrington/microarray-miRNA
https://github.com/niamherrington/microarray-miRNA
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obtain attribute importance, using default settings within Boruta
package (v7.0.0) in R, including the confidence level of 0.01. After the
300 runs were complete, miRNAs still not confidently classified as
important variables were rejected along with the miRNAs rejected by
the algorithm. This process was then repeated 100 times, with miR-
NAs selected on at least 10 occasions were carried forward.

We then combined the microRNAs selected by Boruta into a ran-
dom forest model using the randomForest package (v.4.6-14) [22].
We selected a random forest model as they are generally robust to
overfitting, and capable of learning non-linear relationships. How-
ever, the results may not be easily interpretable. The caret package
was used to identify 1000 trees as being optimal among the 100, 250,
500, 750, 1000, 1250 and 1500 trees tested. The number of variables
available for splitting at each tree node was optimised next, with 1
variable per tree node the best out of a range from 1 to 4. A probabil-
ity threshold of > 0.5 was used to determine whether a subject was a
PAH patient or no PH.

Regression partition tree. Classification trees were calculated using
Rpart (v4.1-15) [23] and caret in R. A major advantage of rpart is the
interpretable output, that can be displayed graphically. However, a
disadvantage is that the trees tend to have a lower predictive accu-
racy, due to the fact the trees are less robust. The trees were used by
the greedy feature selection algorithm, recursive binary splitting to
return ordered features, from the root of the tree down.

The fit of the model was controlled by setting the minimum num-
ber of observations that must exist in a node for a split to be
attempted to four, and the minimum number of observations in any
terminal node set to two. The trees were split by minimising the Gini
index at each split. This was then cross-validated using 10-fold,
repeated cross-validation. We considered a variable selected if it was
present in the final tree. A probability threshold of > 0.5 was used to
determine whether a subject was a PAH patient or no PH.

LASSO. Least absolute shrinkage and selection operator (LASSO) on
binomial logistic regression using the glmnet package in R (v4.0) [24]
was used to select relevant miRNAs, by eliminating parameters with a
coefficient of 0. One of the advantages to using a LASSO method is that
coefficients are shrunk and removed, reducing variance without sub-
stantially increasing the bias [25]. Additionally, LASSO models allow for
effectively interpretable output. However, a drawback to LASSO is a
lack of flexibility to fully capture non-linear relationships. We chose the
regularisation parameter, λ, using 10-fold cross-validation with binomial
deviance as the criterion. From the cross validations, the value of λ with
the minimum binomial deviance (λ-min = 0.0502) was selected and
used to refit the model. A probability threshold of > 0.5 was used to
determine whether a subject was a PAH patient or no PH. To ensure
the models were not driven by age and sex, we also attempted to clas-
sify patients using these characteristics in a LASSO model.

XGBoost. The final model we used to fit miRNA features to disease
diagnosis was the gradient boosting method, using the XGBoost pack-
age in R (v1.0.0.1) [26]. We trialled XGBoost as it has been used very
effectively in a range of classification problems, consistently winning
machine learning competitions on Kaggle, as well as providing insights
into biological data sets. However, with many hyperparameters to tune,
computational time is longer than some of the other methods, addition-
ally, the results can be difficult to interpret. XGBoost is an extreme gra-
dient boosting method which ranks the features from most to least
important. To decide on the regularisation parameter settings, we used
a grid search over a range of values, using 10-fold repeated cross-vali-
dation on the training set, selecting the optimal values for the final
model (Supplementary Table 3). The optimisation ranges were selected
by expanding grid searches previously used by other teams on RNAseq
data [27]. The ability to fine-tune these parameters in XGBoost means
the model is more robust to overfitting. Features contributing to more
than a 5% improvement in accuracy to their branches were selected as
‘important’. A probability threshold of > 0.5 was used to determine
whether a subject was a PAH patient or no PH. Once features had been
selected, the model was retrained over the same parameter range, using
just selected miRNAs.

Ensemble. An ensemble of predictions from the above classifiers were
generated by averaging the predicted probabilities from each individ-
ual supervised machine learning approach, and then using a thresh-
old of > 0.5 to call subjects with PAH.

Comparison with NT-proBNP. All patients, and healthy controls from
Sheffield had routine clinical measurements of NT-proBNP. This
information was used to compare the accuracy of the miRNA models
with NT-proBNP as a classifier by retraining each of the models with
NT-proBNP as an additional variable. The performance of standalone
NT-proBNP for the cohort was also measured.

