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Abstract

When the brain is stimulated, for example, by sensory inputs or goal-oriented tasks, the brain initially responds with
activities in specific areas. The subsequent pattern formation of functional networks is constrained by the structural
connectivity (SC) of the brain. The extent to which information is processed over short- or long-range SC is unclear.
Whole-brain models based on long-range axonal connections, for example, can partly describe measured functional
connectivity dynamics at rest. Here, we study the effect of SC on the network response to stimulation. We use a human
whole-brain network model comprising long- and short-range connections. We systematically activate each cortical or
thalamic area, and investigate the network response as a function of its short- and long-range SC. We show that when
the brain is operating at the edge of criticality, stimulation causes a cascade of network recruitments, collapsing onto
a smaller space that is partly constrained by SC. We found both short- and long-range SC essential to reproduce
experimental results. In particular, the stimulation of specific areas results in the activation of one or more resting-state
networks. We suggest that the stimulus-induced brain activity, which may indicate information and cognitive process-
ing, follows specific routes imposed by structural networks explaining the emergence of functional networks. We
provide a lookup table linking stimulation targets and functional network activations, which potentially can be useful in
diagnostics and treatments with brain stimulation.

Key words: connectivity; connectome; criticality; network modeling; resting state; stimulation

(s N

Systematic exploration via stimulation of all cortical and subcortical brain areas can only be performed in silico.
We have performed a detailed parametric exploration of dynamically responsive networks of a large-scale brain
network model of stimulation and developed a stimulation map indicating which brain areas need to be
stimulated to place the brain in a particular state at rest. Brain stimulation is one of the upcoming novel tools in
the treatment of neurological disorders. The stimulation map will be critical in guiding these studies and will allow
Kfor the development of theory-guided stimulation protocols. /

ignificance Statement

Introduction

Sensory stimulation is important to understand percep-
tion and information processing in the brain. To study
cognitive functions, direct stimulation techniques, such as
transcranial magnetic stimulation (TMS) and transcranial
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electrical stimulation, are increasingly used. Moreover,
direct brain stimulation is promising for treating psychiat-
ric and neurological disorders (Parkin et al., 2015). The
effects of direct stimulation are short range (i.e., local in a
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brain region) and long range (i.e., on a large-scale net-
work). Both are important to understand the final outcome
of the stimulation (Fox et al., 2014). There is, however,
scant knowledge regarding the way of stimulating the
brain to cause a predictable and beneficial effect. A con-
ceptual framework is missing. Furthermore, the extent to
which information is processed over short or long ranges
is unclear.

Brain structures bear dynamics that give rise to diverse
function and dysfunction (e.g., Park and Friston, 2013).
Because structural connectivity (SC) constrains functional
networks (Deco et al., 2015), we predict that stimulating a
given area will give rise to a process of activity, ultimately
resolving in spatial patterns resembling functionally re-
lated networks. For example, direct stimulation of a pri-
mary sensory structure (e.g., the nucleus geniculatus
lateralis thalami for the visual pathway) should cause
responsive networks similar to those activated by a (vi-
sual) sensory input. The stimulation site of a responsive
network can be part of (1) functional networks in which
information is processed, (2) ascending paths of sensory
inputs, and (3) structures modulating the information pro-
cessing. Testing this hypothesis experimentally is deli-
cate, as it requires knowing where and how to stimulate.
The effect of stimulation of various cortical and subcorti-
cal brain areas can be systematically explored in silico.

Here, we use The Virtual Brain (TVB) platform, which
allows studying dynamics in whole-brain models (Sanz-Leon
et al,, 2013, 2015), to systematically stimulate every area in
the network comprising long- and short-range SC (i.e.,
between brain areas and within an area), detect the re-
sponsive networks, and then contrast these to experi-
mentally known networks, especially the resting-state
(RS) networks (Damoiseaux et al., 2006). RS networks
describe, in the absence of external inputs or goal-
oriented tasks, the consistent spatial patterns in the fluc-
tuations of the BOLD signal (functional MRI). Furthermore,
these patterns have been correlated to functionally re-
lated brain regions (i.e., active during task conditions) and
have been called, for example, visual, memory, and at-
tention RS networks. However, the link between the RS
networks and the functional networks occurring due to
external stimuli or during goal-oriented tasks is not clear.
The RS networks, moreover, correlate with the SC of
white matter tracts (Greicius et al., 2009; van den Heuvel
et al., 2009; Hermundstad et al., 2013), thus appear as
simple reflections of the large-scale network topology.
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Local and global computation in the brain strongly de-
pends upon short-range and long-range structural con-
nections (Deco et al., 2015). We are taking into account
both types of SC in TVB. Previous large-scale network
model studies mostly considered long-range SC (i.e.,
white matter tracts). We go beyond this and incorporate
short-range SC to understand how activity propagates
and dissipates in the brain (Jirsa and Kelso, 2000; Jirsa,
2004; Qubbaj and Jirsa, 2007, 2009).

Large-scale brain networks have specific constraints
due to the spatiotemporal scale of operation. First, the
time delays due to signal transmission via long white
matter tracts between connecting nodes in brain network
dynamics play a crucial role, for instance, in the genera-
tion of ongoing activity (Ghosh et al., 2008). Second, the
connection strength, when scaled appropriately, places
the brain close to criticality, where the capacity of pro-
cessing information is maximized and the functional con-
nectivity best fits to empirical RS data (Ghosh et al., 2008;
Deco and Jirsa, 2012; Deco et al., 2014). Finally, random
processes serve to provide the brain model with kinetic
energy to form and alter functional networks (Ghosh et al.,
2008; Deco et al., 2014; Hansen et al., 2015).

Using an unbiased and deterministic approach, here we
demonstrate the large-scale brain network response to
stimulation with functionally relevant activity patterns,
which resemble the experimentally known RS networks.
In particular, we show that stimulation at spatially distant
sites can give rise to similar nonstationary trajectories,
whereas stimulation at spatially close sites can result in
distinctly different dynamics.

Materials and Methods

Using The Virtual Brain platform (Sanz-Leon et al.,
2013, 2015), we triangulate the surface of the cortex with
a mesh of 8,192 nodes for each hemisphere (Fig. 1a),
distributed across 74 cortical areas (Fig. 1b), each con-
taining between 29 and 683 nodes (Table 1), following a
known functional parcellation atlas (Kétter and Wanke,
2005). The model also includes 116 nonparcellated sub-
cortical areas. To connect nodes with each other, we
distinguish homogeneous from heterogeneous SC (Fig.
1c-e). The homogenous SC (of short-range connections)
links nodes within an area, and between areas if they are
spatially close to one another with a connection probabil-
ity decreasing with distance (Braitenberg and Schiiz,
1991; Fig. 1c,d). The heterogeneous SC (of long-range
white matter tracts) links all the nodes of an area with the
nodes of another area (Fig. 1c,e), based on known ana-
tomical data (Koétter and Wanke, 2005). Neighboring areas
are able to exchange information via the homogeneous
SC within the cortex and via the white matter tract, that is,
the heterogeneous SC (Fig. 1c, Area 2 with Areas 1 and 3).

Each vertex point is a network node holding a neural
mass model connected to other nodes via the homoge-
neous SC and heterogeneous SC. When an area is stim-
ulated, all the nodes of this area are simultaneously
activated, and then the stimulation-induced activity in
each node decays differently according to the activity in
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Figure 1. Structure of the large-scale brain model. a, The large-scale brain model is composed of the geometry of the brain of
116 subcortical areas and the two cerebral hemispheres. b, There are 37 cortical areas, each containing between 29 and 683
nodes (dots in a), for a total of 8,192 nodes per hemisphere. ¢, Homogeneous and heterogeneous SC. Heterogeneous SC
corresponds to white matter tracts connecting brain areas over long distances. Homogeneous SC corresponds to gray matter
fibers, with short-range connections within a given area, but also enabling some communication over short distances between
neighboring areas. Although Area 2 is not connected to Areas 1 and 3 via the white matter, it is weakly linked to both areas via
a set of short-range SC. d, Homogeneous SC matrix for the 16,384 nodes. The synaptic weights are color coded. The diagonal
describes in warm colors the strong SC of adjacent nodes. SC decreases with distance, which is shown in cold colors. SC of
nearby nodes are scattered (e.g., blue dots) in d because each cerebral hemisphere is described by a surface, which makes it
impossible to cluster nodes locally along both axes. Note the absence on interhemispheric short-range SC. e, Heterogeneous
SC for the 190 (74 cortical plus 116 subcortical) areas for weights (left) and time delays (right). Within one hemisphere, the 58
subcortical areas mostly project to the 37 cortical areas. Some connections between subcortical areas can also be seen. The
37 cortical areas project heavily to both cortical and subcortical areas. Some interhemispheric connections can also been seen.

