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ABSTRACT

The historic extirpation and subsequent recovery of

sea otters (Enhydra lutris) have profoundly changed

coastal social-ecological systems across the north-

eastern Pacific. Today, the conservation status of

sea otters is informed by estimates of population

carrying capacity or growth rates independent of

human impacts. However, archaeological and

ethnographic evidence suggests that for millennia,

complex hunting and management protocols by

Indigenous communities limited sea otter abun-

dance near human settlements to reduce the neg-

ative impacts of this keystone predator on shared

shellfish prey. To assess relative sea otter preva-

lence in the Holocene, we compared the size

structure of ancient California mussels (Mytilus

californianus) from six archaeological sites in two

regions on the Pacific Northwest Coast, to modern

California mussels at locations with and without

sea otters. We also quantified modern mussel size

distributions from eight locations on the Central

Coast of British Columbia, Canada, varying in sea

otter occupation time. Comparisons of mussel size

spectra revealed that ancient mussel size distribu-

tions are consistently more similar to modern size

distributions at locations with a prolonged absence

of sea otters. This indicates that late Holocene sea

otters were maintained well below carrying

capacity near human settlements as a result of

human intervention. These findings illuminate the

conditions under which sea otters and humans

persisted over millennia prior to the Pacific mar-

itime fur trade and raise important questions about

contemporary conservation objectives for an iconic

marine mammal and the social-ecological system in

which it is embedded.
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of sea otters in nearshore ecosystems.

� Large mussels in ancient human settlements

indicate sea otters were rare or absent.

� Millennia of interactions with humans con-

strained the realized niche of sea otters.

INTRODUCTION

In 1998, Paul Dayton, Mia Tegner, and colleagues

identified a challenge at the crux of endangered

species management: population baselines cannot

be defined without considering potential ecological

‘ghosts’ that served formerly consequential roles in

marine ecosystems. Resource managers and coastal

communities have since been challenged to extend

baselines from which to measure ecosystem

change, and increasingly acknowledge the impor-

tance of archaeological and anthropological data to

broaden perspectives and identify changes beyond

the time scales of direct ecological observation

which typically only span recent decades (Pauly

1995; Dayton and others 1998). Long-term data

sets are particularly important in marine systems

where keystone predators have been eliminated

(McCauley and others 2015) or have had their

ecological role greatly diminished before inclusion

in modern management and restoration targets

(Dayton and others 1998; Jackson and others

2001). There is also a growing acknowledgement of

the functional role that humans have played in

food webs globally (Salomon and others 2010;

Boivin and others 2016; Dunne and others 2016;

Worm and Paine 2016), particularly the resource

harvesting practices of Indigenous peoples over

millennia that have greatly diminished since

European contact, contributing to misperceptions

of ‘natural’ ecological baselines (Bliege Bird and

Nimmo 2018; Power and others 2018; Ellis and

others 2021).

In Canada, an emerging challenge exists between

the recovery and protection status of sea otters, a

well-recognized shellfish predator, and the consti-

tutionally protected rights of Indigenous people to

access those same shellfish. The crux of this con-

servation and management conflict hinges on our

perspective of historical baselines and the role hu-

mans once played, and continue to play, in coastal

ecosystems (Salomon and others 2015; Pinkerton

and others 2019; Burt and others 2020). Currently,

sea otters (Enhydra lutris) in Canada are protected

under the federal Fisheries Act (R.S.C., 1985), and

their recovery is defined as occurring when their

’long-term persistence in the wild is secured’ (Sea

Otter Recovery Team 2007). Functionally, their

conservation status is determined by their popula-

tion trend over three generations (COSEWIC

2007). In the USA, sea otter conservation targets

are scaled to a conceptual population carrying

capacity. Both estimates, however, are indepen-

dent of human impacts and conservation targets

are implicitly viewed as ’to allow full, pre-ex-

ploitation recovery’ (Davis and others 2019).

‘Pre-exploitation’ sea otter population estimates

have been informed by a diversity of sources

including early maritime trade pelt landings (Ni-

chol and others 2015) and habitat suitability

models (COSEWIC 2007; Gregr and others 2008).

However, the applicability of these estimates as a

representation of ‘natural’ baselines across the

Pacific Northwest Coast is limited. The annual

number of pelts exchanged at the beginning of the

maritime fur trade for example is unlikely to be a

direct proxy for the number of sea otters living on

the coast in a given year. Like many valuable items

of ‘wealth’, sea otter pelts were collected, curated,

accumulated and handed down across generations

as part of family dowries well before the maritime

fur trade (Sapir 1922; Drucker 1951; Uu-a-thluk

2007; Sloan and Dick 2012). Consequently, the

number of sea otter pelts traded in the late 1700s

has the potential to reflect decades of sea otter

hunting effort prior to contact. Moreover, suit-

able sea otter habitat is estimated from data and

observations of sea otter ecology from recent dec-

ades when humans have been precluded from

hunting sea otters by federal law and centuries

after epidemics greatly reduced Indigenous popu-

lations (McMillan and McKechnie 2015) and their

harvesting practices, stewardship role and thus

influence in coastal ecosystems. Consequently,

these ‘pre-exploitation’ sea otter estimates do not

incorporate the millennia of interactions between

sea otters and humans dating back to the early

Holocene (Fedje and others 2005; McKechnie and

Wigen 2011; Szpak and others 2012).

Archaeological data, specifically shifts in abun-

dance, size and age of faunal remains in zooar-

chaeological assemblages, are increasingly being

used to extend population baselines and illuminate

changes in food webs through deep time (Steneck

and others 2004; Lotze and others 2011; Braje and

others 2017). This method can be extended to

investigate changes in food web interactions be-

tween humans, sea otters and invertebrate prey

(Corbett and others 2008; Dunne and others 2016).