Multivariable classifier performance assessment. We also used a leave-
one-out cross validation approach (LOOCV) to compare miRNAs
selected when the entire dataset was used. All methods above were
attempted across the whole dataset, using a LOOCV approach instead
of repeated cross validations. AUCs were calculated using the average
of the cross validations across the whole dataset, rather than using
training and validation sets.

Classification without SSc. Finally, we repeated the above machine
learning methods to classify patients with IPAH or healthy controls,
using the same training and validation sets described above, without
patients with SSc.
2.2.2. Univariable analysis
Using a Shapiro-Wilk test [28] for the selected miRNAs, a normal-

ity assumption for the majority of miRNAs is violated. As a result, for
each miRNA, we performed a non-parametric Wilcoxon rank-sum
test, comparing expression levels between patients with PAH and the
no PH group, to find a single p-value for each miRNA. These p-values
were then adjusted using the Benjamini Hochberg multiple testing
correction to control the false discovery rate (FDR) with a cutoff of
0.05. We calculated the discriminatory power of each individual
miRNA, using the training set to find an optimal cutpoint by simulta-
neously maximising sensitivity and specificity, then calculating the
accuracy using the validation set. We examined survival using the
Kaplan-Meier method for each selected miRNA and calculated the p-
value for a log-rank test. All participants were followed up for 5 years
after the sample date, or date of death, with no participants lost to
follow up. Cox proportional hazard tests were done using the survival
package (v2.44-1.1)
2.2.3. Combining MicroRNAs
To compare classifiers, we looked at how accurately each classifier

categorised each patient in the validation set. We also looked at the
performance of each feature selection method, by comparing them
using the following evaluation metrics, where TP represents true pos-
itive, FN represents false negative, TN represents true negative, and
FP represents false positive.

� Sensitivity = TP / (TP + FN)
� Specificity = TN / (TN + FP)
� Positive predictive value = TP / (TP + FP)
� Negative predicted value = TN / (TN + FN)
� Correct classification rate =(TP + TN) / (TP + TN + FP + FN)
� Area under the receiver operator characteristic (ROC) curve
(AUC); the confidence interval calculated using the method by
Delong et al [29].
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2.3. Pathway analysis

Gene targets were inferred using DIANA v5.0 microT-CDS [30]
for the miRNAs which appeared in all four features selection meth-
ods, with the threshold for target prediction set to the default of
0.7. We then carried out a network analysis using WebGestalt [31]
and Cytoscape (v3.7.1) [32]. Pathway genes were downloaded
from KEGG [33].
2.4. External validation in whole blood RNA seq

RNA sequencing was performed on whole-blood samples from
359 patients with PAH, and 72 volunteers, as previously described
[34]. 28 of the Sheffield samples, and 2 Imperial healthy controls
were also included in the miRNA cohort, so we excluded these to
ensure the validation set was independent. We split the cohort
into the same training and validation groups, and then used
XGBoost to classify patients using the gene targets identified using
similar optimisation ranges as above. As this dataset is unbalanced
due to a comparatively small number of healthy controls, we incor-
porated a weighting parameter; number of PAH cases / number of
controls. The final parameters selected can be seen in Supplemen-
tary Table 4. The threshold value was calculated using Youden’s
Index.
2.5. External validation in published lung tissue microarray studies

Two publicly available datasets profiling lung tissue from patients
with PAH were used to validate the gene target lists. In GEO accession
GSE15197 [35], differential expression was measured in 13 normal
lung tissue samples compared to 18 lung tissue samples with PAH.
We excluded seven samples where patients had PH secondary to idi-
opathic pulmonary fibrosis (IPF). The original study found 13,899
genes differentially expressed between patients with PAH and
healthy controls. GEO accession GSE53408 [36] compared 12 samples
of lung tissue from patients with PAH to 11 healthy lung tissue sam-
ples. Basic characteristics of the two cohorts are described in Supple-
mentary Table 5.

