metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis[benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazato- $\kappa^2 N'$,S]mercury(II)

M. A. A. A. Islam,^a M. S. Reza,^a M. T. H. Tarafder,^b* M. C. Sheikh^c and E. Zangrando^d

^aDepartment of Chemistry, Rajshahi University of Engineering and Technology, Rajshahi 6204, Bangladesh, ^bDepartment of Chemistry, Rajshahi University, Rajshahi 6205, Bangladesh, ^cDepartment of Applied Chemistry, Faculty of Engineering, Toyama University, 3190 Gofuku, Toyama 930-8555, Japan, and ^dDepartment of Chemical and Pharmaceutical Science, Via L. Giorgieri 1, 34127, Trieste, Italy Correspondence e-mail: ttofazzal@yahoo.com

Received 1 June 2012; accepted 7 June 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.005 Å; R factor = 0.038; wR factor = 0.097; data-to-parameter ratio = 15.2.

In the title compound, $[Hg(C_{17}H_{15}N_2S_2)_2]$, the Hg^{II} ion lies on a crystallographic twofold rotation axis giving a very distorted tetrahedral coordination geometry best described as bisphenoidal, being chelated by two deprotonated N,S Schiff base ligands through the azomethine nitrogen and the thiolate sulfur donors. The dihedral angle between the two chelating ligand moieties is 79.75 (10)°. In the crystal, weak $C-H\cdots S$ interactions give rise to chains extending along the c axis.

Related literature

For the structures of uncoordinated Schiff bases, see: Tarafder, Crouse et al. (2008); Tarafder, Islam et al. (2008). For the corresponding Zn^{II} complex, see: Fun et al. (2008). For the coordination behaviour of metal ions (Co, Ni, Cu, Zn, Cd, and Hg) with the cinnamaldehyde Schiff base of S-methyldithiocarbazate, see: Liu et al. (2009); Abram et al. (2006). For the bioactivity of transition metal complexes of similar Schiff base ligands, see: Chew et al. (2004); How et al. (2008); Maia et al. (2010).

Experimental

Crystal data

$[Hg(C_{17}H_{15}N_2S_2)_2]$	V = 3227.58 (7) Å ³
$M_r = 823.49$	Z = 4
Orthorhombic, Pbcn	Cu $K\alpha$ radiation
a = 36.3639 (6) Å	$\mu = 11.21 \text{ mm}^{-1}$
b = 10.11949 (10) Å	T = 173 K
c = 8.77097 (10) Å	$0.37 \times 0.15 \times 0.13~\text{mm}$

Data collection

Rigaku R-AXIS RAPID CCD-	33943 measured reflections
detector diffractometer	2957 independent reflections
Absorption correction: multi-scan	2829 reflections with $I^2 > 2\sigma(I^2)$
(ABSCOR; Higashi, 1995)	$R_{\rm int} = 0.113$
$T_{\min} = 0.194, \ T_{\max} = 0.249$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.038$	195 parameters
$wR(F^2) = 0.097$	H-atom parameters constrained
S = 1.20	$\Delta \rho_{\rm max} = 1.76 \text{ e } \text{\AA}^{-3}$
2957 reflections	$\Delta \rho_{\rm min} = -2.04 \text{ e } \text{\AA}^{-3}$

Table 1

Ig-S18	2.3668 (11)	Hg-N20	2.489 (3)

Table 2		
Hydrogen-bond geometry	(Å	0)

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6\cdots S16^i$	0.95	2.75	3.692 (4)	172
Symmetry code: (i)	$x - y + 1 z - \frac{1}{2}$			

Sy

Data collection: RAPID-AUTO (Rigaku, 1995); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: publCIF (Westrip, 2010).

MAAAAI and MSR are grateful to the Department of Chemistry, Rajshahi University of Engineering and Technolog, for the provision of laboratory facilities. THT thanks the Department of Chemistry, Rajshahi University, for supplying necessary chemicals. MCS acknowledges the Department of Chemistry, Toyama University, for providing funds for single-crystal X-ray analyses.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2213).

