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We tested the hypothesis that mating strategies with genomic information realise lower rates of inbreeding (ΔF) than with
pedigree information without compromising rates of genetic gain (ΔG). We used stochastic simulation to compare ΔF and
ΔG realised by two mating strategies with pedigree and genomic information in five breeding schemes. The two mating strategies
were minimum-coancestry mating (MC) and minimising the covariance between ancestral genetic contributions (MCAC). We also
simulated random mating (RAND) as a reference point. Generations were discrete. Animals were truncation-selected for a single
trait that was controlled by 2000 quantitative trait loci, and the trait was observed for all selection candidates before selection. The
criterion for selection was genomic-breeding values predicted by a ridge-regression model. Our results showed that MC and MCAC
with genomic information realised 6% to 22% less ΔF than MC and MCAC with pedigree information without compromising ΔG
across breeding schemes. MC and MCAC realised similar ΔF and ΔG. In turn, MC and MCAC with genomic information realised
28% to 44% less ΔF and up to 14% higher ΔG than RAND. These results indicated that MC and MCAC with genomic information
are more effective than with pedigree information in controlling rates of inbreeding. This implies that genomic information should
be applied to more than just prediction of breeding values in breeding schemes with truncation selection.
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Implications

We showed that mating strategies (minimum-MC and
mating by minimising covariance between ancestral
contributions) with genomic information realise lower rates
of inbreeding than with pedigree information without
compromising rates of genetic gain when performing trun-
cation selection on predicted genomic-breeding values.
Application of these mating strategies in animal breeding
schemes is feasible in practice. They simply use the same
information as for genomic prediction to pair the parents
more appropriately without any extra cost and logistic con-
straints, which is an improvement on pedigree information.
This implies that in animal breeding schemes with truncation
selection, genomic data should be applied to more than just
prediction of breeding values.

Introduction

Choosing appropriate mating strategies in animal breeding
reduces rates of inbreeding without compromising rates of
genetic gain (Caballero et al., 1996). They do so by dis-
tributing genetic contributions of ancestors more evenly
across mating pairs, which improves the genetic structures of
breeding populations (Sonesson and Meuwissen, 2000). Two
mating strategies that were developed for breeding schemes
using phenotypic and pedigree data without genomic
information are minimum-coancestry mating (MC) and
mating by minimising the covariance between ancestral
contributions (MCAC) (Wright, 1921; Henryon et al., 2009).
These strategies are generally recommended to realise lower
rates of inbreeding in breeding schemes without genomic
information (Caballero et al., 1996; Meuwissen, 2007;
Henryon et al., 2009; Nirea et al., 2012). The lower rates of
inbreeding realised by MC and MCAC can be explained using
the theory of long-term genetic contributions (Woolliams and
Thompson, 1994; Grundy et al., 1998). The theory proposes† E-mail: Huiming.liu@mbg.au.dk
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that the minimum rate of inbreeding, given a pre-defined rate
of genetic gain, is realised when the long-term genetic con-
tributions of the ancestors stabilise to an exact threshold-linear
relationship with their Mendelian-sampling term: genetic con-
tributions of ancestors are zero below a threshold Mendelian-
sampling term and increase linearly with the value of
Mendelian-sampling terms above the threshold (Lindgren and
Matheson, 1986; Grundy et al., 1998; Woolliams et al., 2002,
Woolliams, 2006 and 2007). MC andMCAC realise low rates of
inbreeding by increasing the independence and reducing con-
founding between genetic contributions of ancestors. They
disperse the contributions within breeding populations and
increase the number of ancestors that contribute to each
descendent (Woolliams et al., 2002; Sørensen et al., 2005;
Henryon et al., 2014). This enables selection to align the
ancestors closer to the exact threshold-linear relationship and
reduce rates of inbreeding (Woolliams and Thompson, 1994;
Woolliams et al., 2002). The challenge in breeding schemes
without genomic information is that there is a limit to the level
of independence that can be achieved by MC and MCAC with
pedigree information. Therefore, if we are to further reduce
rates of inbreeding with MC and MCAC, we need information
that enables us to make ancestral genetic contributions more
independent so that genetic contributions can be more
dispersed across the population.
Genomic information may enable MC and MCAC to