The GEOR2 interface was used to import data into R using Biobase
(v2.42.0) and GEOquery (v2.50.5). The limma package (v3.38.3) used
for differential expression analysis with a log2 transform. Gene tar-
gets were extracted and FDR corrected (<0.05) using the Benjamini
Hochberg correction.
2.6. qPCR validation of gene targets

Pulmonary artery smooth muscle cells (PASMCs) purchased from
commercial suppliers (Lonza catalogue # CC-2581) taken from healthy
donors and PASMCs isolated from four separate IPAH patients (donated
from Prof. N Morrell of Cambridge University) as previously described
[37], were grown in culture before being quiesced (0.2% foetal Calf
Serum) for 48 hours, and lysed for the isolation of RNA using Trizol.
Direct-zol RNA mini-prep kits (Zymo research R2050), and Zymospin
column were used to extract RNA as per manufacturer’s instructions.
RNA (n=3 for each condition) was reverse transcribed to cDNA using
RNA to cDNA kit (Applied Biosystems 4387406). Eight genes were
selected for quantitative-PCR (qPCR) and TaqMan probes for FER
(Hs00245497_m1), UCR3 (Hs00419575_m1), MTUS1
(Hs00368183_m1), API5 (Hs00362482_m1), PELI1 (Hs00900505_m1),
HGF (Hs00300159_m1), GLMN (Hs00369634_m1), PARP8
(Hs01065404_m1) were purchased from Thermo Fisher and run in
duplicate. Human ATP5B Hs00969569_m1was used as control. Relative
quantity was calculated using the DDCt method. Analysis was per-
formed using GraphPad Prism v 8.2.
2.7. Role of funding source

The funders had no role in study design, data collection, data anal-
yses, interpretation or writing of the report.

3. Results

We profiled the miRNAs from 64 patients with PAH and 43 com-
bined SSc-without PH and healthy controls (no PH). Initial t-Distrib-
uted Stochastic Neighbour Embedding (t-SNE) and principal
component analysis (Supplementary Figure 1) showed some separa-
tion between groups. Since several of the feature selection methods
utilised later cannot account for multicollinearity, we undertook two
filtration steps to reduce the starting number of miRNAs. Initially the
miRNAs were filtered, removing those failing quality control, and
miRNAs highly correlated to each other, to leave 42 miRNAs (Supple-
mentary Figure 2). Next, we selected the miRNAs most predictive of
PAH vs no PH using four different supervised machine learning
methods.

3.1. miRNAs selected using supervised machine learning approaches

The disease diagnosis (PAH vs no PH) of 72 individuals was
described as a function of the 42 miRNAs using four different machine
learning methods. Feature selection was used to determine the miRNAs
most relevant to the diagnosis. Four different machine learning techni-
ques were used to select miRNAs and model PAH diagnosis; Boruta (an
embedded random forest method), LASSO, regression partition trees,
and XGBoost (an extreme gradient boosting method). The features sub-
sets selected by each method were all different, though there were
overlapping miRNAs in all (Fig. 2). Two miRNAs were selected by all
four methods; miR-636 and miR-187-5p. These 2 miRNAs were the
most consistently selected when different discovery sets were utilised;
a training and validation set approach, leave-one-out cross validated
approach, and a training and validation set approach without patients
with SSc (Supplementary Figure 4).

3.2. Performance of PAH classification using miRNAs

To compare the performance of each feature selection method, we
looked at how each model performed as a classifier on the validation
set. The classification of each subject by each model can be seen in
Supplementary Table 6. Boruta random forest had the highest overall
accuracy, with 30 out of 35 subjects in the validation set correctly
identified.

The performance of each feature selection method on the valida-
tion set was also variable (Table 2). The cross validated performance
for the training set can be seen in Supplementary Table 7. The Ran-
dom Forest model had the highest AUC (0.84), but the XGBoost model
had a higher accuracy (0.83). The LASSO model had the poorest per-
formance, with an accuracy of 0.72. The number of miRNAs selected
by each method also differed, with LASSO selecting the most (13 miR-
NAs), and the Rpart model behaving more stringently by selecting
just four miRNAs. The AUCs for models trained using a leave-one-out
cross-validation approach showed similar results (Fig. 3).

As multivariable methods are known to select different candidate
biomarkers, often with equal accuracy [37], we focused on the over-
lapping miRNAs selected by the four different machine learning
methods. From the 20 miRNAs selected across all four methods,
seven miRNAs are found in more than one model, of these, two were
selected by every model; miR-636 and miR-187-5p (Fig. 2A).