Today, sea otters are known to serially reduce the

size and abundance of their invertebrate prey over

time where established populations reside (Estes

and Palmisano 1974; Kvitek and others 1992; Sal-
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omon and others 2007). With an understanding of

such size shifts in contemporary food webs, one can

draw inferences on the magnitude of predation by

sea otters throughout the Holocene from the size

structure of ancient sea otter prey found at ancient

settlements. For example, in the Aleutian Islands,

the presence of sea urchins exceeding sizes that can

be sustained in areas foraged by sea otters suggests

that sea otter populations were kept below carrying

capacity locally by human influence (Simenstad

and others 1978; Corbett and others 2008). Simi-

larly, on the Channel Islands in southern Califor-

nia, the presence of large red abalone and other

shellfish indicates the lack of sea otter predation

(Erlandson and others 2005; Erlandson and others

2008; Braje and others 2009). These findings are

consistent with zooarchaeological data and isotopic

analyses from British Columbia (BC) (Szpak and

others 2012), and Indigenous knowledge and oral

histories from the coast of BC and southeast Alaska,

where communities both valued sea otters pelts as

items of wealth and had incentive to limit sea otters

from foraging in specific areas containing valued

shellfish (Jewitt 1816; Swan 1857; Sapir 1922;

Drucker 1951; Gardner 2003; Stewart 2005; Os-

borne 2007; Uu-a-thluk 2007; Arima and others

2009; Salomon and others 2015; Salomon and

others 2018; Ibarra 2021).

On the Northwest Coast of North America, Cal-

ifornia mussels (Mytilus californianus) provide a

prime candidate as a size-based indicator for sea

otter predation. Singh and colleagues (2013) found

that both mean and maximum mussel size at

locations occupied by reintroduced sea otters for

20 years or more were significantly smaller than in

regions where reintroduced sea otters were absent.

Moreover, ancient California mussels are ubiqui-

tous in archaeological sediments along the North-

west Coast of North America (Wessen 1988; Moss

1993; McKechnie 2014) throughout the Holocene.

Their ubiquity has led to the quantification of

several morphometric relationships (McKechnie

and others 2015), allowing full shell length to be

derived from shell fragments, which in turn en-

ables the reconstruction of past mussel size struc-

ture (Braje and others 2018).

Here, we test the hypothesis that modern Cali-

fornia mussel size structure is truncated by sea otter

presence and occupation time. We then test the

hypothesis that ancient California mussel size

structure is equivalent to modern mussel size at

locations without sea otters. Our results suggest

that sea otters in the late Holocene were rare to

absent near sites of human occupation, contrary to

the general assumption that sea otters were at or

near carrying capacity throughout their range prior

to the Pacific maritime fur trade.

METHODS

Historical Sea Otter Range
and Contemporary Population Trends

Prior to the maritime fur trade which began in the

late eighteenth century, sea otters ranged from

Japan, north through the Aleutian Islands and

down the Pacific coast of North America to Baja

California (Barabash-Nikiforov 1947). Sea otters

were ecologically extirpated from the Northwest

Coast of North America by the mid-1800s (Kenyon

1969). Following over a century of their functional

absence, sea otters were reintroduced to southeast

Alaska, on the west coast of Vancouver Island, and

to northern Washington via translocations from the

Aleutian Islands between 1969 and 1972 (Kenyon

1970; Bigg and MacAskie 1978). Sea otters were

documented on the Central Coast of BC in 1989

and are thought to have originated from the pop-

ulation reintroduced to the western Vancouver Is-

land 20 years prior (Nichol and others 2015).

Today, sea otter population sizes and trajectories

vary spatially and temporally across the Pacific

Northwest Coast. Last surveyed in 2017, the south

coast population of sea otters in BC, located on the

west coast of Vancouver Island (n = 6263), was

over three times that of the Central Coast popula-

tion (n = 1838) and western Washington popula-

tion (n = 1753) (Sato 2018; Nichol and others

2020). From 2013 to 2017, annual population

growth rates of sea otters in longer occupied loca-

tions of BC’s South and Central Coasts (1.55–

2.88% year -1) were between 2.6 and 15.8 times

lower than those in more recently occupied loca-

tions (7.52–24.51% year -1). In fact, modelling

efforts provide strong evidence that sea otters are

experiencing negative density dependence and

reaching carrying capacity in these longer occupied

locations (Nichol and others 2020).

Ecology of Sea Otters and Mussels

Dietary diversification within and among sea otter

populations can be attributed to sea otter density,

sex, habitat, and occupation time (Estes and others

2003; Tinker and others 2008; Newsome and others

2009; Smith and others 2021), as otters turn to a

wider variety of less-valued prey items after high-

value prey are diminished (Estes and others 1981;

Ostfeld 1982; Laidre and Jameson 2006; Rech-

steiner and others 2019). As sea otters re-occupy
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areas after decades of extirpation, range expansion

occurs first through the expansion of bachelor

males, who tend to establish new high-density rafts

in previously unoccupied territory (Garshelis and

others 1984), followed by smaller rafts of females,

pups and territorial males, each of which exhibit

unique foraging behaviours. For example, along

BC’s Central Coast, at recently occupied sites, sea

otter diet diversity was low but energy rich and

dominated by sea urchins (Mesocentrotus and

Strongylocentrotus spp.; > 60%) collected from 10 to

40 m depth. At longer occupied sites, sea otter diets

became more diverse but energy poor and were

dominated by clams (Veneroid; > 30%), mussels

(Mytilus spp.; > 20%) and crab (De-

capoda; > 10%) collected from shallow (< 10 m)

kelp habitats (Rechsteiner and others 2019). As a

less-valued prey item, mussels are typically con-

sumed when the abundance of high-valued and

energy rich prey such as sea urchins have been

depleted (VanBlaricom 1988; Singh and others

2013; Rechsteiner and others 2019). Accordingly,

the presence of large mussels in the rocky intertidal

would indicate low to no sea otters and/or short to

no occupation time.

Though many factors affect the size and growth

rate of intertidal and subtidal macroinvertebrates,

sea otters have been documented to exert strong

top-down control resulting in reduced average sizes

of their prey across a variety of habitats and envi-

ronmental conditions (Estes and Palmisano 1974;

Kvitek and others 1992; Fanshawe and others

2003; Salomon and others 2007; Singh and others

2013; Lee and others 2016; Burt and others 2018;

Hale and others 2019). In some cases, environ-

mental variation affecting macroinvertebrate

growth rates have been found to have minimal

effect in comparison with sea otter predation. For

example, in Prince William Sound, Alaska, the

closely related blue mussel Mytilus trossulus (formerly

M. edulis) was smaller where sea otter occupation

time was longer, and predator exclusion experi-

ments confirmed that this difference in mussel size

was due to keystone predation and not to variation

in location-level environmental factors (VanBlari-

com 1988).