disperse genetic contributions within breeding populations
more effectively than pedigree information. One way to
achieve this is by replacing the pedigree-relationship matrices
in MC and MCAC with genomic-relationship matrices (Sun
et al., 2013; Henryon et al., 2014). Genomic-relationship
matrices provide more accurate estimates of relationships
between individuals by tracing Mendelian segregation of
chromosome segments (Hayes et al., 2009). This should further
increase the independence and dispersion of genetic con-
tributions within breeding populations, enabling selection to
align the ancestors even closer to the exact threshold-linear
relationship and bringing about further reductions in rates of
inbreeding. Based on this background information, we rea-
soned that MC and MCAC with genomic information realises
lower rates of inbreeding than MC and MCAC with pedigree
information without compromising rates of genetic gain. We
tested this hypothesis by stochastic simulation. We simulated
MC and MCAC in five breeding schemes with different family
structures and heritabilities. We measured inbreeding as
homozygosity due to identity-by-descent. Genetic gain was
measured as increases in true breeding values.

Material and methods

Experimental design
We used stochastic simulation to compare rates of inbreeding
and genetic gain realised by MC and MCAC with pedigree
and genomic information in five breeding schemes. We also
simulated random mating (RAND) as a reference point.
Generations were discrete, animals were truncation-selected
for a single trait that was controlled by 2000 quantitative trait

loci (QTL), and the trait was observed for all selection
candidates before selection. The criterion for selection was
genomic-breeding values predicted by a ridge-regression
model using 8257 markers. The five breeding schemes dif-
fered for mating ratio (1, 2 or 6 dams/sire), litter size (10, 20 or
60 offspring/litter) and heritability of the trait (0.1 or 0.4). Each
combination of breeding scheme and mating strategy was run
for 20 discrete generations and replicated 100 times.

Mating strategies
Minimum-coancestry mating. Selected sires and dams were
paired by minimising the average coancestry of the proposed
matings. Pedigree-additive relationship A or the genomic
relationship Gwere created after (Meuwissen and Luo, 1992)
and (Yang et al., 2010). The dimensions of A and G were
Ns×Nd, where Ns and Nd are the number of selected sires
and dams, and the elements 1

2Aij and 1
2Gij are expected

coefficients of coancestry of individuals i and j. These
coefficients are equivalent to the inbreeding coefficients of
their offspring. Minimum-MC were performed using the
algorithm described in Henryon et al. (2009).

Mating by minimising the covariance between ancestral
contributions. Selected sires and dams were paired by
minimising the sum of absolute values of the covariances
between ancestral genetic contributions. The algorithm used
to pair the sires and dams by MCAC with pedigree informa-
tion is described in the Appendix of Henryon et al. (2009). We
made one modification to the algorithm when MCAC with
genomic information was used to pair sires and dams:
matrices L and C were computed by decomposing the
genomic-additive relationship matrix, G, between ancestors
and their descendants, where L is a normed lower triangular
matrix describing the genetic contribution from ancestors to
their descendants and C represents genetic contributions
from the ancestors to allocated matings. Computation of C is
presented in the Appendix (Supplementary Material S1).

Randommating. Selected sires and dams were paired randomly.

Breeding schemes
The five breeding schemes are shown in Table 1, where
scheme 1 is the hierarchical-breeding scheme that was used

Table 1 Details of the simulation of the five breeding schemes with
different population structure (the number of selected dams and litter
size) and heritability

Schemes Ns Nd Litter size Heritability

1 20 120 10 0.1
2 20 20 60 0.1
3 20 20 20 0.1
4 20 40 10 0.1
5 20 40 10 0.4

Ns = number of selected sires.
Nd = number of selected dams.
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by Henryon et al. (2009). In total, 20 sires were selected in
each breeding scheme. Each sire was mated to one (schemes
2 and 3), two (schemes 4 and 5) and six (scheme 1) dams. In
schemes 1 and 2, 1200 offspring were generated in each
generation; 400 offspring were generated in schemes 3 to 5.
The heritability of the trait under selection was 0.1 in
schemes 1 to 4. It was 0.4 in scheme 5.