For a subset of patients from Sheffield, NT-proBNP levels were
assayed at routine clinical appointments. We then used these to com-
pare the models’ performances when NT-proBNP levels were included
(Supplementary Figure 3). Although the best performing miRNA model
(RandomForest) did not perform significantly different to the NT-



Table 2
Model performance of four classifiers on the validation set; a random forest wrapper method (Boruta), regression partition trees (Rpart),
LASSO, and extreme gradient boosting (XGBoost).

Random forest Rpart LASSO XGBoost Ensemble
miRNAs selected by model, n 10 4 13 8 20
Sensitivity

(95% CI)
0.86 (0.65-0.97) 0.91 (0.71-0.99) 0.77 (0.55-0.92) 0.91 (0.71-0.99) 0.91 (0.71-0.99)

Specificity
(95% CI)

0.71(0.42-0.92) 0.64 (0.35-0.87) 0.64 (0.35-0.87) 0.71 (0.42-0.92) 0.64 (0.35-0.87)

Positive predictive value (95% CI) 0.83 (0.61-0.95) 0.80 (0.59-0.93) 0.77 (0.55-0.92) 0.83 (0.63-0.95) 0.80 (0.59-0.93)
Negative predictive value (95% CI) 0.77 (0.46-0.95) 0.82 (0.48-0.92) 0.64 (0.35-0.86) 0.83 (0.52-0.98) 0.82 (0.48-0.92)
Correct classification rate (95% CI) 0.81 (0.64-0.92) 0.81 (0.64-0.92) 0.72 (0.55-0.86) 0.83 (0.67-0.94) 0.81 (0.64-0.92)
AUC

(95% CI)
0.84 (0.69-1) 0.79 (0.63-0.95) 0.79 (0.63-0.94) 0.82 (0.66-0.99) 0.85 (0.70-1)

Fig. 2. Expression correlation (Spearman) matrix between miRNAs selected by machine learning methods (side-bar). Dendrogram orders miRNAs by hierarchical clustering.
XGBoost: Extreme gradient boosting method. Rpart: a regression partition tree method. Boruta: a random forest wrapper method for feature selection.
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proBNP classifier alone (miRNA AUC 95% CI = 0.69 - 1 vs NT-proBNP
AUC 95% CI = 0.84 - 1), all miRNA models with NT-proBNP saw an
improved performance with AUCs (Supplementary Figure 3). Random
forest increased from 0.84 to 0.97, rpart from 0.79 to 0.81, LASSO
increased from 0.78 to 0.93, and the XGBoost model increased from
0.82 to 0.95, though not significantly larger according to the DeLong
test. A clear association of miRNAs with PAH diagnosis may warrant
future investigation of specific miRNAs for therapeutic intervention.

3.3. Importance of individual miRNAs in PAH classification

To ensure no individual miRNA was driving the classification
models, a univariable analysis was carried out (Supplementary Table
8). For each miRNA, the expression levels of patients and controls
were compared using a wilcoxon signed-rank test, then controlled
for multiple testing using the Benjamini Hochberg correction (38) at
0.05. The mean centered expression values for miRNAs selected by at
least two feature selection methods can be seen in Fig. 4a. Ten of the
miRNAs identified in the feature selection methods had an adjusted
p-value <0.05. We also looked at the univariate discriminatory
power of each miRNA individually. MiR-187-5p had an accuracy of
0.78 on the validation set, whereas miR-636 had an accuracy of 0.69.
To assess the potential impact of individual miRNAs on disease pro-
gression, we also looked at the survival difference in patients when
stratifying them based on the median fitted risk of different miRNAs.
However, no miRNA had a significant cox proportional hazard p-
value (Supplementary Table 9).

3.4. PAH classification performs similarly well using miRNA targets

Two miRNAs were identified by all four feature selection
methods: miR-187-5p and miR-636. These miRNA were also
ranked highest in a variable importance analysis (Fig. 4b). In
order to investigate the novel role these miRNAs play in PAH, we
predicted their target genes. The two miRNAs had 20 predicted
gene targets in common (listed in the supplementary), with 630
targets in total.

Feature selection methods can be unstable when there are few
samples for training. To counter this we verified the selected miRNAs
gene targets in a previously published whole blood RNA seq data set
[34], as well as two independent expression studies [35,36] .