Although top-down control by predators is a

dominant ecological process structuring benthic

macroinvertebrate size and spatial distribution,

mussel growth has also been shown to be strongly

influenced by bottom-up drivers such as pelagic

primary production which can vary at scales from

10 to 100 s of kilometres (Menge 2000). This bot-

tom-up process, mediated by upwelling events and

nutrient input, has been associated with changes in

secondary production including mussel growth and

recruitment rates (Menge and others 1994; Menge

and others 1997; Menge and others 2009). Abiotic

effects such as sea surface temperature, wave

exposure, aspect, slope and rugosity are also well

known to effect mussel growth (Blanchette and

others 2007; Menge and others 2008; Jazwa and

others 2020). Importantly, it has become increas-

ingly clear that bottom-up and top-down processes

affecting mussel size interact. For example, when

pelagic primary production is limiting, keystone

predation by sea otters can increase the supply of

kelp-derived organic carbon that can magnify filter

feeder growth rates, such as those of M. trossulus

(Duggins and others 1989).

Experimental Design

Modern Locations

To establish the relationship between sea otter

presence and California mussel (Mytilus californi-

anus) size, we measured modern mussel sizes at

locations varying in sea otter occupation time on

the Central Coast of British Columbia (BC), Cana-

da. We added these data to an existing data set

(Singh and others 2013) from the South Coast of

BC and northern Washington, USA (Figure 1). For

both data sets, locations were selected by identify-

ing intertidal rocky reef benches that shared similar

abiotic characteristics (for example, wave exposure,

aspect, slope and rugosity) but varied in sea otter

occupation time. We used a space-for-time substi-

tution (Pickett 1989), whereby sea otter range

expansion in space was used as a proxy for sea otter

predation pressure over time. We defined sea otter

occupation time as the minimum length of time a

location had been observed to have been occupied

by sea otters. Along the South Coast, four locations

represent four temporal categories of occupation

time: Kyuquot Sound, BC (40 years), Neah Bay,

WA (20 years), Clayoquot Sound, BC (5 years),

and Barkley Sound, BC (0 years). Along BC’s

Central Coast, we measured mussels from eight

locations that represent five temporal categories of

occupation: (0, 4, 6–8, 21, and 37 years). In this

region, where we had more detailed sea otter range

expansion information, a location was considered

occupied by the presence of a raft (> 3 otters)

within 5.5 km of a location (Stevenson and others

2016). In both regions, raft presence was recorded

during range-wide population surveys conducted

every five years from 1990 to 2013, augmented by

surveys and reports of sea otter rafts in between

these surveys (Nichol and others 2005; Nichol and

others 2009; Nichol and others 2015), and field
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observations (Burt and others 2018; Rechsteiner

and others 2019).

In these two coastal regions, California mussels

are among the most common and accessible large

sessile macroinvertebrates which concentrate in

the mid-intertidal, can be long-lived (> 20–

50 years) and grow to large sizes (over 20 cm in

length) (Seed and Suchanek 1992). Contemporary

human mussel harvest consists of periodic use by

coastal First Nations and non-indigenous recre-

ational users. Harvest pressure is low, due in part to

distance from contemporary communities and the

prevalence of paralytic shellfish poisoning in this

species which deters food and recreational har-

vesters (Finnis and others 2017).

Archaeological Sites

We examined shellfish assemblages containing

abundant California mussel fragments from six

archaeological sites (Figure 1) in separate ancient

Indigenous villages in two regions of coastal British

Columbia spanning a range of time periods from

2,700 years ago up until approximately AD 1900

on the South Coast and 6000–300 cal BP on the

Central Coast (Table S1). On the South Coast,

samples come from four sites within the Broken

Group Island archipelago, in the territory of the

modern Tseshaht First Nation on southwestern

Vancouver Island. Central Coast samples come

from two sites in the territories of the Haı́łzaqv

(Heiltsuk) and Wuikinuxv First Nations on Calvert

and Hecate Islands.

Shellfish assemblages from archaeological sites

were extracted using several methods, including

vibracore, auger, column samples, and hand col-

lection from eroding midden exposures. All sam-

ples were screened through 2-mm mesh and

nothing below this size was measured. Further site

and sampling details regarding archaeological data

can be found in the supplemental material

(Table S1).

Estimating Ancient Mussel Shell Length

To determine total California mussel shell length

from fragmentary ancient specimens, we expanded

on an existing valve length to umbo thickness

relationship established for modern mussels

(McKechnie and others 2015) by including large

mussel shells (130–223 mm, n = 50) collected from

Barkley Sound, BC, in 2018. This contemporary

morphometric relationship was chosen to estimate

ancient shell length because umbos are the most

Figure 1. a Size of modern and ancient California mussels (Mytilus californianus) were compared within two regions of the

Pacific Northwest Coast (see insets). Modern mussels were sampled from twelve intertidal locations with (filled circles) and

without (unfilled circles) sea otters, including four from the South Coast (Singh and others 2013) and b eight locations

along an established gradient of sea otter occupation time spanning 0–37 yrs from the Central Coast (this study). Ancient

mussels were recovered from archaeological sites in British Columbia (n = 6, grey triangles).
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robust portion of the mussel preserved in midden

deposits, and represent the origin of shell growth, a

strong predictor of full shell length (Seed 1968;

Ford and others 2010). Umbo thickness was mea-

sured from the tip of the umbo to the inside of the

hinge using digital calipers (Figure 2a), whereas

shell length was measured from the outer umbo to

the point on the shell’s end that measures the

longest valve dimension (for detailed methods see

McKechnie and others (2015) and Singh and

McKechnie (2015)). Inter-observer measurement

discrepancy and error were minimized by using a

consistent measurement approach, carried out by

two trained observers.