Simulation
Simulations were carried out in three stages (Figure 1). In the
first stage, we generated a single founder population. This
founder population was used as the basis for the subsequent
stages. In the second stage, we generated base population,
which was run for 100 replicates. In the third stage, we
generated selected population, which was run for 100 replicates.

Founder population and genetic architecture. The 8257
markers and 2000 QTL were generated by simulating a
founder population with a Fisher–Wright inheritance model.
The population had an effective population size of 200
animals and 2000 generations. Simulation of the genomes
has been described in Liu et al. (2015). The simulated
genome consisted of four 1 Morgan long chromosomes, on
which 10 000 loci were equally distributed, resulting in
40 000 loci across the genome. The offspring inherited alleles
at these loci from their parents following Mendel’s rules
allowing for mutation and recombinations. Mutation was
recurrent at a rate of 2.5× 10−5 per locus per meiosis (Son
et al., 2014; Liu et al., 2015). Recombinations per chromo-
some were sampled from a Poisson distribution with a mean
equal to the length of the chromosome in Morgan and were
randomly placed along the chromosome assuming a uniform
distribution. In generation −1, the average (± SD) linkage
disequilibrium (LD) between neighbouring loci was
R 2 = 0.27 (±0.32), and the allele frequency distribution
followed a U-shaped distribution, with ~30.2% of the

loci fixed. Average R2 between neighbouring loci was in the
range of the estimation of LD in pig breeds (Badke et al.,
2012).
Among all segregating loci, every second one with a minor

allele frequency (MAF) >0.05 were used as markers. So in
total, there were 8257 markers used for genomic prediction
and mating strategies with genomic information in the
simulated breeding schemes. Among the remaining segre-
gating loci, 2000 loci with MAF> 0.01 were used as QTL. The
QTL allelic effects were assumed to follow a gamma
distribution with a shape parameter of 1.48. This was the
shape parameter derived for the distribution of QTL effects in
pigs (Hayes and Goddard, 2001).

Base population
We randomly sampled 20 sires and Nd dams from 200
animals in the last generation of the founder population,
where Nd were the number of animals that were assigned to
be sires and dams (Table 1). The base population produced
the first generation of offspring (generation 1).

Selected population
In generation 1 to 19, 20 sires and Nd were selected from
Ntotal animals and mated to produce Ntotal offspring in each
breeding scheme (Table 1). Offspring produced in generation
20 were the result of 19 generations of selection. The
offspring in each generation inherited alleles at markers and
QTL from their parents following Mendel’s rules allowing for
recombinations. The simulation of recombination was the
same as for the founder population.

Tracking identity-by-descent
In total, 2000 identical-by-descent (IBD) markers were
randomly distributed across the genome. These IBD markers
were not involved in selection, but were assigned unique
alleles to each base animal. They were used to trace each

200 animals

• Generating LD
between loci

• Selecting 8257
markers and 2000
QTL from the
segregating loci

• Selecting 20 sires and
Nd dams based on
predicted breeding
values

• Mating the selected
parents to obtain Ntotal
offspring 

Ntotal animals

Base population
(generation 0)

Selected population 
(generations 1-19)

Founder population
(2000 generations)

20 +Nd animals

• Choosing 20 sires and Nd
dams from the last generation
of the founder population

• Assigning identical-by-descent
markers to trace each base
animal’s contribution

• Starting genotyping and
phenotyping

• Producing Ntotal offspring

Figure 1 A summary of simulations. Simulations were carried out in the following three stages. In the first stage, 8257 markers and 2000 quantitative
trait loci were generated by simulating a single founder population with a Fisher–Wright inheritance model. The founder population had an effective
population size of 200 animals and 2000 generations, which was created to obtain desirable level of linkage disequilibrium between simulated loci. In
the second stage, the base animals (in generation 0) were generated by choosing 20 sires and Nd dams from the last generation of the founder
population. Two thousand identical-by-descent (IBD) markers were used to trace each base animal’s contribution to their descendant generations and infer
IBD status relative the base population. In total, 20 sires and Nd dams in generation 0 were used to produce Ntotal offspring in generation 1. In the third
stage, from generation 1 to 19, all Ntotal selection candidates were both genotyped and phenotyped before selection. In each generation, 20 sires and Nd
dams were truncation-selected using breeding values predicted from a Ridge-Regression model and were mated to produce Ntotal offspring.