Note also the presence of large time delays.

the surrounding area via short-range connections (i.e.,
homogeneous SC) and remote nodes via long-range con-
nections (i.e., heterogeneous SC). The ability to drive the
network does not depend on the number of nodes within
an area, because the heterogeneous SC transfers the
mean of the activity in all of the nodes within an area to all
the nodes in another area.

We consider this ratio of homogeneous SC to hetero-
geneous SC as a degree of freedom and performed a
parametric study (for systematic studies with two-point
connection, see Jirsa and Kelso, 2000; Qubbaj and Jirsa,
2007, 2009). The ratio has been estimated. For instance,
Braitenberg and Schiiz (1998) assessed that pyramidal
cells have synapses in equal shares from long-range and
local axons. However, the ratio of homogeneous SC to
heterogeneous SC mainly depends on the resolution of
the used geometrical model of the cortex, and with that
the representation of the SC, and the network node de-
scription (e.g., canonical model, neural mass model),
which is able to incorporate local connectivity (for more
detail, see Spiegler and Jirsa, 2013). At the extremes, (1)
0% of heterogeneous SC (thus, 100% of homogeneous
SC gives two unconnected cerebral hemispheres with
locally but homogeneously connected nodes) only allows
activity to propagate locally from a cortical stimulation
site, and (2) 100% of heterogeneous SC (thus 0% of
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homogenous SC gives 190 purely heterogeneously con-
nected brain areas with locally unconnected nodes) only
allows activity to travel long distances with time delays via
white matter fiber tracts.

Furthermore, since the spatial range of homogeneous
SC is not known (Spiegler and Jirsa, 2013), we also
consider it as a parameter varying between 10 and 41
mm. We then systematically stimulate each of the 190
areas with a large range of parameter values (for the ratio
and the spatial range), resulting in a total of all 37,620
simulation trials.

Brain dynamics at rest have been found to operate near
criticality (Ghosh et al., 2008; Deco et al., 2011, 2013).
Near criticality is defined as a system that is on the brink
of a qualitative change in its behavior (Shew and Plenz,
2013). The proximity to criticality predicts that the re-
sponse of the brain to stimulation will primarily arise from
structures and networks that are closest to instability.
Activities in those networks require the most time to settle
into equilibria after stimulation, and are associated with
large-scale dependencies and scale invariance (Haken,
1978). This would be consistent with the center manifold
theorem, which states that a high-dimensional system in a
subcritical state will converge on a lower-dimensional
manifold (few networks) when the system is stimulated.
Consequently, we equally set each node in the brain

eNeuro.org



eMeuro

Table 1: Abbreviations of brain areas
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Al Primary auditory cortex (57,74) Cld Capsule of the nucleus lateralis dorsalis
A2 Secondary auditory cortex (33,64) CnMd Nucleus centrum medianum thalami
Amyg Amygdala (151,135) Cs Nucleus centralis superior thalami
CCa Gyrus cinguli anterior (54,49) Csl Nucleus centralis superior lateralis thalami
CCp Gyrus cinguli posterior (167,179) GL Nucleus geniculatus lateralis thalami
CCr Gyrus cinguli retrosplenialis (68,67) GM Nucleus geniculatus medialis thalami
CCs Gyrus cinguli subgenualis (29,42) GMpc Nucleus geniculatus medialis thalami, pars parvocellularis
FEF Frontal eye field (104,161) IL Intralaminar nuclei of the thalamus
G Gustatory cortex (52,42) LD Laterodorsal nucleus (thalamus)
HC Hippocampal cortex (75,54) Li Nucleus limitans thalami
la Anterior insula (48,71) LP Nucleus lateralis posterior thalami
Ip Posterior insula (82,111) MD Nucleus medialis dorsalis thalami
M1 Primary motor area (463,460) MDdc Nucleus medialis dorsalis thalami, pars densocellularis
PCi Inferior parietal cortex (454,371) MDmc Nucleus medialis dorsalis thalami, pars magnocellularis
PCip Cortex of the intraparietal sulcus (355,486) MDmf Nucleus medialis dorsalis thalami, pars multiformis
PCm Medial parietal cortex (196,241) MDpc Nucleus medialis dorsalis thalami, pars parvocellularis
PCs Superior parietal cortex (199,177) ML Midline nuclei of the thalamus
PFCcl Centrolateral prefrontal cortex (328,227) Pa Nucleus paraventricularis thalami
PFCdI Dorsolateral prefrontal cortex (248,216) Pac Nucleus paraventricularis caudalis thalami
PFCdm Dorsomedial prefrontal cortex (211,270) Pcn Nucleus paracentralis thalami
PFCm Medial prefrontal cortex (61,68) Pf Nucleus parafascicularis thalami
PFCorb Orbital prefrontal cortex (310,265) PT Nucleus parataenialis thalami
PFCpol Pole of prefrontal cortex (279,279) Pul Nucleus pulvinaris thalami
PFCvI Ventrolateral prefrontal cortex (380,479) Pul.i Nucleus pulvinaris inferior thalami
PHC Parahippocampal cortex (267,212) IPul.l Nucleus pulvinaris lateralis thalami
PMCdI Dorsolateral premotor cortex (108,138) Pul.m Nucleus pulvinaris medialis thalami
PMCm Medial premotor cortex (149,68) Pul.o Nucleus pulvinaris oralis thalami
PMCvI Ventrolateral premotor cortex (126,138) R Nucleus reticularis thalami
S1 Primary somatosensory cortex (487,420) Re Nucleus reuniens thalami
S2 Secondary somatosensory cortex (107,116) SG Nucleus suprageniculatus thalami
TCc Central temporal cortex (436,422) Teg.a Nucleus tegmentalis anterior
TCi Inferior temporal cortex (390,306) VA ventral anterior nucleus (thalamus)
TCpol Pole of temporal cortex (91,101) VAmc Nucleus ventralis anterior thalami, pars magnocellularis
TCs Superior temporal cortex (306,352) VApc Nucleus ventralis anterior thalami, pars parvocellularis
TCv Ventral temporal cortex (260,317) VL ventral lateral nucleus (thalamus)
VA Visual area 1 (147,180) VLc Nucleus ventralis lateralis thalami, pars caudalis
V2 Secondary visual cortex (683,663) VLm Nucleus ventralis lateralis thalami, pars medialis
VLo Nucleus ventralis lateralis thalami, pars oralis
AD Nucleus anterior dorsalis thalami VLps Nucleus ventralis lateralis thalami, pars postrema
AM Nucleus anterior medialis thalami VP Nucleus ventralis posterior
AN Anterior nuclei of the thalamus VPI Nucleus ventralis posterior inferior thalami
AV Nucleus anterior ventralis thalami VPL Aentral posterior lateral nucleus (thalamus)
Caud Nucleus caudatus VPLc Nucleus ventralis posterior lateralis thalami, pars caudalis
Cdc Nucleus centralis densocellularis thalami VPLo Nucleus ventralis posterior lateralis thalami, pars oralis
Cif Nucleus centralis inferior thalami VPM Nucleus ventralis posterior medialis thalami
Cim Nucleus centralis intermedialis thalami VPMpc Nucleus ventralis posterior medialis, pars parvocellularis
Cl Nucleus centralis lateralis thalami X Area X (thalamus)
Clau Claustrum Clc Nucleus centralis latocellularis thalami

Number of nodes per cortical areas in brackets (left, right).

network model to operate close to its critical point, where
the network shows no activity without stimulation. We use
the stable regimen of each network node (i.e., stable
focus) to stimulate a given area in the direction of its
instability point (i.e., supercritical Andronov—Hopf bifurca-
tion) and to induce characteristic energy dissipation
through the brain network. The dissipation of energy will
be constrained by the homogeneous SC and heteroge-
neous SC, the associated signal transmission delays, and
the local dynamics at the network nodes. In the network
model, the operating point of every node, when discon-
nected from the network, is at the same distance from its