We fit a saturating relationship to these data

using a least squares method with the nls() function

in R, predicting shell length from umbo thickness

(Figure 2b; Eq. 1).

y ¼ 544:81x

24:75 þ x
ð1Þ

This equation was used to estimate all total shell

length values representing our archaeological (an-

cient) data. Confidence intervals were computed

using Monte Carlo simulation of the normal dis-

tribution around each predictor value with the

predictNLS() function in the propagate package in

R.

Modern Mussel Field Sampling

In the South Coast region, California mussels were

sampled by Singh and others (2013) at three

intertidal sites nested within four locations varying

in sea otter occupation times. Ten 25 9 25 cm

quadrats randomly placed along a transect running

parallel to the shoreline, in the middle and lower

regions of a mussel bed. From each quadrat, 15–50

individuals were randomly selected and measured

along their longest valve dimension.

On the Central Coast of BC, we recorded Cali-

fornia mussel size from eight intertidal locations,

varying in sea otter occupation time from 0 to

37 years (Figure 1b). At each location, we mea-

sured mussels from six 25 9 25 cm quadrats ran-

domly placed along a 30 m horizontal transect at

the middle (n = 3) and lower (n = 3) regions of the

mussel bed. Rather than taking a subset as Singh

and others (2013) did, we collected and measured

all mussels along their longest valve dimension.

Statistical Analysis

We compiled size frequency distributions of both

modern and ancient mussel size by location, and

converted them to size spectra—linear models fit to

size frequency data, providing a slope to describe

the relationship between abundance and body size

Figure 2. a Modern California mussel (Mytilus californianus) umbo thickness and total shell length were measured to

establish b a saturating relationship between these two morphometrics (n = 313 mussels, filled orange squares from this

study, all other symbols from McKechnie and others 2015). 95% confidence interval of the mean is represented by the

grey band around the curve. c Archaeological umbos were recovered from excavation in shell midden deposits, where

fragmentary umbos were measured (Photo: McKechnie), and their total shell length estimated from the relationship

established in b.
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class (Edwards and others 2017). Prior to this

analysis, we removed all mussel sizes below 20 mm

from our data set to compare randomly sampled

modern intertidal mussel populations with

archaeological mussels, which include selectively

harvested individuals for food as well as mussels

caught as bycatch. This 20 mm cut-off was selected

because it was the smallest estimated shell length

from our archaeological data, representing an

approximate lower detection limit for archaeologi-

cal mussels. Furthermore, mussels below 20 mm

are unreliably detected and measured in both

modern and archaeological samples. Though

20 mm is below the size of mussels typically con-

sumed, opportunistic examination of the size

structure of a modern mussel catch by Indigenous

harvesters in 2017 demonstrates that mussels in

this size range are often represented in the bycatch

of a mussel harvest (Figure S1, Table S2) and are

occasionally represented in archaeological deposits.

We grouped shell lengths into 10-mm bins to cap-

ture the range of values needed to fit a linear

relationship without small-scale variability inter-

fering with detection of the overall trend. The

proportion of values in each bin was then calcu-

lated, and the midpoint of each bin was plotted

against the log-transformed proportion of their

abundance, converting size frequency distributions

to size spectra. 95% confidence intervals for each

size spectra were generated with the geom_smooth

function in ggplot in R.

Modern vs. Ancient Mussel Size Comparison

To test for the effect of sea otter presence on the

relative proportion of mussel sizes in both modern

and ancient assemblages, we ran an ANCOVA with

ecological and temporal context (modern mussels

with sea otters, modern mussels without sea otters,

and ancient mussels) as a fixed effect and mussel

length as a covariate. We then ran Tukey post hoc

pairwise comparisons for each ecological and tem-

poral context to quantify the degree to which each

differed from the others.

To represent the size structure of modern mussels

at locations on the South Coast with sea otters, we

combined modern mussel lengths from two loca-

tions with sea otter occupation times of 20 and

40 years. On the Central Coast, we combined

modern mussel lengths from two locations with sea

otter occupation times of 21 and 37 years. Within

the South and Central Coast regions, the size

structure of modern mussels at locations without

sea otters is represented by modern mussel lengths

from all locations, within those regions, where sea

otters were absent (0 years occupation). All

archaeological mussel size data from within each

region were included to represent ‘‘ancient’’ tem-

poral context (that is, prior to the maritime fur

trade).

Modern Mussel Size Structure

To test for an effect of sea otter occupation time on

the relative proportion of modern mussel size, we

ran an ANCOVA with occupation time as a fixed

effect and mussel length as a covariate. We then

ran Tukey post hoc pairwise comparisons between

each occupation time category.

Assumptions and Limitations

Comparing modern mussel sizes from randomly

sampled intertidal populations to ancient mussel

sizes from catch records embedded in human set-

tlement sites has its limitations. Specifically, an-

cient shell middens encompass fisheries data

reflecting non-random, size-selective harvest prac-

tices by people. Consequently, randomly sampled

intertidal mussel populations from modern sites,

both with and without sea otters, are less likely to

capture the same frequency of large mussels pre-

sent in ancient catch data where people were

preferentially selecting large individuals, and more

likely to capture small size classes. In the case of

mussels however, where clumps of individuals of

different size classes are often attached together

with byssal threads, harvested samples may more

closely resemble randomly sampled in situ popu-

lations than typical size-selective fisheries. Further

comparisons of randomly sampled intertidal mussel

populations and mussel catches from the same

areas varying in sea otter occupation time would

illuminate the magnitude of this limitation,

assuming contemporary harvest practices mimic

those from the Holocene (Figure S1, Table S2).

RESULTS

Modern Umbo-Shell Length Regression

We established an asymptotic relationship between

modern mussel umbo thickness and total shell

length (Figure 2b). Specifically, umbo thickness

explained 89% of the variation in total shell length

(y = 544.81x / 24.75 + x, R2 = 0.89, n = 313 mus-

sels), improving upon a linear fit (y = 13.3 + 14.5x,

R2 = 0.87, Figure S2) and a previously published

linear regression by 5% (McKechnie and others

2015; R2 = 0.84). We used this asymptotic rela-

tionship to estimate the total shell length of our
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archaeological mussel fragments due to its higher

R2 and the more conservative length estimates it

predicts for thicker umbos compared to the linear

model.