Mating strategies with genomic information

549



base animal’s contribution to their descendant generations
and infer IBD status relative the base population. So within
each locus of a descendant, each IBD marker allele could be
traced directly back to the base animal from which it was
derived. Any homozygous locus at IBD markers was an
inbred locus. Inbreeding at each IBD marker was defined as
the probability that two alleles at that locus from a randomly
selected animal in the population are IBD.

Phenotypes
The phenotype of the trait for the i th base animal, yi, was
calculated as yi = αi+ ei, where αi is the base animal’s true
additive-genetic value and ei is its residual environmental
value. The true additive-genetic value was calculated as the
sum of 4000 QTL effects. The effects of those QTL were
scaled to achieve an initial genetic variance equal to the

heritability, that is aj = a′j ´
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2Pn

k= 1
2pkð1�pkÞa′2k

r
, where h 2

is 0.1 or 0.4, subscripts k (j) denote QTL k ( j ), pk (pj) is the
frequency of the ‘1’ allele of QTL k ( j ) and a′k ða′kÞ is the
substitution effect of QTL k ( j ) before being scaled. The true
breeding value for each animal was obtained by summing
the allelic effects at each QTL. The additive QTL variance
explained all additive-genetic variance

�
σ2α = σ2qtl

�
. The

environmental values were sampled from the distribution
N 0; σ2e = 1�h2
� �

. As a result, the phenotypes of the trait in
the base population had a mean of 0 and a SD of 1. In
descendant generations, QTL and tags were sampled
according to principles of Mendelian inheritance. The
environmental variance was constant through the simula-
tion, such that genetic variance and heritability decreased
over the course of generations of selection due to Bulmer-
effect (Bulmer, 1971).

Genomic prediction
Genomic-breeding values were predicted by fitting the ridge-
regression model presented in Liu et al. (2015). The breeding
value gi for animal i was defined as a parametric linear
regression on marker covariates xij of the form
gi =

Pp
j= 1 xijβj, such that yi = μ +

Pp
j = 1 xijβj +ei, where

yi is the phenotypic record of an animal from generation
u and u− 1, μ is the intercept, xij takes the value 0, 1 or 2 for
animal i and locus j, and fβjgpj= 1 is a vector of marker effects
( j = 1, 2, …, p markers). Gaussian assumptions for model
residuals were applied, that is the joint distribution of model
residuals was assumed to follow Nð0; σ2eÞ. The likelihood
function yields

p yjμ; g; σ2e
� �

=
Yn

i= 1
N yi jμ +

Xp
j= 1

xijβj; σ
2
e

 !

where N
�
yi jμ +

Pp
j= 1 xijβj; σ

2
e

�
is a normal density for

random variable yi centered at μ +
Pp

j = 1 xijβj and with
variance σ2e. A common variance was assigned to all marker
effects, that is βj � N

�
βj j0; σ2β

�
. The predicted breeding

value ĝi used for selection was defined as ĝi =
Pp

j = 1 xijβ̂j.

Assessment criteria
We present the rates of inbreeding and genetic gain realised
by MC, MCAC and RAND with pedigree and genomic
information. The inbreeding coefficient was calculated for
each individual as the proportion of IBD markers that are
homozygous. Rates of inbreeding, ΔF, were calculated as
1− e β, where β is slope of the linear regression of ln(1− Fu)
on u and Fu is the mean inbreeding coefficient for animals
born at generation u, as used in Nirea et al. (2012). We did
this transformation because theoretically the mean of
inbreeding coefficients in a cohort becomes a linear function
to the generation after data transformation, so that ΔF is
constant across the generations (Benoit, 2011). Genetic gain
at generation u was calculated as the difference in average
true breeding values between generation u and u− 1
(1< u< 20). We calculated ΔF using Fu and rates of genetic
gain (ΔG) using true breeding values in generation 5 to 20.
The difference between mating strategies with respect to
ΔF and ΔG were tested for significance using Tukey’s HSD
(honest significant difference, P< 0.05).
We also present findings that provide insight into the

mechanisms that underlie any difference inΔF orΔG between
mating strategies with genomic and pedigree information:

• The inbreeding coefficient (Fu) over time.
• The genetic variance over time. The genetic variance was

calculated as the variance of true breeding values in each
generation.