September/October 2016, 3(5) e0068-16.2016

critical point, that is, the supercritical Andronov-Hopf bi-
furcation (Fig. 2a). If the critical point is reached, the node
enters into a constant oscillatory mode. In the network,
the SC (including time delays) determines the alteration of
the working distance to the critical point at each node in
time by weighting and delaying the incoming activity from
other nodes in the network. Hence, network metrics of the
SC such as the in-strength, that is, the sum of weights of
incoming ties to a node may indicate the distance of the
operating point of a node to its critical point, and, thus, the
criticality (Kunze et al., 2016). The network model, how-
ever, is set so that criticality is never reached by normal-

eNeuro.org
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Figure 2. The large-scale brain model works near criticality. a, Each node in the model is parameterized by y to operate
intrinsically at the same distance from the critical point if unconnected. A node shows zero activity or oscillation (~42 Hz) in
response to stimulation (red crosses). The activity at each node is described by two time-dependent variables, s (t) and s,(f).
The closer a node operates to the critical point, the larger and the longer lasting is the oscillation (compare vy, and, y,). When
the critical point is reached, the node intrinsically performs a rhythm of constant magnitude. The model, however, is set so that
the critical point is never exceeded. b, Principles of activity spreading after stimulation. The damped oscillation generated in the
stimulated node (1) is sent via its efferent connections to its target node (2), triggering there, in turn, a damped oscillation with
weaker amplitude and faster decay, which then propagates to the next node. Activity 44 ? () of node (j) is scaled by c; and
transmitted to node (i) via homogeneous and heterogeneous connections (SCs), delayed by 7; in the latter case. In such a chain,
activity would decay fast. ¢, In the large-scale brain model, multiple activity re-entry points can be found. At any time point, the
dynamics of a node is influenced by all incoming activity. The response of the node to stimulation (1) is relayed to linked nodes
(2—4), which may be fed back to 1 via 4 and may allow the induced activity to dissipate on a much longer time scale. The network
response thus depends upon the SC and allows the network to operate near criticality. d, Activation of dynamically responsive
networks. Activity after stimulating a node (1 or 2) in a series connection decays fast (as in b). However, activity may circulate
and thus decays slower in a feedback network (4-5). Such remaining activity after the initial stimulation decay reveals the
so-called dynamically responsive networks.

izing the SC to unity maximum in-strength so that activity = point, and the response is in the form of a damped
cannot be amplified through the SC. As a result, when a  oscillation (Fig. 2a). The closer a node operates to the
node is stimulated, the node operates closer to the critical  critical point, the stronger the responses of the node with
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Figure 3. Dissipation after stimulation. a, Response of area PFCcl to the activation of three different regions PMCdl, CCp, and PCm
(abbreviations are given in Table 1). Note that the amplitude, decay, and phase of the response depend upon the stimulated area. The
main determinants of the response pattern are the connections, the synaptic weights, and the time delays. The envelope of the time
series is computed (black, gray, and green lines for the three stimulation sites). b, Spatiotemporal activation following stimulation of
three different regions. At a given time point, we extract the amplitude of the envelope for the 16,500 nodes (the 16,384 cortical nodes
and the 116 subcortical ones), which we normalize to 1. The color scale thus indicates the contribution of a given region to the overall
activity. The dissipation of activity after stimulating two distant brain areas, PMCdl and CCp (located far from one another: PMCdl in
the lateral surface, CCp in the medial surface) leads to similar topographical patterns (for t > 640 ms). In contrast, a distinct pattern
appears when stimulating PCm, which is adjacent to CCp. ¢, Extraction of the main activated propagation subnetworks. We use the
stimulation of PMCdl as an example. We calculate the covariance among the 16,500 time series (the 16,384 cortical nodes and the
116 subcortical ones) for a time window centered at 750 ms and then perform a PCA to extract the subnetworks capturing >99%

of the activity. Three different networks are thus dynamically responsive when PMCdlI is stimulated.

high amplitude and long decay time (Fig. 2a). The nodes
are working near criticality (i.e., they get close to a change
in behavior, which would here be a switch to a constant
oscillatory mode, but never reaching it). Thus, the re-
sponse to the stimulation is transient, lasting a few
milliseconds. The damped oscillation generated in one
stimulated node is then sent via its efferent connections to
its target nodes, triggering there, in turn, a damped oscil-
lation (Fig. 2b). If the network were based mainly on nodes
connected in series, activity would decay very fast after
the stimulation (Fig. 2b). However, since the outgoing
activity of a node can influence the nodes projecting back
to it, recurrent systems appear (Fig. 2c,d) that allow ac-
tivity to dissipate on a much longer time scale. The
evoked activity, after the initial decay, thus persists in the

September/October 2016, 3(5) e0068-16.2016

so-called responsive networks (Fig. 2¢,d), which may re-
flect feedback loops and re-entry points in the SC. A
dynamically responsive network acts on changes, for
instance, those due to sensory stimuli and random
fluctuations in the network (flexibility), and outlasts the
stimulation (criticality).

The described network properties are illustrated in Fig-
ure 3a. The stimulation of three different areas gives rise
to three different responses in a given target area. The
differences stem from the proximity to criticality, which
depends upon the SC (in particular, the extent of recurrent
networks), comprising the synaptic weights and the time
delays (Fig. 1). This behavior is predicted by the center
manifold theorem, which is the mathematical basis for
criticality (Haken, 1978).

eNeuro.org
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Large-scale brain model

Dynamics of a vector field ¥ (x, t) at time t € R' and
position x € R® in space () are described by a delay-
integro-differential equation, as follows:

oW (X, 1) = E(W (x, ) — alx, 1)
+(1- a)aLLde' Y (x — X', 1) giX)
+ aSJdX’ Vix— X, t—|x — X[ /v)
X Hx) Clx — X'[| /v) KT (X), M

where 9, is the derivative with respect to time t. The input
I(x, t) allows the stimulation dynamics to intervene on a
node. The operator E (¥ (x, 1)) locally links variables of the
vector field. The scalar « balances the effect of the ho-
mogeneous SC and the heterogeneous SC (first and sec-
ond integrals) on the vector field. The vectors a;, a,, and ag
of factors relate to the input /, and both types of SC to the
vector field ¥ (x, t). The kernel g(x) describes the homo-
geneous SC. The field is time delayed due to a finite
transmission speed, v, via the heterogeneous SC given by
matrix C(x). The vectors H(x) and K(x) establish the links
between the heterogeneous SC and the targets and
sources. Note that the transmission speed enters the
second integral concerning heterogeneous SC. We as-
sumed the transmission via the homogeneous SC (first
integral) to be instantaneous, which reduces the compu-
tational expenses, in order to perform the parameter
study. The spatial and temporal aspects of the model are
described in more detail in the following two subsections.

Geometry and SC

The spatial domain ) = {L; U L, U S} separates both
cerebral hemispheres L = {L, U L,}: left, L, and right, L,,
from subcortical areas S, that is, NQ = <. A closed
2-sphere describes the geometry of each hemisphere (L,
and L,). The homogeneous SC follows a Gaussian distri-
bution g(x) = exp(—x?/(2¢7)) that is invariant under trans-
lations on L (Spiegler and Jirsa, 2013). Each closed
sphere, L, and L,, is divided into m = 38 regions, that is,
Ly =U,r, A and L,=U,pr, A with R;=R(m),
R, =R, +n RANEN)={rlreN, r=2A}, wheren = 116
is the number of subcortical areas. The division of the
spheres into regions follows a coarser Brodmann map
(Kotter and Wanke, 2005) of areas, A, = A(reN) € (:
N — R?® onto space Q for introducing heterogeneous SC
(in default model in TVB; Sanz-Leon et al., 2013, 2015).
The corpus callosum intersects the medial faces of both
closed 2-spheres to interconnect both cerebral hemi-
spheres from within, leaving two openings. All the nodes
in the intersecting regions are placed far enough so that
the nodes are topologically isolated by gx — X') — 0.
Finally, one region is the intersection by the corpus cal-
losum, and the remaining regions are the considered 37
cortical areas composing a cerebral hemisphere. Each of
the n = 116 considered subcortical areas is lumped to a
single point in space S = U,cg, A, With R3 = R(n) + 2m.
The heterogeneous connections C transmit mean activi-
ties of sources to target areas H(x) and K(X’) with a finite
transmission speed, v = 6 ms~ ' (Nunez, 1995, 1981). The

September/October 2016, 3(5) e0068-16.2016
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square matrix C (| x — X' || /v) contains (2m + n)? weights
andc; (|x — X" || /v):i,j=1,...,2m + n taken from the
CoCoMac database (Stephan et al., 2001; Kotter, 2004;
Kétter and Wanke, 2005), which was extrapolated to hu-
mans (Sanz-Leon et al., 2013, 2015). The row vectors H(x)
and K(X") contain 2m + n operations, h;(x) and k(X’) on the
targets and sources, respectively. The operations are
hix) = 8JA) and k(X') = &x(A) /IAl with the Dirac
measure §,(A) on  and the cardinality IA,l of the set A,.