Modern vs. Ancient Mussel Size
Comparison

Overall, modern California mussels were smaller at

locations with sea otters compared to locations

without sea otters, on both the South and Central

Coast (Figure 3). Moreover, we observed that an-

cient mussel size distributions most resembled

modern mussel size distributions at locations

without established populations of sea otters on

both the South and Central Coasts (Figure 3).

Specifically, along the South Coast, the size distri-

bution of modern mussels at locations occupied by

sea otters was truncated (mean = 47.91 mm ±

0.38 SE, n = 1421) in comparison with both the

size distribution of modern mussels at locations

without sea otters (mean = 70.47 mm ± 0.74 SE,

n = 1357) and the ancient mussel size distribution

(mean = 78.35 mm ± 1.00 SE, n = 801; Figure 3a,

Table S3).

Based on our size spectra analysis of South Coast

mussels, we found a significant effect of ecological

and temporal context (modern with sea otters,

modern without sea otters, and ancient mussels)

on the relationship between mussel length and the

log-transformed proportion of mussels (Table 1a;

F = 6.17, p = 0.005). We detected significantly

steeper mussel size spectra at modern locations

with sea otters than both size spectra from modern

locations without sea otters (Table 2a; p = 0.008)

and ancient mussels (Table 2a; p = 0.003). In con-

trast, we did not detect significant differences in

size spectra between modern mussels at locations

without sea otters and ancient mussels (Table 2a,

p = 0.72).

We found similar patterns, although less pro-

nounced in the Central Coast region (Figure 3c),

with a smaller difference between mean mussel

valve size at modern locations with sea otters

(mean = 39.40 mm ± 0.22 SE, n = 5594) com-

pared to modern locations without sea otters

Figure 3. Size distributions and size spectra of California mussels (Mytilus californianus) from the South Coast a, b and

Central Coast c, d. Modern mussel sizes at locations with sea otters present for 20–40 years (blue filled bars and circles)

and without (blue unfilled bars and circles). Ancient mussel sizes (grey bars and triangles) estimated from mussel umbos

collected from archaeological sites. Mean mussel sizes (vertical black lines). 95% confidence interval of the mean is

represented by the coloured bands around size spectra lines. Code and measurement data presented in the supplemental

material.
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(mean = 45.56 mm ± 0.35 SE, n = 4488) and an-

cient mussel size (mean = 73.94 mm ± 1.40 SE,

n = 436, Table S3). Maximum mussel size was

smaller at modern locations with sea otters

(132 mm) than at modern locations without sea

otters (182 mm) and estimated ancient mussel size

Table 1. Results of ANCOVAs Testing the Effect of A) Ecological and Temporal Context (Modern with Sea
Otters, Modern Without Sea Otters, and Ancient Mussels) and B) Occupation Time (Years) on the
Relationship Between California Mussel Length (mm) and the Log-Transformed Proportion of California
Mussels on the South Coast and Central Coast

Model Region Interaction Term F P

(A) Modern-Ancient

Log10(Proportion) of mussels � Length + Context + Length*Context

South Coast Length*Context 6.17 0.005*

Central Coast Length*Context 8.02 0.001*

(B) Modern

Log10(Proportion) of mussels � Length + Occupation time + Length*Occupation time

South Coast Length*Occupation time 2.23 0.098

Central Coast Length*Occupation time 13.57 1.78e–07*

Significant effects are starred.

Table 2. Results of Tukey’s Post Hoc Pairwise Comparisons of the Relationship Between California Mussel
Length (mm) and Log-Transformed Proportion of Mussels (Slopes of Each Size Spectra), Between Each (A)
Ecological and Temporal Context and (B) Occupation Time on the South Coast and Central Coast

Model Region Pairwise Comparison P

(A) Modern-Ancient

Log10 (Proportion) of mussels � Length + Context + Length*Context

South Coast Modern without Sea Otters—Ancient 0.72

Modern with Sea Otters—Ancient 0.003*

Modern with Sea Otters—Modern without Sea Otters 0.008*

Central Coast Modern without Sea Otters—Ancient 0.13

Modern with Sea Otters—Ancient 0.0009*

Modern with Sea Otters—Modern without Sea Otters 0.034*

(B) Modern

Log10(Proportion) of mussels � Length + Occupation time + Length*Occupation time

South Coast 0–5 0.98

0–20 0.32

0–40 0.20

5–20 0.43

5–40 0.25

20–40 0.90

Central Coast 0–4 0.028*

0– 6–8 0.23

0–21 < 0.0001*

0–37 0.42

4– 6–8 0.90

4–21 0.0001*

4–37 0.71

6– 8–21 < 0.0001*

6– 8–37 1.0

21–37 < 0.0001*

Significant results are starred.
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(166.0 mm, + 3.51 -4.13 mm 95%CI, Table S3).

We also found a significant effect of ecological and

temporal context on the relationship between

mussel length and log-transformed proportion of

mussels on the Central Coast (Table 1a; F = 8.02,

p = 0.001). Again, we detected a significantly

steeper mussel size spectra at modern locations

with sea otters than modern locations without sea

otters (Table 2a; p = 0.034) and ancient mussels

(Table 2a; p = 0.0009). Lastly, we did not detect a

significant difference between mussel size spectra

at modern locations without sea otters compared to

ancient mussels (Table 2a, p = 0.13). Ancient

mussel size data are consistent with a 2017

Indigenous harvest of mussels collected on the

South Coast in an area without otters in which

mussel size ranged from 11 to 170 mm, with a

mean length of 76.33 mm ± 2.18 (n = 261,

Table S2).