• Genetic contributions.

– The number of ancestors making a genetic contribution to
the offspring in generation 20. We presented the average
number of ancestors from generations 0 to 19 that made a
genetic contribution to the offspring in generation 20
based on matrix C as described in Appendix (Supplemen-
tary Material S1) for genomic MCAC.

– The deviation of long-term genetic contributions from
the exact linear relationship between long-term genetic
contributions and Mendelian-sampling terms. The
Mendelian-sampling term was calculated as the
difference between an animal’s true breeding value
and the mean true breeding values of the parents of the
animal. Long-term genetic contributions were com-
puted based on both pedigree and genomic information
(Henryon et al., 2009; Supplementary Material S1).
Then the deviation was computed as the standard
deviation of residuals from a linear regression of
genetic contributions on Mendelian-sampling terms
using the ancestors in generations 0 to 19 that made a
genetic contribution to the offspring in generation 20.

All results are presented as means (and standard devia-
tions across replicates) of the 100 simulation replicates.

Results

Rate of inbreeding
MC and MCAC with genomic information realised lower
ΔF than MC and MCAC with pedigree information (Table 2).
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MC and MCAC with genomic information realised 6% to
22% less ΔF than with pedigree information in our five
breeding schemes, which varied for mating ratio, litter size
and heritability.
MC and MCAC using the same information source realised

similar ΔF (Table 2). In turn, MC and MCAC with genomic
and pedigree information realised 20% to 44% less ΔF
than RAND.
The reduction in ΔF by using MC and MCAC with genomic

information instead of pedigree information was larger when
mating ratio, litter size and heritability were smaller in our
breeding schemes. Mating ratio had the largest impact on the
reduction in ΔF. The reduction in ΔF by using genomic infor-
mation was 6% to 11% in scheme 1 with mating ratio of
6 dams/sire. It increased to 16% to 18% in scheme 2 with
mating ratio of 1 dam/sire. Likewise, the reduction in ΔF was
9% to 13% in scheme 4 with mating ratio of 2 dams/sire. It
increased to 17% to 22% in scheme 3 with mating ratio of 1
dam/sire. On the other hand, litter size and heritability had the
smallest impact on the reduction in ΔF. The reduction in ΔF
was increased from 16% to 18% to 17% to 22%, when the
number of offspring per litter was decreased from 60 in scheme
2 to 20 in scheme 3. The reduction in ΔF was increased from
7% to 9% to 9% to 13%, when the heritability was decreased
from 0.4 in scheme 5 to 0.1 in scheme 4.

Rates of genetic gain
MC and MCAC with genomic and pedigree information
realised similar ΔG within each of the five breeding

schemes (Table 3). In turn, MC and MCAC with genomic and
pedigree information realised 1% to 14%moreΔG than RAND.
The following sections present findings that provide

insight into the mechanisms that underlie the differences in
ΔF between mating strategies with genomic and pedigree
information.

Inbreeding over time
MC and MCAC with genomic information realised less
inbreeding over time than MC and MCAC with pedigree
information. This is illustrated for scheme 1 (Figure 2a). In this
scheme, the onset of inbreeding with genomic and pedigree
information was delayed until generation 3. After the onset of
inbreeding, MC and MCAC with genomic information realised
6% to 11% less ΔF than with pedigree information. The result
of delaying the onset of inbreeding and reducing ΔF with
genomic information was that at generation 20, MC and
MCAC with genomic information realised 3% to 8% less
inbreeding than with pedigree information. In breeding
schemes 2 to 5, MC and MCAC with genomic information
realised 4% to 18% less inbreeding than with pedigree infor-
mation at generation 20 (results not shown).
MC and MCAC with genomic and pedigree information

realised less inbreeding over time than RAND. This was also
illustrated for scheme 1, where the onset of inbreeding with
RAND occurred one generation earlier thanMC andMCACwith
both genomic and pedigree information (generation 2 v. 3,
Figure 2a). After the onset of inbreeding, MC and MCAC with

Table 2 Average rate of inbreeding (ΔF) realised by generation 5 to 20 in each of the pig breeding schemes