The description of the large-scale brain network model
(Eq. 1) is fully compatible with previous TVB descriptions
(Spiegler and Jirsa, 2013; Sanz-Leon et al., 2015). Note
that the set notation is used here to describe brain areas
and the division of homogeneously distributed and con-
nected network nodes on both cerebral hemispheres into
cerebral areas. This is novel here and has not been ad-
dressed in previous TVB publications.

Temporal dynamics

The vector field describes a two-dimensional flow (Ste-
fanescu and Jirsa, 2008) linking two variables V¥ (x, t) =
(¥4 )" (x, t) in Equation 1, as follows:

E(\I] (X, )) _ n(lpz(x, t) __ysﬁf)((;(t")t)_ "l’?(x, )) (2)

The parameterization y = 1.21 and ¢ = 12.3083 sets an
isolated brain area close to a critical point, that is, an
Andronov-Hopf bifurcation (sketched in Fig. 2) with a
natural frequency of ~42 Hz using a characteristic rate of
1 = 76.74 s, This rhythm in the gamma band accounts
for local activity, such as a coordinated interaction of
excitation and inhibition (Buzsaki and Wang, 2012), which
is not explicitly modeled here. The Dirac delta function is
applied to a brain area, I, (x, ) = —5n 8,(A) (). The
connectivities and the input act on the first variable
Y(x, ) in Equation 1 by a, = ag = @' = (n 0). The
connectivity-weighted input determines criticality by work-
ing against inherent energy dissipation (i.e., stable focus)
toward the bifurcation. So that the bifurcation was not
passed, both homogeneous and heterogeneous SC, g(x)
and C (| x — X' || /v), are normalized to unity maximum
in-strength across time delays by (1) f dx g(x) = 1 and (2)
SUP,eq /v {27 ¢; (IAID} = 1.

Simulation

To simulate the model on a computer, physical space
and time are discretized. The folding of the human cortex
presents a challenge for sampling. The cerebral surfaces,
L, and L,, are evenly filled with 8192 nodes. Subcortical
structures in S remain unaffected by the discretization.
The geometry of the brain is captured in physical space, ()
by a net of 16,500 nodes (i.e., 16,384 cortical and 116
subcortical nodes). The spatial integrals in Equation 1 are
rewritten as matrix operations, where the heterogeneous
SC remains the same and the homogeneous SC is spa-
tially sampled on the cerebral surfaces (Spiegler and Jirsa,
2013). The system of difference equations is then solved
using Heun’s method with a time step of 40 us for 1
second/realization of one of the following factors: each of
the 190 stimulation sites, SC balance, « = {0.0, 0.2, 0.4,
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0.6, 0.8, 1.0}, and homogeneous spreading, o/mm & N:
10 = o/mm = 41. The implementation is verified by the
algebraic solution of an isolated node (i.e., no connec-
tions), and by the field properties (e.g., compact solutions
spreading radially around a stimulation site) of the homo-
geneously linked cerebral nodes.

The lower bound of the spatial range of o = 10 mm
results from the geometrical model used for the cortex. A
nearly regular mesh of triangles approximates each cere-
bral hemisphere with a finite edge length of 3.9761 mm on
average (Spiegler and Jirsa, 2013, their Fig. 2 and Table
2). The used Gaussian kernel for the homogeneous SC is
sampled in the model through the cortical mesh. Because
of the finite edge lengths in the mesh, the spatial range of
the homogeneous SC should not fall below 6.627 mm
for the —3 dB cutoff of spatial frequencies with respect to
their magnitude (Spiegler and Jirsa, 2013, their Table 7).
The lower bound of the spatial range of o = 10 mm for the
homogeneous Gaussian connectivity kernel causes a loss
of at least 20% of spatial information (mainly short range),
which corresponds to a —7.13274 dB cutoff (Spiegler and
Jirsa, 2013, their Fig. 3A).

Cellular automaton

The transient period after stimulation onset caused by
the transmission times among the 190 brain areas (74
cortical and 116 subcortical areas) in the heterogeneous
SC is estimated using a cellular automaton. We use the
cellular automaton as a tool to determine a time period for
the data decomposition. We focus on the time-delayed
interaction among the cerebral areas in the cellular au-
tomaton, because the transmissions via the homoge-
neous SC (short range) of the nodes are instantaneous in
the network model in contrast to the heterogeneous SC
(long range) of areas, which are composed of at least one
node. Each of the 190 cells in the cellular automaton
describes one of the brain areas given by the homoge-
neous SC to be either active or inactive. The temporal
decomposition of the heterogeneous SC according to the
transmission times gives rules for changing the state of
cells over time. The cellular automaton is initialized from
the overall inactive state. An activation of a cell triggers a
cascade of activation in time until no more cells get
activated. In this manner, 190 characteristic activation
cascades emerged, each by stimulation, that is, activation
of a single cell. The time that the cellular automaton enters
the steady state across all stimulation estimates the tran-
sient period from the time delays in the heterogeneous
SC. This estimate of the cellular automaton was then used
to set the starting time for decomposing the simulated
data of the full model (Egs. 1, 2).

Stimulation and decomposition

All network nodes of a brain area are constantly stim-
ulated for a period of the characteristic time of the nodes,
1", to evoke damped oscillations with a maximum mag-
nitude of one. The stimulation response of an isolated
node is subtracted from the response of stimulated nodes
in the network. A principal component analysis (PCA) was
performed using the covariance matrix among the 16,500
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nodes. The period of 0.5 s of data after 0.5 s of stimulus
onset (estimated by the cellular automaton) was decom-
posed. For further analysis, up to three principal compo-
nents (i.e., orthogonal) are considered that cover >99% of
variance across conditions.

Subspace similarity, clustering, and responsive
networks

The dot product of the normalized eigenvectors from
the decomposition of the stimulation response was used
to measure the similarity of the dissipation across differ-
ent stimulation sites for a range of values of the balance of
the SC and a spatial range of the homogeneous SC. The
eigenspaces are clustered based on the similarity mea-
sure using k-means for each SC balance and each range
of the homogeneous SC. The number of clusters is esti-
mated via the gap statistic (Tibshirani et al., 2001). For
each cluster, the eigenspaces are rotated to the basis of
the one with the highest similarity among all in the cluster,
using the singular value decomposition and calculating
the optimal rotation matrix (Kabsch, 1978). Averaging the
aligned basis vectors in a cluster (across eigenspaces)
gives the set of eigenvectors for each cluster. Each re-
sulting eigenvector indicates the contribution of each net-
work node (e.g., whether it belongs to a cortical or a
subcortical structure) to a dynamically responsive net-
work.

Statistics on dynamically responsive networks

A Kolmogorov-Smirnov test is performed to determine
whether the cortical and the subcortical contributions to a
dynamically responsive network are drawn from the same
distribution. A Wilcoxon rank sum test is used to determine
whether the cortical and the subcortical contributions to a
responsive network are equivalent. A significance level of
0.01 is used for both of these tests.

Comparing dynamically responsive networks
and RS networks

Guided by the Brodmann area designation of the Auto-
mated Anatomical Labeling Template (Tzourio-Mazoyer
et al., 2002), the cartographic description of the RS net-
works by Damoiseaux et al. (2006) is mapped onto the
geometrical model of the cortex, and its parcellation is
used here to determine whether networks that are dynam-
ically responsive to stimulation resemble the experimen-
tally known spatial activity patterns at rest. In the study by
Damoiseaux et al. (2006), cortical structures are either
mentioned or are explicitly emphasized to be part of an
RS network, but are not explicitly excluded. For the pres-
ent purposes, we assumed areas that were not mentioned
were also not part of an RS network. Finally, in the time
since their 2006 publication, there have been a number of
updates to the functional designation of the different RS
networks. We have kept the original designations save for
the “unspecified” RS network, which seems to best cor-
respond the dorsal attention network (Cole et al., 2010).