Modern Mussel Size and Sea Otter
Occupation Time

On the South Coast, the slope of modern size

spectra tended to become steeper with increasing

sea otter occupation time (0–40 years occupation;

Figure 4, Figure S3). Building on Singh and others

(2013), this trend is consistent with the observation

that larger mussels are more common at locations

where otters are absent and get smaller as otter

occupation time increases (Figure S3). However,

this effect of occupation time on the relationship

between mussel length and the log-transformed

proportion of mussels was not significant (Table 1b;

F = 2.23, p = 0.098), and pairwise comparisons of

these slopes at each occupation time revealed no

significant differences (Table 2b, Table S4).

On the Central Coast, where we have more fi-

nely resolved spatially explicit information on

modern sea otter occupation time, greater mussel

sampling effort and a greater number of small

mussel sizes, we detected a significant effect of

occupation time on the relationship between

mussel length and the log-transformed proportion

of mussels (Table 1b; F = 13.57, p = 1.78e-07).

Modern locations with sea otters tended to have

steeper size spectra than locations without sea ot-

ters. However, in contrast to the South Coast, we

did not observe a consistent increase in slope with

each increase in occupation time (Figure 4, Fig-

ure S3). The shallowest slope of size spectra from

our modern central coast data was found where

otters were absent (occupation time = 0 years;

slope = -0.00058). However, the steepest slope

value from our length-proportion size spectra was

found at 21 years of occupation (slope = -0.0026),

and the slope at our longest-occupied location was

shallower (37 years; slope = -0.00084, Table S4).

Through pairwise comparisons, we found that the

mussel size spectra at 21 years of occupation varied

significantly from all other locations (Table 2b,

p £ 0.0001). On the Central Coast, we also de-

tected a significant difference between the mussel

size spectra at locations that have experienced four

years of sea otter occupation compared to locations

where sea otters have yet to re-occupy (Table 2b,

p = 0.028).

DISCUSSION

Our results provide further evidence supporting the

hypothesis that sea otters existed below carrying

capacity in proximity to human settlements during

the late Holocene on the Northwest Coast of North

America (Simenstad and others 1978; Erlandson

and others 2005; Corbett and others 2008;

Erlandson and others 2008; Szpak and others

2012). That is, Indigenous communities, prior to

the maritime fur trade, maintained access to sig-

nificantly larger mussels than those found at

modern locations with sea otters (Figure 3,

Table 2a). We suggest that these collective findings

are indicative of human-mediated limitation of

sea otters and their predatory effects on shellfish

where humans persistently harvested large

macroinvertebrates.

Along contemporary rocky shorelines, we found

that the relationship between sea otter occupation

time and modern mussel size varied within and

between regions. Mussel size distributions became

increasingly truncated with sea otter occupation

time across our study region, with size spectra

varying significantly with sea otter occupation time

on the Central Coast, but not the South Coast

(Figure 4, Table 1b,2b). Collectively, our compar-

ison of modern mussel sizes with archaeological

data extending well beyond the time scales of

modern observations, has expanded our under-

standing of how sea otters persisted in the context

of human occupation of the Pacific Northwest

Coast prior to the maritime fur trade.

Large Ancient Mussel Sizes Reflect Low
Sea Otter Predation in Ancient Times

Our results suggest that the effect of sea otter pre-

dation on mussel size was limited in proximity to

human settlements where mussels were regularly

harvested during the late Holocene (Figure 3).

Large mussels between 120 and 220 mm existed
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among the faunal remains at ancient settlement

sites within two regions of the Pacific Northwest

Coast and were virtually absent from modern sites

occupied by sea otters in these same regions today.

Although the larger mussels found in our archae-

ological assemblages may reflect a bias towards the

collection of larger mussels in the field by humans,

the presence of these large mussels can only occur

if they are available to harvest and have not been

eliminated by sea otter foraging. Given that our

samples of ancient mussels come from fisheries

catch data reflecting human harvest effort, it is

additionally possible that human foraging pressure

reduced mussel sizes found in middens through

time, via both size selectivity and resource depres-

sion (Botkin 1980; Erlandson and others 2008;

Braje and others 2018). If true, mussel sizes in the

absence of both sea otters and humans could have

been even larger.

Our results are broadly consistent with archaeo-

logical investigations of faunal assemblages else-

where in the northeastern Pacific Rim. Analyses of

shell middens from Alaska and California reveal

widespread abundances of large-sized macroinver-

Figure 4. Size spectra of California mussels (Mytilus californianus) from all modern locations on the a south and b central

portions of the Pacific Northwest Coast grouped by sea otter occupation time. Open triangles represent locations occupied

by sea otters for 5 years or less, while closed triangles represent locations occupied for more than 5 years. See

supplemental material for further location information. 95% confidence interval of the mean is represented by the

coloured bands around size spectra lines.
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tebrates (Simenstad and others 1978; Moss 1993;

Corbett and others 2008; Erlandson and others

2008; Dunne and others 2016) indicating that sea

otters may have been absent or well below carrying

capacity from a variety of coastal areas with sub-

stantial Indigenous settlement histories. We sur-

mise that Indigenous peoples reduced sea otter

abundance near valued shellfish harvesting and

mariculture sites through a combination of five

complementary mechanisms: (1) direct mortality

via hunting, (2) indirect, nonlethal, unintentional

exclusion via learned antipredator behavioural re-

sponse by sea otters to hunting, (3) exploitative

competition between sea otters and humans for

shared shellfish prey, (4) emigration by sea otters

away from human settlement sites to productive

kelp forest habitats with more energetically prof-

itable prey and (5) indirect, nonlethal, intentional

exclusion via fear-based behavioural responses to

human disturbances designed to minimize sea otter

impacts on local food sources. All of these potential

sea otter exclusion pathways would have operated

through traditional spatially explicit marine tenure

systems and associated governance protocols and

management practices (Szpak and others 2012;

Salomon and others 2018). We recognize the

challenge of disentangling these mechanisms but

note the relevance of contemporary traditional

knowledge holders in illuminating the latter

mechanism which we discuss below.