Schemes Pedigree MC Genomic MC Pedigree MCAC Genomic MCAC RAND

1 0.053bc 0.050bc 0.055b 0.049c 0.072a

2 0.131b 0.108c 0.134b 0.113c 0.168a

3 0.093b 0.073c 0.087b 0.072c 0.128a

4 0.055b 0.048c 0.054b 0.049c 0.072a

5 0.054bc 0.050c 0.056b 0.051c 0.071a

Pedigree MC = minimum-coancestry mating with pedigree information; genomic MC = minimum coancestry mating with genomic informa-
tion; pedigree MCAC = mating by minimising the covariance between ancestral genetic contributions with pedigree information; genomic
MCAC = mating by minimising the covariance between ancestral genetic contributions with genomic information; RAND = random mating.
The SD of means of 100 replicates of ΔF were <0.0044.
a,b,cValues within a row with different superscripts differ significantly (Tukey’s honest significant difference, P< 0.05).

Table 3 Average rate of genetic gain (ΔG) realised by different mating strategies at generation 5 to 20 in each of the pig
breeding schemes

Schemes Pedigree MC Genomic MC Pedigree MCAC Genomic MCAC RAND

1 0.155ab 0.156ab 0.158ab 0.159a 0.151b

2 0.145bc 0.150ab 0.141cd 0.154a 0.135d

3 0.129a 0.129a 0.127a 0.125a 0.120b

4 0.127ab 0.125b 0.126ab 0.131a 0.124b

5 0.325a 0.328a 0.327a 0.330a 0.314b

Pedigree MC = minimum-coancestry mating with pedigree information; genomic MC = minimum coancestry mating with genomic informa-
tion; pedigree MCAC = mating by minimising the covariance between ancestral genetic contributions with pedigree information; genomic
MCAC = mating by minimising the covariance between ancestral genetic contributions with genomic information; RAND = random mating.
The SD of means of 100 replicates of ΔG were <0.001.
a,b,c,dValues within a row with different superscripts differ significantly (Tukey’s honest significant difference, P< 0.05).
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genomic and pedigree information realised 24% to 32% less
ΔF than RAND in scheme 1 (Table 2). In breeding schemes 2 to
5, MC and MCAC with genomic and pedigree information
realised 19% to 41% less inbreeding than with RAND at
generation 20 (results not shown).

Genetic variance
MC and MCAC with genomic information maintained more
genetic variance than with pedigree information. This is
illustrated for scheme 1 (Figure 2b). The genetic variance
maintained by MC and MCAC with genomic information
(0.020) at generation 20 was 11% higher than with pedigree
information (0.018). The variance maintained in RAND was
only 0.014.

Genetic contributions
MC and MCAC with genomic information had two impacts
on realised genetic contributions of ancestors to their des-
cendants. First, MC and MCAC with genomic information
resulted in more ancestors making long-term genetic con-
tributions to descendants in the populations than pedigree
information (Table 4). With genomic information, the num-
ber of ancestors from generation 0 to 19 that made a genetic
contribution to the offspring in generation 20 of each

breeding scheme ranged from 11 to 47 per generation. The
number of ancestors was 10 to 44 per generation with
pedigree information. With RAND, the number of ancestors
making contributions was only 8 to 41 per generation.
Second, the genomic information reduced the standard
deviation of residuals from the linear regression of genomic-
based genetic contributions on Mendelian-sampling terms
(Table 5). The standard deviation of residuals with genomic
information ranged from 0.05 to 0.09 by using MC and
MCAC at generation 20 in all breeding schemes. This was 2%
to 7% less than with pedigree information. RAND generated
highest standard deviation of residuals with genomic infor-
mation, which ranged from 0.07 to 0.13 in all breeding
schemes.

Discussion

Our results supported the hypothesis that MC and MCAC
with genomic information realise lower rates of inbreeding
than MC and MCAC with pedigree information without
compromising rates of genetic gain. The 6% to 22% reduc-
tion in ΔF by using genomic information with these mating
strategies was realised over a range of breeding schemes

Figure 2 (a) Inbreeding coefficient and (b) genetic variance in each generation of selection in breeding scheme 1. Pedigree MC = minimum-coancestry
mating with pedigree information; genomic MC = minimum coancestry mating with genomic information; pedigree MCAC = mating by minimising the
covariance between ancestral genetic contributions with pedigree information; genomic MCAC = mating by minimising the covariance between ancestral
genetic contributions with genomic information; RAND = random mating.