The resultant map onto our geometrical model de-
scribes the probability of an area to contribute to an RS
network by the following three levels: no, medium, or high
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Figure 4. Comparison between dynamically responsive networks to stimulation (top rows) and the experimentally observed RS
networks (bottom rows) for the lateral and medial surface of the brain. a—h, Default mode, visual, auditory-phonological, somatomotor,
memory, ventral-stream, dorsal attention, and working memory. We used 20% to 80% for the ratio of heterogeneous/homogeneous
SC and a range of 10 mm for the homogeneous SC. The white to red scale gives the relative contribution of areas to the responsive
networks (top rows) and the RS networks (bottom rows). The stimulation sites are given in Table 2 and Figure 7. Note that the bottom
rows are activity masks for the 74 cortical areas constituting the RS networks, where activity is not localized within areas and uniformly
color coded (see Materials and Methods). The top rows show the vector field ¥ (x, f) on the mesh of 16,384 cortical nodes and thus

localized activity.

contribution for unmentioned, mentioned, or explicitly
emphasized (Damoiseaux et al., 2006). The Bhattacharyya
(1946) coefficient is then used to estimate the amount of
overlap (i.e., the square root of the inner product) between
an RS and a dynamically responsive network, the ele-
ments of which are essentially indicated by an eigenvec-
tor. The square of each eigenvector element is taken and
summed up within each area. The coarse-grained eigen-
vectors and each sum of a combination thereof (four in
total) are normalized to unit length. RS networks and
responsive networks are compared using the Bhattacha-
ryya coefficient BC for an RS network and each normal-
ized coarse-grained eigenvector or combination thereof.
The significance of each comparison,p = (n + 1) /(N + 1)
is estimated by N-times permuting the entries of an RS
network (without replacement), calculating the coefficient,
‘BC (the permuted Bhattacharyya coefficient), and then
counting the values greater than the original, n : BC, > BC,
with N = 2 X 108. The p values are corrected due to 24
independent multiple comparisons (eight RS networks
with three eigenvectors per stimulation site), using the
Bonferroni-Holm correction. A BC with p values <0.05 is
considered to be significant. The mean across the maxi-
mum significant overlap for the RS networks with a re-
sponsive network (i.e., a single eigenvector or a
combination thereof) gives the optimal parameters for (1)
the used eigenvector-coarsening metric (i.e., absolute or
squared value), (2) the balance of the homogeneous SC
and the heterogeneous SC, and (3) the spatial range of the
homogeneous SC. The optimum parameter set is sepa-
rately determined for all the dynamically responsive net-
works to cortical, subcortical, and both cortical and
subcortical stimulations.
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Comparing dynamically responsive networks and
connectivity structure

A dynamically responsive network is measured by
means of contributing network nodes after stimulation
(i.e., an eigenvector). The spatial structure (in each eigen-
vector) is specific to each of the dynamically responsive
networks that best explain an experimentally observed RS
network (Fig. 4). The eigenvectors corresponding to these
eight dynamically responsive networks are compared to
the heterogeneous SC. Because this SC describes the
wiring between brain areas, the role of each brain area
within the network is characterized using measures from
graph theory, namely, the following: in-, out-, total-de-
gree; in-, out-, total-strength; and clustering coefficient
(Rubinov and Sporns, 2010). Incoming, outgoing, or all
connected ties to an area are measured in terms of (1)
their numbers and (2) their weights. By counting the con-
nections, we obtain the in-, the out-, and the total-degree.
By calculating the sum of connection weights, we obtain
the in-, the out-, and the total-strength. The clustering
coefficient measures the degree to which areas in a graph
tend to group together. Each of the seven measures of the
brain areas in the heterogeneous SC is then compared
with the elements of each dynamically responsive net-
work (i.e., the eigenvector), using the BC. To test statisti-
cal significance, the same permutation test is used for the
comparison of the dynamically responsive networks with
the RS networks.

Results

Following stimulation of a cortical area at rest [i.e., Fig.
2a, subcritical regime (e.g., parameter configuration v4)],
the induced activity initially spreads radially from the stim-
ulation site across area boundaries (Fig. 3b, period 0 <
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Figure 5. Repertoire of dynamically responsive networks. a, The number of networks responsive to cerebral stimulation depends on
the spatial range of the homogeneous SC and the ratio of homogeneous SC to heterogeneous SC. b, Similar to a for the number of

effective cerebral stimulation sites leading to different networks.

t < 640 ms), due to short-range and homogeneous SC.
Then, propagation occurs across long distances through
the brain network via long-range and heterogeneous SC
(Fig. 3b, period t = 640 ms), that is, white matter tracts. In
contrast to the radial propagation behavior, which is sim-
ilar for all cerebral stimulations, nontrivial propagation
behavior occurred that is specific to the location of stim-
ulation. The latter observation can alone be attributed to
the weights and time delays of connections described by
the heterogeneous SC (Fig. 1e), which forms the propa-
gation in synergy with the homogeneous SC. Thus, stim-
ulation of adjacent brain areas may cause totally different
propagation patterns, as demonstrated by simulating
three different cerebral areas in the whole-brain model in
Figure 3b. Conversely, stimulation at two remote sites
may lead to a similar spatiotemporal pattern after an initial
transient (Fig. 3b, time frame 890 ms). We conclude that
the dissipation of the activity induced by the stimulation of
different sites can resolve in the same pattern through
particular processes formed by the SC. The radial prop-
agation behavior allows the separation of similar network
patterns by their formation starting from different sites.

Dynamically responsive networks

From the decomposition of the response activity to a
particular stimulation, we obtain three spatially different
patterns capturing >99% of the energy dissipation and
describing three dynamically responsive networks per
stimulation. Regarding our parametric study, we find a
maximum of 11 different responsive networks across all
cerebral stimulation sites for a ratio of 80% heteroge-
neous SC to 20% homogeneous SC and a spatial range
for homogeneous SC between 30 and 35 mm (Fig. 5a).
Note that the patterns of these responsive networks are
not simply spread activity around the site of stimulation
(i.e., radial propagation). With a network of pure hetero-
geneous SC, only four responsive networks to cortical
stimulation can be identified, while the number of respon-
sive networks decreases as the proportion of homoge-
neous SC increases (Fig. 5a). This result supports the
synergy of homogeneous and heterogeneous SC in the
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formation of the network patterns versus a predominant
formation via heterogeneous SC. We find a maximum of
27 effective stimulation areas in two occurrences: a 60%
to 40% heterogeneous/homogeneous SC ratio and a spa-
tial range of 38 mm for the homogeneous SC; and a 100%
heterogeneous SC (Fig. 5b). Note that these occur as a
result of the stimulation of specific cerebral areas, which
lead to the different responsive networks counted in Fig-
ure 5a. We conclude that, although a pure heterogeneous
SC can carry several dynamically responsive networks,
considering homogeneous SC dramatically increases the
repertoire of networks responsive to stimulation. How-
ever, there is an optimal value, as too much homoge-
neous SC is detrimental to the richness of the repertoire.

Dynamically responsive networks and RS networks
The decomposition of the response to stimulation of a
particular brain area in the whole-brain model resulted in
a description of three responsive networks per stimula-
tion. We thus assessed (1) whether these functional net-
works correlate with the experimentally observed RS
networks (Damoiseaux et al., 2006), and, if so, (2) whether
the set of RS network patterns do mainly stem from the
stimulation of specific cortical, subcortical, or both brain
structures. Interestingly, the optimal ratio of heteroge-
neous/homogeneous SC is found to be 20% to 80%
consistently for all stimulation conditions. The spatial
range for the homogeneous SC is found to be 10 mm for
the two groups of networks responsive to cortical stimu-
lation, and to both stimulation cortical and subcortical. A
spatial range of 17 mm was found to be optimal for the
group of networks responsive to subcortical stimulations.
The locations of the stimulation that are most likely to
support energy dissipation into one of the RS network
patterns are listed in Table 2 [with its corresponding cor-
relation (Bhattacharyya) coefficient] for each stimulation
condition and for the optimal parameterization. Note that
a location may appear repeatedly for the same stimulation
condition, because the activity after stimulation is decom-
posed into three orthogonal eigenvectors describing three
dynamically responsive networks, where each of which
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Table 2: The stimulation sites corresponding to the dynamically responsive network that best match a particular RS network