The whole blood RNA seq data set contained 54 independent
healthy volunteers and 347 PAH patients. Utilising the miRNA target
gene set in this RNA seq data set (of which 548 target genes were
present), an XGBoost model was used to classify PAH from non-PH,
using a cutoff of 0.841. We used XGBoost as a classifier, as the
XGBoost model had the highest correct classification rate for the
miRNA set. This produced a model with 0.86 AUC (95% CI 0.78-0.94),



Fig. 3. Solid lines indicate ROC for the validation set (n = 35), where the model was trained on a separate set. Dashed lines indicate miRNA models trained using a leave-one-out
cross validation approach across the whole data set. (a) extreme gradient boosting (XGBoost) utilising 8 miRNAs; (b) LASSO utilising 13 miRNAs; (c) regression partition trees (Rpart)
utilising 4 miRNAs; (d) a random forest wrapper method (Boruta) utilising 10 miRNAs; (e) Ensemble approach utilising 20 miRNAs (f) Average cross validated ROC for miRNA-187-
5p and miRNA-636 on the training set.
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and an accuracy of 0.89 for the validation set. This classification
model also allowed us to rank the genes contributing the most to the
model. The top 15 gene targets are shown in Fig. 5.

From the list of 630 target genes, 592 were found in at least one
lung tissue dataset. GSE15197 contained 587 of the gene targets,
with 281 found to be differentially expressed (adjusted p-value
<0.05). All133 predicted gene targets that were profiled in
GSE53408 were differentially expressed. Narrowing this down, 61
genes were differentially expressed in the same direction in both
datasets. Basic characteristics of the two cohorts are described in
Supplementary Table 4. A pathway analysis of all 630 gene targets
Fig. 4. (a) Comparison of mean centered expression values for both training and validation g
no PH controls (Control) selected by 2 or more feature selection methods. * microRNAs with a
0.05). (b) Variable importance scores for the miRNAs selected by the feature selection metho
showed four enriched KEGG pathways: proteoglycans in cancer,
rennin secretion, melanogenesis, and prolactin signaling pathway
(Fig. 5c). Widening the network to include miRNAs selected by at
least two feature selection methods showed that of these miRNAs,
miR-3613, miR-671 and miR-18b-5p also targeted genes from all
of these pathways, with miR-572 targeting genes in the proteogly-
cans in cancer pathway.

From the pathways identified and putative links to PAH pathogen-
esis, seven gene targets (FER, GLMN, PARP8, MTUS1, HGF, PELI1 and
UBR3) were selected for qPCR validation using 4 control human pul-
monary artery smooth muscle cells (PASMC) and 4 with IPAH [37].
roups (n = 107) of miRNAs for patients with pulmonary arterial hypertension (PAH) and
significant difference between groups (adjusted p-value for Wilcoxon rank-sum test <

ds, scaled between 0 - 100 per method.



Fig. 6. qPCR RQ relative quantification box plots for (a) FER, (b) GLMN, (c) PARP8, (d) MTUS1, (e) HGF, (f) PELI1, (g) UBR3.

Fig. 5. (a) Top 15 genes ranked with the highest importance in classifying patients in an RNAseq dataset (n = 401), scaled between 0 and 100. (b) Mean centered gene expression for
top 15 genes (c) Significantly enriched KEGG pathways of the gene targets from miR-636 and miR-187-5p present in the validation RNA seq dataset. Down regulated genes in pink,
up-regulated in blue.
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Two genes in particular, MTUS1 and UBR3 showed a significant
increase in expression in patient derived PASMCs compared to inde-
pendent control cells (Fig. 6). There were no significant differences in
expression for the other genes.

4. Discussion

There is increasing evidence that changes in miRNA expression lev-
els are associated with progression of PAH. Here, we used miRNA
expression profiles and a consensus machine learning approach to iden-
tify two consistently prioritised miRNAs with high accuracy at identify-
ing PAH from no PH controls, as candidates for further investigation.
We subsequently identified putative miRNA gene targets and integrated
public lung tissue RNA datasets to validate differential regulation of key
miRNA targeted genes, again identifying candidates for further investi-
gation. An extreme gradient boosting method of classifying patients
based on the putative gene targets in an overlapping cohort had a simi-
lar AUC, providing further validation. This data suggests that combining
different approaches for selecting miRNAs can reveal diagnostic bio-
markers and insights into regulators of disease.