References

- Abram, U., Castineiras, A., Garcia-Santos, I. & Rodriguez-Riobo, R. (2006). Eur. J. Inorg. Chem. pp. 3079-3087.
- Chew, K.-B., Tarafder, M. T. H., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H. K. (2004). Polyhedron, 23, 1385-1392.
- Fun, H.-K., Chantrapromma, S., Tarafder, M. T. H., Islam, M. T., Zakaria, C. M. & Islam, M. A. A. A. A. (2008). Acta Cryst. E64, m518-m519.

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- How, F. N.-F., Crouse, K. A., Tahir, M. I. M., Tarafder, M. T. H. & Cowley, A. R. (2008). *Polyhedron*, **27**, 3325–3329.
- Liu, Y. H., Ye, J., Liu, X. L. & Guo, R. (2009). J. Coord. Chem. 62, 3488-3499.
- Maia, P. I. da S., Fernandes, A. G. de A., Silva, J. J. N., Andricopulo, A. D., Lemos, S. S., Lang, E. S., Abram, U. & Deflon, V. M. (2010). *J. Inorg. Biochem.* **104**, 1276–1282.
- Rigaku (1995). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Tarafder, M. T. H., Crouse, K. A., Islam, M. T., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, o1042–o1043.
- Tarafder, M. T. H., Islam, M. T., Islam, M. A. A. A. A. A., Chantrapromma, S. & Fun, H.-K. (2008). Acta Cryst. E64, m416–m417.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2012). E68, m924-m925 [doi:10.1107/S1600536812025901]

Bis[benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazato- $\kappa^2 N'$,S]mercury(II)

M. A. A. A. Islam, M. S. Reza, M. T. H. Tarafder, M. C. Sheikh and E. Zangrando

Comment

In continuation of our interests in the chemistry of Schiff bases derived from *S*-benzyldithiocarbazate (Tarafder, Crouse *et al.*, 2008; Tarafder, Islam *et al.*, 2008) and on their metal complexes (Fun *et al.*, 2008) due to their intriguing coordination behaviour, physico-chemical properties, and potential biological activities, the title compound, $[Hg(C_{17}H_{15}N_2S_2)_2]$ (Fig. 1), was synthesized. In the structure, the Hg^{II} ion lies on a crystallographic twofold axis and has a very distorted tetrahedral coordination geometry best described as bisphenoidal, being chelated by two deprotonated benzyl *N'*-(3-phenylprop-2-enylidene)dithiocarbazate ligands through the azomethine nitrogen and the thiolate sulfur donors. The two chelating five-membered rings form a dihedral angle of 79.75 (10)°. The S–Hg–S' and N–Hg–N' bond angles, of 161.44 (4) and 92.57 (8)°, respectively, are closely comparable to those found in some Hg-thiosemicarbazone derivatives (Abram *et al.*, 2006). The S(18)—C(17) and the C(17)—N(19) bond distances [1.751 (4) and 1.302 (4) Å] are slightly longer and shorter in comparison with the values found in the free ligand [1.6696 (18) and 1.334 (2) Å, respectively (Tarafder, Crouse *et al.*, 2008)]. In the crystal packing the molecules are interconnected by weak C6—H6…S16 interactions [3.692 (4) Å] (Table 1), giving one-dimensional chain motifs extending along the *c* axis. The crystal is further stabilized by C–H… π interactions involving the phenyl ring of the 3-phenylprop-2-enylidene moiety.

Experimental

The Schiff base, benzyl *N*'-(3-phenylprop-2-enylidene)hydrazinecarbodithioate was prepared following the literature method (Tarafder, Islam *et al.*, 2008). Mercury(II) chloride (0.068 g, 0.25 mmol) in absolute ethanol (20 ml) was added to a hot refluxing solution of the Schiff base (0.163 g, 0.5 mmol) also dissolved in hot absolute ethanol and the reflux was continued for 30 min. The yellow precipitate formed was filtered off, washed with hot ethanol and dried under vacuum over anhydrous CaCl₂. Yield: 0.198 g (86%). 50 mg of the compound was dissolved in chloroform (15 ml) and allowed to stand at ambient temperature. Yellow microcrystals, obtained after 4 days, were redissolved in chloroform (15 ml) and mixed with toluene (5 ml) and again allowed to stand at room temperature. Yellow rectangular prism shaped single crystals (m.p. 472–473 K) suitable for X-ray analysis were formed after 7 days.