Resting-state network Stimulation condition

Cortex (excluding subcortex)
PFCm (0.8337)

CCs (0.6455)

TCs (0.7147)

Default mode
Visual
Auditory-phonological

Somato-motor M1 (0.8153)
Memory V2 (0.8646)
Ventral stream CCa (0.7845)
Dorsal attention M1 (0.7039)

Working memory CCs (0.8006)

Subcortex (excluding cortex) Cortex and subcortex

AD (0.8420) AD (0.8506)
GL (0.6953) GL (0.7510)
GMPC (0.6630) TCs (0.7147)
MDDC (0.8199) M1 (0.8153)
MDDC (0.8454) V2 (0.8646)
ML, AN, SG (0.8122) CCa (0.7845)
R, VA, X (0.7097) AD (0.7631)
PAC, Cdc (0.8204) GL (0.8069)

All responsive networks of a parameter configuration were compared to the eight experimentally known RS networks. A permutation test was performed to
test the significance of each comparison. The multiple comparisons were corrected using the Bonferroni-Holm correction. For the comparison, the dynami-
cally responsive networks were differentiated into: cortically, subcortically responsive networks, and the union of all responsive networks irrespective of the
stimulation site. For each of these three groups separately, the parameterization was found to show the best accordance of stimulation responsive networks
with the entire set of RS networks. The optimal parameterization is the ratio of 20% to 80% for the heterogeneous/homogeneous SC and a range of 10 mm
for the homogeneous SC for all groups, except the range is with 17 mm different for the group of responsive networks to subcortical stimulation. Note the
presence of cortical and subcortical sites in the last column, which has higher matching values on average over the eight RS networks compared with the
other groups. The value in parenthesis is the matching coefficient (it varies between 0 and 1). Abbreviations are listed in Table 1.

may relate to a different RS network [e.g., area nucleus
anterior dorsalis thalami (AD) in thalamus].

Irrespective of the restrictions to the stimulation (i.e.,
cortical stimulation, subcortical stimulation, and both), the
default mode and the memory network always show the
highest correspondence with the dynamically responsive
networks, whereas the visual and the auditory networks
show the lowest correspondence (Table 2). Moreover, we
averaged the best significant coefficients (Table 2) over
the eight RS networks to assess whether the set of RS
network patterns is driven by (1) cortical areas; (2) sub-
cortical areas; or (3) both cortical and subcortical areas,
where a particular pattern is either driven cortically or
subcortically. Considering the overall correspondence,
the set of RS network patterns is equally well explained by
stimulating subcortical sites (<BC> = 0.77 on average)
than cortical sites (<BC> = 0.77), but by stimulating a
mixture of both cortical and subcortical sites the mean
Bhattacharyya coefficient is higher (<BC> = 0.79). The
dynamically responsive networks matching best with the
RS networks are shown in Figure 4.

To assess whether a dynamically responsive network
reflects the underlying structure, we correlated the ac-
tivity pattern indicating a dynamically responsive net-
work with graph measures of brain areas in the network
of heterogeneous SC (Fig. 6). Across the different mea-
sures, the in-degree of the SC can be related to the two
memory networks and the attention network. For these
RS networks, this means that the in-degree of brain
areas given by the SC indicated the criticality of areas
in the operating large-scale brain network model
(Kunze et al., 2016), where criticality is the distance of
the operating point of a network node to its inherent
bifurcation.

Stimulation lookup table

The dynamically responsive networks can be charac-
terized in terms of stimulation sites, including the respon-
sive networks that resemble RS network patterns.
Assuming a direct link between the spatial activity pat-
terns formed at rest (i.e., RS networks) and the task-
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related functional networks (e.g., related to an external
input such as a light flash), RS networks hence can be
characterized by the stimulation of particular structures
that can be part of (1) a network in which information is
processed, (2) an ascending path of sensory input, and (3)
structures modulating the processing of a certain input
(Fig. 2d). All stimulation sites for cortical and subcortical
areas in which their responsive networks significantly
match with an RS network pattern in our model are sum-
marized in Figure 7. For example, the pattern for the visual
RS network is highly responsive to stimulation of the
nucleus geniculatus lateralis thalami (GL), which is part of
the visual pathway. Considering cortical stimulation, the

Memory
Default mode
Somato-motor
Working memory
Ventral stream
Dorsal attention
Visual
Auditory
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Figure 6. Influence of the structure on the RS-like networks. The
pattern of each stimulation-responsive network (from Fig. 5) that
best explains an experimentally observed RS network (rows) is
correlated with the underlying heterogeneous SC using seven
graph-theoretic measures (columns). Incoming, outgoing, or all
connected ties to an area can be measured in terms of number
(i.e., in-, out-, total-degree) or in terms of strength (i.e., in-, out-,
total-strength). The clustering coefficient measures the degree to
which areas in a graph tend to cluster together. BC indicates a
matching with warmer colors, where comparisons marked with a
star are statistically significant. Note that correlations may be
high but not significant using a permutation test. The in-degree
of the heterogeneous SC can be related to the two memory
networks and the attention network. The activation of the other
RS networks emerges in a way that is not predicted by the
network metrics.
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Figure 7. RS-like networks triggered by stimulation. a, b, Cortical stimulations in a, and subcortical stimulations in b lead to
dynamically responsive networks correlating significantly with RS networks for a ratio of 20% to 80% of the heterogeneous/
homogeneous SC and a range of 10 mm of the homogeneous SC. BC = [0, 1] indicates a matching with higher values. The
eigenvectors, EV (1-3 in descending order of eigenvalues and captured variance), indicate the responsive networks to an effective
stimulation matching with RS networks. Abbreviations are listed in Table 1. Note that the sites triggering a particular pattern can be
scattered over the cerebral hemispheres (e.g., for the two memory networks and the somatomotor network).

same pattern is simply activated by stimulation of the
Gyrus cinguli subgenualis (CCs), which has been associ-
ated with emotion processing and the pathogenesis of
mood disorders (Mayberg et al., 2005). Hence, the stim-
ulation of this cortical area modulates information pro-
cessing in the visual system rather than directly affecting
the processing, such as that indicated in Figure 7a in the
case of the default mode and the two memory networks.
According to our study of a large-scale whole-brain net-
work model, thalamic stimulations result in activity most
prominently in the following four RS network patterns:
default mode, motor, working memory, and the atten-
tion network. Cortical stimulations, in particular supe-
rior temporal, primary motor, secondary visual, and
anterior cingulate cortex result in activity most promi-
nently in the remaining RS network patterns, namely
auditory-phonological, somatomotor, memory, and ven-
tral stream network. Note that the dynamically responsive
network to cortical areas, especially memory, working
memory, and somatomotor, are scattered over the cere-
bral hemispheres (Fig. 7a). In addition, Figure 7 indicates
which of the three responsive networks matches with an
RS network. Considering that the spatial patterns, which
describe the dynamically responsive networks, capture
the dissipation of induced network activity after a specific
stimulation (in descending order with the variance), we
found the following RS network patterns to be dominant
(in terms of variance), thus captured in the first dynami-
cally responsive network: the visual, the auditory, the
motor, and the working memory networks. The same is
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true, to a lesser extent, for the memory, the ventral
stream, and the attention network. These RS networks
were represented in the specific second dynamically re-
sponsive network to stimulation, thus the weaker (in terms
of the variance) of the particular responses. Interestingly,
we found the default mode network to be particularly
flexible and spanned by both the first responsive network
and the second responsive network to specific stimula-
tion.