Of the supervised machine learning approaches we tested, we
found that a random forest approach identified patients with PAH
with the highest sensitivity, although an XGBoost approach had a
similarly high AUC. Adding NT-proBNP to the random forest model
resulted in a model with a higher classification accuracy compared to
NT-proBNP alone. This shows NT-proBNP and miRNAs may provide
complementary phenotypic information and therefore both should
be incorporated in future prospective validation analyses.
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It is important to consider whether the features selected at each
point are true biomarkers or false positives. Machine learning pro-
vides an unbiased approach to predicting patient status, but also the
potential to identify previously unknown interactions and identify
novel biological features [39,40]. Our approach of investigating the
biomarkers identified through multiple feature selection techniques
increases confidence in the generation of reproducible biomarker
panels, and reduces the number of miRNAs for potential clinical
investigation. The selected miRNAs ranked highly in terms of variable
importance (Fig. 4B).

Both miRNAs selected have previously been linked to PAH. MiR-187
has previously been identified as significantly upregulated in endoarte-
rial biopsy samples in a porcine model [41], and in human lung tissue
[42], in concordance with our findings. However, one study on cardiac
tissue from the sugen5416 plus hypoxia rat model found miR-187-5p
to be significantly downregulated [43]. MiR-636 has been reported to
correlate with maximum change in pulmonary vascular resistance
(PVR) in a small study on a paediatric PAH population [44]. The above
literature reports support the evidence that miR-187-5p and miR-636,
identified here as candidate biomarkers may be associated with disease
progression of PAH providing validation that our machine learning
approach identified miRNA biomarkers of relevance. Several other miR-
NAs identified as having a high importance score by the feature selec-
tion methods have also previously been seen in PAH, for example MiR-
4707-5p has been identified as a potential target for PH [45]. Addition-
ally, miR-34 has been seen to have decreased expression in PAH
[46,47], and let-7d, which has been identified as a potential biomarker
for the presence and severity of PH in patients with SSc [48]. Similarly,
the target genes driving the classification in an independent RNAseq
dataset, TCF7L2, which ranked highest in importance has previously
been seen to be differentially expressed in the lung tissue of IPAH
patients [49] as well as in the cardiac muscle tissue in a rat model [50]
Some of these target genes also showed weak to moderate correlation
with available clinical features, such as lung function forced vital capac-
ity (Supplementary Table 10).

Our main aim in this study was to investigate the relationship
between miRNAs and clinical classifications, not to develop a diagnostic
tool. ML methods can capture more complex, non-linear relationships,
where a straightforward univariable analysis cannot. A limitation to this
study is the relatively small sample size used to both generate and vali-
date the miRNAs as classifiers. This may have resulted in some model
overfitting and therefore a possible overestimation of effect size. In
order to mitigate this, we validated the gene targets in separate pub-
lished datasets, and used qPCR to validate potentially interesting genes.
The target gene data contained a far larger number of variables, with
548 genes for each of the 401 subjects, necessitating our use of ML in
this dataset. As a result, future studies based on larger retrospective and
prospective clinical cohorts are warranted, and currently underway
(ClinicalTrials.gov NCT04193046) to corroborate the utility of these, and
potentially other miRNAs as classifiers and biomarkers. In such a small
cohort, there was a danger the models could have been driven by fac-
tors such as age and sex, but classification using only these factors
yielded an accuracy of 0.57 in the validation set. We also noted that the
AUC confidence intervals for males and females on the training and val-
idation sets overlapped. Additionally, both SSc and PAH, as individual
diseases can be heterogeneous [51]. As such within our cohorts of
mixed IPAH and SSc-PAH there are likely to be variations between
patients, and equally, our control group included 10 disease controls
and 33 healthy volunteers. We also attempted a leave one out cross val-
idation approach across the whole dataset, which resulted in similar
miRNAs being selected (Supplementary Figure 4). These mixed groups
likely reduce the risk of overfitting to a specific patient phenotype, and
increase the chance that this analysis could be replicated in other PAH
cohorts. The two candidate miRNAs selected from the microarray study
have not been further quantified by PCR. However, correlations
between miRNA microarray expression and PCR have been shown to
have very high correlation coefficients [52]. Consequently, further vali-
dation of the two miRNAs identified in a larger, independent cohort are
necessary before a clinical application can be considered.

In summary, our approach using four machine learning feature
selection algorithms identified a two miR-signature for PAH from
patient plasma. These circulating miRNAs, and their target genes may
provide a novel PAH signature, reveal novel disease mechanisms and
highlight future putative drug targets.
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