Refinement

All H atoms were located geometrically and treated as riding atoms, with C—H = 0.95 Å for C(aromatic) and 0.99 Å, for C(methylene), with $U_{iso}(H) = 1.2U_{eq}(C)$. The highest residual electron density peak (1.76 eÅ⁻³) is located at 0.60 Å from C1.

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 1995); cell refinement: *RAPID-AUTO* (Rigaku, 1995); data reduction: *RAPID-AUTO* (Rigaku, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare

material for publication: publCIF (Westrip, 2010).

Figure 1

An *ORTEP* drawing (ellipsoids at the 50% probability level) of the title compound with atom labelling scheme of the independent moiety. For symmetry code: (i) -x + 1, y, -z + 3/2.

Bis[benzyl N'-(3-phenylprop-2-enylidene)dithiocarbazato- $\kappa^2 N'_{,S}$]mercury(II)

Crystal	data
---------	------

 $[Hg(C_{17}H_{15}N_2S_2)_2]$ $M_r = 823.49$ Orthorhombic, *Pbcn* Hall symbol: -P 2n 2ab a = 36.3639 (6) Å b = 10.11949 (10) Å c = 8.77097 (10) Å V = 3227.58 (7) Å³ Z = 4F(000) = 1624.00

Data collection

Rigaku R-AXIS RAPID CCD-detector diffractometer Detector resolution: 10.000 pixels mm⁻¹ ω scans Absorption correction: multi-scan (*ABSCOR*; Higashi, 1995) $T_{\min} = 0.194$, $T_{\max} = 0.249$ 33943 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.038$ $wR(F^2) = 0.097$ S = 1.20 $D_x = 1.695 \text{ Mg m}^{-3}$ Melting point = 472–473 K Cu K α radiation, $\lambda = 1.54187 \text{ Å}$ Cell parameters from 33993 reflections $\theta = 3.7-68.3^{\circ}$ $\mu = 11.21 \text{ mm}^{-1}$ T = 173 KPrism, yellow $0.37 \times 0.15 \times 0.13 \text{ mm}$

2957 independent reflections 2829 reflections with $F^2 > 2.0\sigma(F^2)$ $R_{int} = 0.113$ $\theta_{max} = 68.3^{\circ}$ $h = -43 \rightarrow 41$ $k = -11 \rightarrow 12$ $l = -10 \rightarrow 10$

2957 reflections 195 parameters 0 restraints

Drimony atom site location: structure inversiont	U stom parameters constrained
Filinary atom she location. su ucture-invariant	n-atom parameters constrained
direct methods	$w = 1/[\sigma^2(F_0^2) + (0.0485P)^2 + 2.6351P]$
Secondary atom site location: difference Fourier	where $P = (F_o^2 + 2F_c^2)/3$
map	$(\Delta/\sigma)_{\rm max} = 0.001$
Hydrogen site location: inferred from	$\Delta \rho_{\rm max} = 1.76 \text{ e } \text{\AA}^{-3}$
neighbouring sites	$\Delta \rho_{\rm min} = -2.04 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

racional atomic coordinates and isotropic or equivalent isotropic atspiacement parameters (A-)
--