Table 4 Average number of ancestors in generations 0 to 19 that made a genetic contribution to offspring in generation 20 in all
breeding schemes

Schemes Pedigree MC Genomic MC Pedigree MCAC Genomic MCAC RAND

1 43.69 46.56 43.64 46.06 41.24
2 9.76 10.58 9.77 10.49 7.93
3 12.03 12.88 12.07 13.06 10.41
4 21.75 22.72 21.71 22.30 19.24
5 23.23 23.72 23.11 23.70 21.31

Pedigree MC = minimum-coancestry mating with pedigree information; genomic MC = minimum coancestry mating with genomic informa-
tion; pedigree MCAC = mating by minimising the covariance between ancestral genetic contributions with pedigree information; genomic
MCAC = mating by minimising the covariance between ancestral genetic contributions with genomic information; RAND = random mating.
The SD of means of 100 replicates of the number of ancestors making a genetic contribution were <0.42.
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using truncation selection. These reductions are worthwhile
in practical breeding schemes because they can be achieved
without extra costs and logistical constraints. All of the
information required to implement MC and MCAC with
genomic information is available from genomic prediction,
which was the initial reason for implementing genomic
information in breeding schemes. The mating strategies use
genomic information to pair the parents more appropriately.
They disperse genetic contributions of ancestors more
widely, allowing selection to align the ancestors closer to the
exact threshold-linear relationship. This is clearly an
improvement on pedigree information. Therefore, genomic
information should be applied to more than just prediction of
breeding values in breeding schemes with truncation
selection.
As we proposed, MC and MCAC with genomic information

realised lower ΔF than with pedigree information for two
reasons. First, MC and MCAC with genomic information
increased independence and reduced confounding between
the genetic contributions of ancestors. Second, this increased
independence enabled selection to increase the contributions
of ancestors with the largest Mendelian-sampling terms. The
contributions of ancestors stabilised closer to the exact linear
relationship between the long-term genetic contributions
and Mendelian-sampling terms of the ancestors. It resulted
in more ancestors making long-term contributions to des-
cendant animals. We verified this with our analyses of
genetic contributions. This underlying mechanism, linking
truncation selection to genetic gain and inbreeding applies
across a broad range of breeding schemes, species and
genetic architectures. So, we recommend that MC or MCAC
with genomic information become the method-of-choice for
any breeding scheme with truncation selection because it
should always realise lower ΔF.
Although we expect these mechanisms to apply to any

breeding scheme, species and genetic architecture, the
reduction in ΔF by using genomic information was largest
with small mating ratio, litter size and heritability in our

breeding schemes. Mating ratio had the largest impact on
the reduction in ΔF because it affects the independence of
genetic contributions of ancestors. With small mating ratio,
there was more dependence between contributions of sires
and dams to be broken up by MC and MCAC. In contrast,
there was less dependence between the contributions with
large mating ratio, and therefore, there was less to be gained
by using MC and MCAC with genomic information. On the
other hand, litter size and heritability had the smallest impact
on the reduction in ΔF. With small litter size, dependence
between contributions of sires and dams were larger,
because there were fewer reshuffled chromosome segments
inherited from the parents to the offspring. In contrast, with
large litter size, many recombinations occurred and more
combinations of chromosome segments were created in the
offspring. Then genomic selection can select animals carrying
diverse combinations of chromosome segments to mate
subsequently, allowing for new degrees of freedom to be
generated for allocating mates. In this case, there was less to
be gained by using genomic information compared with
small litter size. With low heritability, the selection was less
accurate, so that more independence was required for sub-
sequent changing of genetic contributions. More indepen-
dence can be achieved by using genomic information.
Therefore, although MC and MCAC with genomic informa-
tion should always realise lower ΔF, we will gain most
benefit by implementing MC and MCAC with genomic
information in breeding schemes when there is less inde-
pendence between genetic contributions of ancestors or
where more independence is required.
Not only did MC and MCAC with genomic information

reduce ΔF, they did so without compromising genetic gain
for two reasons. First, MC and MCAC with genomic infor-
mation reduced the deviations of genetic contributions from
the threshold-linear relationship without changing the slope
of the relationship. It resulted in the same selection intensity
and the same accuracy realised by MC and MCAC with
pedigree and genomic information. Second, we are able to