Modern Mussel Size Spectra and Trophic
Dynamics

Our investigation of modern mussel size spectra

(Figure 4) suggests that the effect of sea otter

occupation time on mussel size is variable. Al-

though locations on the South Coast show a clear

trend of decreasing mussel size as sea otter occu-

pation time increases, this pattern is consistent only

to a point on the Central Coast. Although 21 years

of sea otter occupation on the Central Coast was

associated with the smallest reported mean mussel

size, our longest occupied location (37 years) had

larger mussels than expected. We controlled for

abiotic factors such as wave exposure, aspect, slope

and rugosity across locations, all known to affect

mussel size; consequently, additional variables may

be at play and explain this result.

The degree to which sea otter occupation time

can predict the size structure of its prey varies as a

function of predator population density, rate of

range expansion, predator–prey selectivity, and

prey capture rates, each of which are affected by

factors such as prey quantity, quality, and pro-

ductivity, as well as habitat diversity and shoreline

complexity (Hoyt 2015; Hessing-Lewis and others

2018; Hale and others 2019; Smith and others

2021). Comparatively, the South Coast region

contains five times the sea otter population on a

more linear coastline relative to the Central Coast

region which encompasses a greater multitude of

small islands, deep fjords, and channels. It is pos-

sible that mussels at the Central Coast’s oldest sea

otter re-occupation location are experiencing a

recovery following size depression by sea otter rafts

that have moved on given the close proximity of

diverse suitable foraging habitats that exist else-

where along this highly involuted coastline. Inter-

tidal mussel growth rates may simultaneously be

enhanced by an increase in kelp-derived organic

carbon stemming from the cascading effects on sea

otters leading to deeper and larger subtidal kelp

beds at long occupation sites. Alternatively, the

population density of sea otters at this older occu-

pation site may have never been numerically high

enough to have had a significant effect on mussel

size structure.

Indigenous Management, Resource
Diversity, and Resilience

Although direct human predation of marine

mammals is a well-recognized factor influencing

nearshore ecosystems across the Pacific Rim (Rick

and others 2011; Dunne and others 2016), a

growing body of archaeological, ethnographic, and

historical ecological evidence demonstrates that

Indigenous communities maintained deliberate

systems of marine resource management prior to

European contact (Rick and Erlandson 2009; Moss,

2011; Lepofsky and Caldwell 2013; Mathews and

Turner 2017). Although our mussel size structure

data alone does not provide direct evidence of

intentional reduction of sea otters by ancient hu-

mans for the purposes of increasing shellfish pro-

duction, when considered alongside ethnographic

data on sea otter hunting and shellfish manage-

ment practices, plus the need to secure access to

reliable local sources of food (Sapir 1922; Drucker

1951; Gardner 2003; Salomon and others 2018;

Ibarra 2021), our findings provide further support

that human communities had incentive to actively

manage their relationship with sea otters in part to

enhance the productivity of key intertidal food re-

sources along stretches of the Pacific Northwest

Coast.

Specifically, a range of oral histories and ethno-

graphies from coastal British Columbia and Alaska

emphasize that in the millennia preceding the
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maritime fur trade, ancestral laws and governance

protocols were in place to maintain the persistence

of marine resources broadly and sea otters specifi-

cally. This included the proprietorship of discrete

ocean spaces by hereditary Chiefs who held

exclusive access rights and responsibilities over

defined territories (Arima and others 2009; Trosper

2009; Kii’iljuus and Borserio 2011; Salomon and

others 2018; Salomon and others 2020; Ibarra

2021). These hereditary rights and proprietorship

were described as being contingent on manage-

ment that sustained productive resources and their

equitable distribution among community members

via the potlach system of governance (Trosper

2009). Specific management practices likely

developed from centuries of observing feedbacks

between human impacts and environmental re-

sponses (Turner and Berkes 2006). Consistent with

other studies (Erlandson and others 2005; Corbett

and others 2008; Szpak and others 2012), our

findings indicate support for a human-induced

spatial mosaic of ecosystem states associated with

the persistence of sea otter populations at locations

more distant from Indigenous settlements and sea

otter exclusion in proximity to regularly utilized

shellfish harvesting sites. On rocky subtidal reefs,

persistent sea otter populations and mature ‘old-

growth’ kelp forest ecosystems encompassing a

diversity of perennial kelps would have been

interspersed with sea otter free urchin barren

ecosystems more intensively managed for shellfish

with smaller, shallower fringing kelp forests

encompassing more disturbance tolerant annual

kelps. This mosaic in ecosystem states would have

contributed to spatial variation in the local pro-

ductivity and persistence of coastal shellfish, kelp-

associated reef fish and sea otter populations, while

elevating biodiversity and system-wide resilience

regionally.

Although our archaeological observations from

only two regions limits our ability to make broadly

generalizable predictions about ancient Indigenous

mussel harvest size and sea otter prevalence across

the Pacific Northwest Coast, we suggest that further

investigations of ancient mussel size spectra and

their spatial and temporal variability will provide

refined insight into the scale and resolution re-

quired to fully demonstrate the likelihood and

persistence of ancient spatial mosaics in sea otter

abundance and ecosystem states we hypothesize

here.

Implications of Long-Term Data
in Identifying Human-Mediated
Ecosystem Interactions

With evidence of the profound alterations humans

have made to marine ecosystems globally over the

past few centuries (Jackson and others 2001;

McCauley and others 2015), it has become clear

that establishing ‘‘natural’’ baselines requires

extending our investigations beyond the most re-

cent centuries and broadening our view of what

constitutes an ecosystem’s ‘natural’ state. Increas-

ing evidence suggests that people have been inte-

gral components of ecosystems for millennia and

that context-dependent interactions create spatial

and temporal variation in human influenced

environments (Dunne and others 2016). Insights

from zooarchaeological and palaeoecological re-

search hold considerable potential to refining our

understanding of long-term human influence and

environmental change on the dynamics and feed-

backs within coupled social-ecological systems

through time and across space.