Discussion

This modeling study shows how to generate and
predict both spontaneous and task-related network dy-
namics. Moreover, it provides an entry point for (1) under-
standing brain disorders at a mechanistic level; and (2)
planning more effective therapeutic interventions (i.e.,
computational neuropsychiatry; Deco and Kringelbach,
2014), for example, through new targets for brain stim-
ulation. Using a whole-brain model (Fig. 1), which is
the freely available default large-scale brain network
structure of The Virtual Brain [TVB version 1.4.1 (www.
TheVirtualBrain.org)], we systematically activated all pos-
sible cortical and subcortical areas with brief stimulation
to investigate the brain response as a function of long-
range SC, that is, white matter fibers, and short-range SC,
that is, intracortical connections. We investigated the SC
because information processing in the brain strongly de-
pends upon both short-range (intracortical) and long-
range (intercortical) connections (Deco et al., 2015), and
because previous whole-brain modeling studies mostly
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focused on long-range SC (Honey et al., 2007; Ghosh
etal., 2008; Deco et al., 2009, 2011; Deco and Jirsa, 2012;
Hansen et al., 2015). We parametrically varied the ratio of
long-range SC to short-range SC and the spatial range of
short-range SC (Spiegler and Jirsa, 2013). We obtained
the responsive networks by analyzing the energy dissipa-
tion of the stimulus-induced activity in the full extent of the
structural network (Fig. 3). The focal activations in the
large-scale brain model may resemble such invasive stim-
ulation techniques as deep brain stimulation (DBS) (e.g.,
single DBS pulse; Mclintyre et al., 2004; Montgomery and
Gale, 2008), and such noninvasive techniques as TMS
(e.g., single-pulse and patterned TMS; Dayan et al., 2013).
We then contrasted the dynamically responsive networks
to functional networks; more precisely, to the eight exper-
imentally known RS networks (Damoiseaux et al., 2006).
We found that for a particular configuration of short-range
and long-range SC, the network responds to specific
focal stimulation with activity patterns that closely resem-
ble RS networks (Figs. 4, 7; Table 2). Moreover, we found
short-range connectivity essential for describing RS net-
works.

Mohajerani et al. (2013) demonstrated in lightly anesthe-
tized or awake adult mice that a palette of sensory-evoked
and hemisphere-wide activity motifs is represented in spon-
taneous activity. Correlation analysis between functional
circuits and intracortical axonal projections indicated a
common framework corresponding to long-range mono-
synaptic connections between cortical areas. Mohajerani
et al. (2013) also report that most of the robust activation
patterns and their evolution appeared long after stimula-
tion, reflecting that the initial dynamics are determined by
the local interactions and the stimulation site, but the later
developments are shaped by the interplay of connectome
and dynamics. These results converge with our findings
and suggest that a polysynaptic connectome shapes the
spatiotemporal evolution of spontaneous cortical activity.

In the following, we will discuss the model and the
simulation results in more detail.

Large-scale brain network modeling succeeded under
autonomous situations (e.g., driving the model with noise)
to describe the functional connectivity dynamics of ongo-
ing spontaneous brain activity (Honey et al., 2007; Ghosh
et al., 2008; Deco et al., 2009, 2011; Deco and Jirsa, 2012;
Hansen et al., 2015). The previous large-scale network
model studies mostly considered long-range SC, that is,
white matter tracts. Here, we went beyond this and incor-
porated short-range SC to understand how activity prop-
agates and dissipates in the brain (Jirsa and Kelso, 2000;
Jirsa, 2004; Qubbaj and Jirsa, 2007, 2009). Time delays
arose from the heterogeneous long-range SC. Because of
finite transmission speeds, time delays in the short-range
homogeneous SC may add dynamics to the network
repertoire. The incorporation of these time delays is, how-
ever, challenged by the vast number of connections (e.g.,
40,597,165 connections in our model, for a characteristic
range of 10 mm for the short-range SC), with that the
computational expenses, and is considered for future
work.
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Brain dynamics and criticality

Brain activity and its functional connectivity (FC) are
fluctuating at rest (Allen et al., 2014). FC is thus dynamic
and unfolds the SC partially at a given time. To investigate
the dynamically responsive networks to focal stimulation,
we hypothesized that networks operate at the brink of
criticality. So far, predictions from large-scale brain net-
work models related to near criticality have been tested
only in autonomous situations of ongoing spontaneous
brain activity (Honey et al., 2007; Ghosh et al., 2008; Deco
et al., 2009, 2011; Deco and Jirsa, 2012; Hansen et al.,
2015). In nonautonomous situations, such as following
stimulations of individual brain areas, near criticality,
which is linked mathematically to the local center manifold
theorem (Haken, 1978), predicts that the poststimulus
dynamics evolve with characteristic features in space and
time, as follows: (1) the existence of a low-dimensional set
of dynamically responsive networks; and (2) their slow
decay times after stimulation relative to other networks.
This approach provides not only a link among brain stim-
ulation, functionally relevant networks, and RS networks
(as suggested by Fox et al., 2014), but also gives a better
understanding of the relation between external inputs
(e.g., sensory) and internal brain states.

We parameterized the model to operate close to criti-
cality (Fig. 2). The criticality in our brain network model
essentially depends on (1) the distance of the operating
point of the node to the bifurcation, (2) the effects of the
SC on the operating point of the nodes, (3) the ensemble
of signal transmission delays, and (4) the stimulation.
Though the SC gives a brain specific topology, the model
does not show fluctuations at rest, that is, in the absence
of external inputs (i.e., no perturbations such as noise or
stimulation). Instead, the network is simply silent without a
drive and expresses its activity by virtue of stimulation
(processing of inputs) by means of damped oscillations.
At rest, the operating point of each network node is in the
same distance to the critical point, that is, the supercritical
Andronov-Hopf bifurcation. Consequently, there is no ac-
tivity in the network. An excitatory stimulation pushes the
network model closer to criticality by selectively moving
the operating point of particular network nodes closer to
the Andronov-Hopf bifurcation (Fig. 2a, from +y; to v,).
Because the stimulation is performed on brain areas that
are interconnected via the heterogeneous SC, the effect
of the stimulation of the network nodes is particular to the
site of stimulation. In this way, we have demonstrated that
the dynamically responsive brain networks result from
near criticality and show the most active and long-lasting
patterns following stimulation.

Drivers of brain dynamics can be internal (i.e., auton-
omous situation) or external (i.e., nonautonomous situ-
ation). Considering stimulation as a driver for brain
dynamics, white noise is a rather unspecific stimulation
with respect to time and space as in the autonomous
situations (Ghosh et al., 2008; Deco et al., 2009, 2011;
Deco and Jirsa, 2012; Hansen et al., 2015). One may,
however, consider a specific external stimulation (e.g., of
a given brain area at a given time) as a particular realiza-
tion of a random process at a given time. In this context,
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it is worth mentioning that the characteristics of a random
process depend on the level of description regarding the
SC. For example, in our cortex model we consider short-
range homogeneous SC between adjacent network
nodes and long-range heterogeneous SC between brain
areas, which comprise several nodes (Fig. 1). A spatio-
temporally uncorrelated noise added to the state variables
on the level of network nodes will inevitably occur corre-
lated on the level of brain areas. The short-range homo-
geneous SC smoothes the spatial variance, and the
differential operator smoothes over time. This indicated
that a random process on the level of large-scale brain
networks has to be correlated over space and time. Noise
is hence more effective in small structures (e.g., thalamic
nuclei). To determine stochastic processes for driving a
model, the spatiotemporal correlations of brain signals
could be used (Spiegler and Jirsa, 2013 and the citations
therein).

Dynamically responsive networks are specific to a set
of stimulation sites. Activations of a given brain structure
by stimulation lead to a brain response that we charac-
terized by a spatial pattern of activity. The set of specific
activation patterns composes dynamically responsive
networks. Each dynamically responsive network is a fin-
gerprint of the network structure given a specific set of
stimulation sites. We extracted the set of dynamically
responsive networks by systematically stimulating the
brain areas and then comparing the activity patterns. The
responsive networks form a set of different spatial pat-
terns of brain activity and are specific to a set of stimula-
tion sites. The meaning of each dynamically responsive
network for information processing in the brain can be
discussed with regard to the literature and experimental
findings, for example, by comparing the response net-
works with the experimentally known RS networks.

RS networks can be characterized by the stimulation of
particular sites. We demonstrated that RS networks could
be specifically activated following the stimulation of spe-
cific brain areas. Here, the underlying assumptions are as
follows:(1) a direct link between the spatial activity pat-
terns formed at rest (i.e., the RS networks and the task-
related functional networks); and (2) the emergence of
these functional networks from the large-scale brain
structure. RS networks correlate with functional networks,
which are associated during a task with information pro-
cessing, such as the perception of a visual stimulus (Dam-
oiseaux et al., 2006). For instance, the FC of the RS
networks has been correlated with the SC of white matter
tracts (Greicius et al., 2009; van den Heuvel et al., 2009;
Hermundstad et al., 2013).