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Hg	0.5000	0.469781 (18)	0.7500	0.02693 (12)
S16	0.62936 (2)	0.39052 (10)	0.66996 (11)	0.0407 (3)
S18	0.56373 (3)	0.50749 (11)	0.78335 (13)	0.0324 (2)
N19	0.56567 (6)	0.2929 (3)	0.5827 (3)	0.0238 (6)
N20	0.52759 (6)	0.2998 (3)	0.5798 (3)	0.0230 (5)
C2	0.71088 (9)	0.2399 (4)	0.5613 (5)	0.0378 (8)
C3	0.74786 (9)	0.2696 (4)	0.5437 (6)	0.0460 (10)
C4	0.75868 (9)	0.3722 (4)	0.4538 (5)	0.0389 (9)
C5	0.73268 (11)	0.4492 (5)	0.3839 (5)	0.0474 (10)
C6	0.69574 (10)	0.4202 (4)	0.4017 (5)	0.0421 (9)
C7	0.68432 (8)	0.3154 (3)	0.4901 (4)	0.0264 (7)
C8	0.41564 (8)	0.1159 (3)	0.3608 (4)	0.0236 (6)
C9	0.39145 (8)	0.2117 (3)	0.4171 (4)	0.0285 (7)
C10	0.35438 (9)	0.2050 (4)	0.3860 (4)	0.0335 (8)
C11	0.34047 (10)	0.1024 (4)	0.2978 (5)	0.0351 (8)
C12	0.36386 (15)	0.0076 (7)	0.2403 (4)	0.0370 (11)
C13	0.40136 (14)	0.0130 (5)	0.2717 (5)	0.0330 (10)
C14	0.64395 (9)	0.2869 (4)	0.5117 (4)	0.0315 (7)
C15	0.45518 (8)	0.1197 (3)	0.3903 (4)	0.0265 (7)
C17	0.58149 (8)	0.3828 (3)	0.6662 (4)	0.0244 (7)
C21	0.47292 (9)	0.2093 (3)	0.4763 (4)	0.0264 (7)
C22	0.51223 (10)	0.2110 (3)	0.4954 (4)	0.0256 (7)
H2	0.7038	0.1670	0.6229	0.0453*
H3	0.7658	0.2179	0.5949	0.0552*
H4	0.7841	0.3903	0.4396	0.0467*
Н5	0.7400	0.5225	0.3233	0.0568*
H6	0.6779	0.4735	0.3520	0.0505*
H9	0.4007	0.2822	0.4774	0.0342*
H10	0.3383	0.2707	0.4249	0.0402*
H11	0.3149	0.0976	0.2773	0.0421*
H12	0.3544	-0.0617	0.1788	0.0444*
H13	0.4173	-0.0533	0.2327	0.0396*
H14A	0.6400	0.1924	0.5358	0.0378*
H14B	0.6300	0.3090	0.4182	0.0378*
H15	0.4697	0.0526	0.3444	0.0318*

supplementary materials

H21	0.4588	0.2748	0.5271	0.0317*
H22	0.5270	0.1465	0.4457	0.0307*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
Hg	0.02006 (18)	0.02382 (18)	0.03692 (18)	0.0000	0.00999 (6)	0.0000
S16	0.0147 (4)	0.0603 (6)	0.0470 (5)	-0.0065 (4)	-0.0006(4)	-0.0233 (5)
S18	0.0250 (5)	0.0302 (4)	0.0418 (5)	-0.0094(4)	0.0089 (5)	-0.0114 (4)
N19	0.0120 (12)	0.0279 (13)	0.0317 (13)	0.0007 (10)	0.0001 (10)	-0.0032 (11)
N20	0.0127 (12)	0.0237 (12)	0.0325 (13)	-0.0007 (10)	0.0023 (10)	-0.0015 (11)
C2	0.0201 (17)	0.0394 (19)	0.054 (3)	-0.0006 (14)	-0.0029 (16)	0.0114 (16)
C3	0.019 (2)	0.052 (3)	0.067 (3)	0.0085 (16)	-0.0066 (16)	0.0087 (19)
C4	0.0150 (17)	0.056 (3)	0.046 (2)	-0.0057 (15)	0.0020 (14)	-0.0027 (17)
C5	0.031 (3)	0.054 (3)	0.057 (3)	-0.0087 (18)	0.0024 (18)	0.018 (2)
C6	0.0227 (18)	0.049 (3)	0.055 (3)	0.0022 (16)	-0.0089 (16)	0.0142 (18)
C7	0.0141 (15)	0.0306 (15)	0.0345 (16)	-0.0000 (12)	-0.0018 (12)	-0.0061 (14)
C8	0.0174 (15)	0.0259 (15)	0.0274 (15)	-0.0047 (12)	0.0002 (12)	0.0032 (12)
С9	0.0211 (16)	0.0286 (16)	0.0359 (17)	-0.0043 (13)	0.0007 (13)	0.0000 (13)
C10	0.0176 (16)	0.0381 (18)	0.0449 (19)	-0.0011 (13)	0.0028 (14)	0.0050 (15)
C11	0.0217 (18)	0.047 (2)	0.0365 (18)	-0.0069 (15)	-0.0034 (16)	0.0086 (17)
C12	0.027 (3)	0.040 (3)	0.045 (3)	-0.012 (3)	-0.0067 (14)	-0.0019 (14)
C13	0.025 (3)	0.033 (3)	0.041 (2)	-0.0034 (18)	-0.0018 (16)	-0.0022 (15)
C14	0.0144 (16)	0.0412 (17)	0.0388 (18)	-0.0012 (13)	-0.0021 (13)	-0.0102 (16)
C15	0.0185 (15)	0.0268 (15)	0.0341 (16)	-0.0007 (12)	0.0022 (13)	-0.0007 (13)
C17	0.0148 (15)	0.0286 (16)	0.0296 (15)	-0.0026 (12)	0.0041 (12)	-0.0005 (12)
C21	0.0159 (17)	0.0281 (15)	0.0352 (16)	-0.0004 (12)	0.0000 (13)	-0.0021 (13)
C22	0.0190 (17)	0.0246 (14)	0.0332 (17)	0.0009 (12)	0.0019 (14)	-0.0017 (14)