Only by integrating archaeological, anthropo-

logical, paleobiological and ecological perspectives

can the millennia of co-evolution of human and

natural systems and their context-dependence be

revealed (Fitzhugh and others 2019). Here, we

propose that in the mid-to-late Holocene, thirteen

thousand years after the extinction of terrestrial

Pleistocene megafauna, humans intentionally ex-

cluded sea otters to maintain access to productive

shellfish beds close to village settlements. After

millennia of observation, experimentation, learn-

ing and adapting, ethnographies and TEK suggest

that Indigenous stewardship practices developed to

monitor and exclude predators where they were a

threat to food security. Although debate over

intentionality in resource conservation still lingers,

there is broad consensus, particularly among social

scientists studying cultural systems on the Pacific

Northwest Coast, that communities intentionally

developed highly structured resource management

and conservation strategies to maximize commu-

nity sustainability (Trosper 2009; Campbell and

Butler 2010; Moss 2011; Mathews and Turner

2017).

For example, evidence of millennia-old clam

gardens on the coast of BC shows that clam pro-

ductivity was doubled by intentional habitat alter-

ation and tending practices by coastal Indigenous

peoples (Groesbeck and others 2014; Lepofsky and

others 2021). As indicated by our Indigenous col-

leagues, these monumental intertidal rock-walled

features and the labour invested to build and
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maintain them were likely safeguarded from sea

otter predation (Kii’iljuus cited in Salomon and

others 2018), and other benthic predators such as

racoon, mink, river otters, diving ducks and geese

(Kwaxistalla cited in Deur and others 2015).

Implications for Contemporary
Management and Conservation

In the case of sea otter management along the

Pacific coast of North America today, the conven-

tional method for estimating expected regional

carrying capacity is to calculate the density of

individuals that could persist given the total suit-

able habitat in the region, with the assumption that

sea otters would occur at carrying capacity every-

where within their fundamental niche (Laidre and

others 2002; Burn and others 2003; Gregr and

others 2008). These estimates likely contribute to

what has been considered a ‘‘small’’ recovering

population when justifying the reasoning for sea

otters’ current listing as a species of ’Special Con-

cern’ in Canada (COSEWIC 2007). However, our

results, in addition to other lines of evidence, sug-

gest the realized niche of sea otters on the Pacific

Northwest Coast was likely smaller than is com-

monly considered, while the scale and distribution

of coastal Indigenous settlement was more exten-

sive than commonly considered. Moreover, the use

of ocean going dugout canoes capable of travel over

40 km per day (Ames 2002) indicates that few if

any coastal habitats were entirely isolated from

people during the late Holocene. And yet sea otter

faunal remains persist through time in the

archaeological record with no evidence of regional

extinctions and over ten millennia of coexistence

between humans, sea otters and shellfish (Fedje

and others 2005; Cannon and others 2008;

McKechnie and Wigen 2011; Szpak and others

2012; Orchard and Szpak 2015). Although further

archaeological research is needed to better under-

stand variability in Indigenous settlement and re-

source use, our observations suggest it is likely that

late Holocene sea otter populations persisted well

below carrying capacity in many places throughout

its range and coexisted with humans in a consid-

erably reduced niche space.

A fundamental paradigm shift in natural re-

source management and conservation science is

well underway where humans are increasingly

being recognized as active components of linked

social-ecological systems, rather than external dis-

ruptors to otherwise pristine ecosystems (Berkes

and Folke 1998; Jackson and others 2001; Car-

penter and others 2009; Gelcich and others 2010;

Singh and others 2021). Yet the lingering

assumption that sea otters once existed at carrying

capacity throughout its range in the absence of

human intervention continues to have real-world

consequences. Currently in Canada, the federal

government asserts exclusive decision-making

authority over the conservation status and man-

agement of sea otters and limits hunting based on

the most current coastwide population estimate,

one-half the maximum population growth rate,

and a recovery factor for a species listed as a Special

Concern. None of these estimates consider humans

as components of functioning coastal ecosystems.

In addition, no policy tool exists to enable sea otter

hunting for the purpose of reducing their negative

effect on shellfish. Consequently, federal policies

are currently constraining Indigenous rights and

responsibility to manage their long-term relation-

ship with this keystone predator and the coastal

ecosystems in which they both are embedded. By

broadening the chronological horizon, social-eco-

logical lens and sources of data with which we as-

sess species recovery, set restoration goals and

envision conservation and management policies to

meet them, the more likely we will be able to

navigate towards ecologically sustainable and so-

cially just operating space (Raworth 2012) for

coastal social-ecological systems across the Pacific

coast of North America.

CONCLUSION

Our results challenge the widely held assumption,

be it implicit or explicit, that sea otter populations

were thriving at or near carrying capacity in every

suitable habitat across the extent of their range

before their extirpation by the Pacific maritime fur

trade. Rather, sea otters appear to have been rare or

absent near ancient human settlements. Away

from village sites, sea otters persisted at levels, high

enough to sustain hunting by people throughout

the Holocene. The strong spatial variation of this

remarkable keystone species and the hyperkey-

stone role of humans (Worm and Paine 2016)

would have led to a spatial mosaic in kelp and sea

urchin-dominated reefs at regional spatial scales,

with widespread social-ecological consequences.

Although other predators including killer whales,

sharks, and even coastal wolves have been impli-

cated in limiting sea otter populations (Estes and

others 1998; Tinker and others 2016; Roffler and

others 2021), the long-term role of people has not

been similarly considered.

The implications of this emerging view of long-

term human engagement in marine ecosystems, for
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archaeology, marine ecology, and natural resource

policy, are profound. First, highly productive kelp

forests, hypothesized to have supported coastal

travel and migration routes for peoples across the

Pacific Rim (Erlandson and others 2015), may have

been more spatially discontinuous throughout the

Holocene, serving more as ‘hops’ than a continuous

‘highway’. Second, the keystone role of sea otters,

typically assumed to be universally present, would

have been absent from many coastal food webs,

adding considerable spatial variability to the trophic

dynamics, primary and secondary production, and

carbon flux assumed to exist across North Amer-

ica’s coastal ocean ecosystems throughout the Ho-

locene. Lastly, this emerging understanding of the

functional role of humans as components of coastal

ecosystems challenges our view of ‘natural’ base-

lines (Dayton and others 1998; Ellis and others

2021) and our perceptions of what constitutes ‘re-

covered’ populations. The ghosts of ecosystems past

along North America’s Pacific coastline includes

humans and their role as both predators and

intentional stewards.
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