The RS networks formed a subset of dynamically re-
sponsive networks. In other words, we found more re-
sponsive networks than RS networks. This indicates that
functional networks are not restricted to the experimen-
tally known RS networks we considered in this study.
These eight RS networks were consistent (and showed
the least variation around the mean) across 10 healthy
subjects (Damoiseaux et al., 2006). This, however, does
not suggest that there are no other, more variable but
stable patterns of activity. For instance, the performance
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of a perceptual task could be related to the individual
variability in FC at rest (Baldassarre et al., 2012). The way
humans approach and perform the same task can be
diverse (Sporns and Edelman, 1993) and involve a variety
of functional processing. The task and its complexity may
concern functional patterns and networks that vary across
and within subjects (e.g., on a trial-by-trial basis). Func-
tional networks are not confined to the experimentally
known RS networks. This applies to dynamically respon-
sive networks in the model with regard to RS networks
also. One could also argue that brain stimulation (e.g.,
deep brain stimulation) of a particular brain structure re-
solves in an activity pattern that is distinct from known
(task-related) functional networks and RS networks sim-
ply because the stimulation directly affects a targeted
brain structure and does not necessarily ascend a sen-
sory pathway (such as a light flash), thus not processed in
(and related to) the known task-related functional net-
works. Consequently, the responsive networks that do
not match a known functionally related network pattern
may reflect (1) less dominant/frequent networks, (2) func-
tional networks that are not directly related to a task but
modulate information processing, or (3) activation pat-
terns that are specific to direct brain stimulation. The role
of the stimulation site becomes even more apparent from
the detailed analysis of corticocortical SC revealing lat-
eral, ascending and descending projections (Felleman
and Van Essen, 1991); thus, a hierarchical organization in
which complex interactions, including feedforward, feed-
back, and parallel processes are supported (Bressler,
2008). A direct link between the RS networks and the
task-related functional networks allows the characteriza-
tion of RS networks by the responsiveness to stimulation
of particular structures that are part of (1) networks in
which information is processed, (2) ascending paths of
sensory inputs, and (3) structures modulating the pro-
cessing of a certain input (Fig. 2d). RS dynamics originate
from subspaces, in which the ongoing activity evolves
and alters, giving rise to nonstationarity, as observed in
empirical and computational studies (Allen et al., 2014;
Hansen et al., 2015). Our study predicts that these sub-
spaces can be selectively targeted to bias the brain dy-
namics toward the activation of specific functional (task-
related) and RS networks through stimulation of specific
brain areas, for instance, by sensory stimulation (e.g.,
auditory, visual) and brain stimulation techniques (e.g.,
transcranial magnetic stimulation). The stimulation sites
are predicted to be network specific and spatially clus-
tered but distributed (Fig. 7). Stimulating different brain
areas could lead to similar activation patterns during rest
conditions.

Dynamically responsive networks and the
underlying SC

The SC mostly predicts the activity of brain areas di-
rectly after stimulation. However, as time evolves, both
implemented types of SC, short-range (homogeneous) SC
and large-scale (heterogeneous) SC, play a crucial role in
the spatiotemporal progress. The connectome and its
large-scale heterogeneous SC can explain some, but not
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all, stimulation responsive networks that fit the experi-
mentally observed RS networks best (Fig. 6). Considering
the applied network metrics, it is interesting to note that
the default mode and the memory networks strongly re-
lated to the local embedding of nodes in the topology of
the SC, which suggests that they play a special role in
information processing. The activation of the other RS
networks depends to a lesser degree on the local topol-
ogies in the SC and may thus constitute an emergent
dynamic process. Emergent properties can be under-
stood by the transmission and synchronization behavior
of the oscillatory activities throughout the propagation in
the network, which decelerates or accelerates the dissi-
pation process in parts of the network. It has been shown
that nodes linked to a network traverse a node-inherent
particular bifurcation (e.g., supercritical Andronov—Hopf bi-
furcation) with scaling the connectivity in the order of the
in-strength of the nodes in the underlying structural connec-
tivity (Kunze et al., 2016). This is simply applicable to the two
memories and the attention RS networks (Fig. 6) in terms of
the criticality of nodes, that is, the distance of the operating
point of nodes to its bifurcation point. The comparison with
the SC (Fig. 6) indicates that the dissipation processes are
sequences of multiple iterations of the SC, and thus over
several cycles of damped oscillations, where delays and
synchronization naturally play a major role.

Our simulations show that the repertoire of dynamically
responsive networks is the richest for the mixed case in
which large-scale heterogeneous and short-range homo-
geneous SCs are simultaneously present (Fig. 5), which is
in keeping with known statistics of synapses within a
population, namely 50% of intracortical and 50% of cor-
ticocortical fibers (Braitenberg and Schiiz, 1998). The
maximum number of different dynamically responsive
networks to cerebral stimulation appeared for a ratio of
heterogeneous/homogeneous SC of 60% to 40%, where
the number of effective cerebral stimulations is maximum
for a ratio of 80% to 20%. Interestingly, considering all
stimulation sites, the dynamically responsive networks
resembled the RS networks best for a different ratio of
heterogeneous SC to homogeneous SC, namely of 20%
to 80% and a spatial range of the short-range homoge-
neous SC of 10 mm. The number of different responsive
networks to cerebral stimulation is small (Fig. 5a), which
may indicate the leading role of thalamic structures at rest
and the constrained repertoire of dynamics at rest. The
parameter values for the SC characterized the whole-
brain network, and thus were similar for all network nodes
and areas, but it is likely that they are brain area specific
(Felleman and Van Essen, 1991). However, we did not
perform an area-specific optimization, as the number of
possibilities makes it computationally intractable at the
current time. Furthermore, the effects of stimulation on
the brain depend not only on the location of the stimula-
tion, its intensity, and its duration, but also on the dynamic
state of the brain (Dayan et al., 2013). Large-scale brain
network models could be used to describe state depen-
dencies of brain responses (e.g., event-related potentials),
including experimental paradigms (e.g., oddball). Not only
could the synaptic connections be better adapted to pre-
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dict the empirical data, but there are also possibilities for
improving the characteristics of the local dynamics in
each brain area. At the moment, the regional local dynam-
ics are considered homogeneous as a matter of simplifica-
tion, but could be extended to deal with different
heterogeneous local dynamical nodes, for instance, derived
from the temporal information in functional data (Deco and
Kringelbach, 2014). Furthermore, the spatial range of the
homogeneous SC was found at the lower boundary of the
studied range. Because the lower boundary depends on the
geometrical model of the cortex, a systematic investigation
of the effects of cortex resolution, and with that the approx-
imated homogeneous kernel on large-scale brain dynamics,
as suggested by Spiegler and Jirsa (2013), is desirable and
crucial for the incorporation of local and homogeneous SC in
a large-scale brain network model.

Our model can also be used to study the propagation of
hippocampal sharp-wave ripples (Logothetis et al., 2012)
by describing (1) faster and slower rhythms, (2) the hip-
pocampal formation (CA1, CA3, dentate gyrus) in more
detail (including its specific SC), and (3) specific states
(e.g., slow-wave sleep and anesthesia). This could pro-
vide an entry point for investigating memory consolida-
tion, changes of brain states, and its functional networks.
However, the stimulation of the hippocampal cortex (HC)
activated no RS networks (Fig. 7). This study should also
serve as a good starting point to investigate repetitive
stimulation (e.g., with respect to deep brain stimulation;
Murrow, 2014) and the spatiotemporal dynamics of brain
resonance phenomena (Spiegler et al., 2011).

In conclusion, we demonstrated that that short-range
connectivity proves beneficial in whole-brain network
models for describing brain activity. Moreover, we dem-
onstrated that a large-scale brain network dissipate their
energy spatiotemporally upon stimulation in a character-
istic low-dimensional manner, which is consistent with
the idea that the brain operates close to criticality. The
stimulation-responsive networks are compatible with the
empirically known RS networks and are set apart by
the slow time scale as predicted by theorems of near
criticality. Stimulation sites can be assembled in topolog-
ical groups that approximate empirical RS networks. A
stimulation of brain areas in these groups predicts an
evolution of the RS dynamics toward lower-dimensional
subspaces, in which the subsequent dynamics evolve and
can be characterized by conventional FC approaches.
Our results suggest a means to bias RS dynamics via
spatially coordinated stimulation toward target sub-
spaces. Given that the FC of the RS differentiates groups
with different pathologies and across ages, our results are
of interest for approaches of such brain stimulation tech-
niques as transcranial electrical stimulation, transcranial
magnetic stimulation, and deep brain stimulation directed
toward therapy and cognitive enhancement.
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