Table 5 Mean of SD of residuals from a linear regression of genetic contributions on Mendelian-sampling terms for the ancestors in generations 0 to
19 that made a genetic contribution to the offspring in generation 20

Pedigree MC Genomic MC Pedigree MCAC Genomic MCAC RAND

Schemes SDped
1 SDgen

2 SDped SDgen SDped SDgen SDped SDgen SDped SDgen

1 0.035 0.052 0.036 0.049 0.034 0.054 0.036 0.048 0.045 0.070
2 0.068 0.093 0.072 0.091 0.069 0.093 0.071 0.091 0.088 0.117
3 0.056 0.098 0.059 0.092 0.057 0.098 0.060 0.091 0.089 0.130
4 0.043 0.074 0.044 0.071 0.043 0.074 0.044 0.072 0.063 0.102
5 0.040 0.070 0.042 0.069 0.041 0.071 0.041 0.069 0.055 0.094

Pedigree MC = minimum-coancestry mating with pedigree information; genomic MC = minimum coancestry mating with genomic information; pedigree MCAC =
mating by minimising the covariance between ancestral genetic contributions with pedigree information; genomic MCAC = mating by minimising the covariance
between ancestral genetic contributions with genomic information; RAND = random mating.
The SD of means of 100 replicates of SDped were <0.0024 and those of SDgen were <0.0041.
1The deviation of long-term genetic contributions from exact linear relationship with true Mendelian-sampling terms. It was achieved by presenting the SD of residuals
from the linear regression of pedigree-based genetic contributions on Mendelian-sampling terms.
2The deviation of long-term genetic contributions from exact linear relationship with true Mendelian-sampling terms. It was achieved by presenting the SD of residuals
from the linear regression of genomic-based genetic contributions on Mendelian-sampling terms.
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maintain larger genetic variance by using MC and MCAC
with genomic information, so we can obtain as much genetic
gain as using MC and MCAC with pedigree information
(Woolliams et al., 1999). Therefore, by applying MC and
MCAC with genomic information, we are able to guarantee a
breeding programme with less inbreeding without sacrificing
any benefit.
Although mating with genomic information can better

manageΔF than with pedigree information, it was surprising
to find similar ΔF and ΔG realised by MC and MCAC, even
though they use different criteria to allocate mates. MC
improves the family structure by minimising the variance of
ancestral genetic contributions for a randomly chosen off-
spring, whereas MCAC minimises the covariance of ancestral
genetic contributions (Caballero et al., 1996; Sonesson and
Meuwissen, 2000; Henryon et al., 2009; Nirea et al., 2012).
The reason that the differences in ΔF between MC and
MCAC were small was that the mating strategy that controls
the variance of genetic contributions also controls covariance
between genetic contributions (Supplementary Tables S1 and
S2 and Supplementary Figure S1). This means that the
mechanisms underlying MC and MCAC are similar even
though these two mating strategies applied different meth-
odologies to achieve lower ΔF. Therefore, it does not matter
which one to use in practical breeding schemes with trun-
cation selection and genomic information.
There are numerous ways to estimate realised coancestry

and genetic contributions directly from the marker data
(Speed and Balding, 2015). The G matrix we estimated was
genome-wise averages of single-SNP statistics, which was
similar to VanRaden’s G matrices in that it did not take
lengths of the genomic regions shared between individuals
into account (VanRaden, 2008). Edwards (2015) proposed
measures of coancestry based on models for the joint dis-
tribution of markers at the haplotype level. These measures
can estimate genealogical relatedness more accurately than
vanRaden’s G particularly for distantly related individuals.
The use of haplotype methods can track the way the alleles
inherited from parents to offspring more accurately, which
may further increase the independence between the con-
tributions of sires and dams compared with Gmatrices. If this
is the case, then we would expect that MC and MCAC with
relationship matrices estimated using haplotype methods
will generate even lower rates of inbreeding than using G
matrices.
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