Geometric parameters (Å, °)

Hg—S18	2.3668 (11)	C10—C11	1.390 (6)
Hg—S18 ⁱ	2.3668 (11)	C11—C12	1.378 (7)
Hg—N20	2.489 (3)	C12—C13	1.392 (8)
Hg—N20 ⁱ	2.489 (3)	C15—C21	1.344 (5)
S16—C14	1.819 (4)	C21—C22	1.439 (5)
S16—C17	1.743 (3)	C2—H2	0.950
S18—C17	1.751 (4)	С3—Н3	0.950
N19—N20	1.387 (3)	C4—H4	0.950
N19—C17	1.302 (4)	С5—Н5	0.950
N20—C22	1.291 (4)	С6—Н6	0.950
C2—C3	1.387 (5)	С9—Н9	0.950
C2—C7	1.381 (5)	C10—H10	0.950
C3—C4	1.362 (6)	C11—H11	0.950
C4—C5	1.370 (6)	C12—H12	0.950
C5—C6	1.384 (6)	C13—H13	0.950
C6—C7	1.378 (5)	C14—H14A	0.990
C7—C14	1.508 (5)	C14—H14B	0.990
C8—C9	1.399 (5)	C15—H15	0.950
C8—C13	1.402 (6)	C21—H21	0.950

C8—C15	1.461 (5)	С22—Н22	0.950
C9—C10	1.377 (5)		
S18—Hg—S18 ⁱ	161.44 (4)	C15—C21—C22	123.4 (3)
S18—Hg—N20	77.93 (6)	N20-C22-C21	120.3 (3)
S18—Hg—N20 ⁱ	115.59 (6)	C3—C2—H2	119.735
S18 ⁱ —Hg—N20	115.59 (6)	С7—С2—Н2	119.740
S18 ⁱ —Hg—N20 ⁱ	77.93 (6)	С2—С3—Н3	119.689
N20—Hg—N20 ⁱ	92.57 (8)	С4—С3—Н3	119.649
C14—S16—C17	104.53 (15)	C3—C4—H4	120.216
Hg—S18—C17	99.93 (11)	С5—С4—Н4	120.214
N20—N19—C17	114.6 (3)	С4—С5—Н5	120.049
Hg—N20—N19	115.23 (17)	С6—С5—Н5	120.064
Hg—N20—C22	130.6 (2)	С5—С6—Н6	119.331
N19—N20—C22	114.1 (3)	С7—С6—Н6	119.352
C3—C2—C7	120.5 (4)	С8—С9—Н9	119.641
C2—C3—C4	120.7 (4)	С10—С9—Н9	119.620
C3—C4—C5	119.6 (4)	C9—C10—H10	119.893
C4—C5—C6	119.9 (4)	C11—C10—H10	119.869
C5—C6—C7	121.3 (4)	C10—C11—H11	120.030
C2—C7—C6	118.0 (3)	C12—C11—H11	120.023
C2—C7—C14	121.2 (3)	C11—C12—H12	119.828
C6—C7—C14	120.7 (3)	C13—C12—H12	119.847
C9—C8—C13	118.6 (4)	C8—C13—H13	119.940
C9—C8—C15	122.5 (3)	C12—C13—H13	119.916
C13—C8—C15	118.9 (4)	S16—C14—H14A	110.606
C8—C9—C10	120.7 (3)	S16—C14—H14B	110.610
C9—C10—C11	120.2 (4)	C7—C14—H14A	110.602
C10—C11—C12	119.9 (4)	C7—C14—H14B	110.598
C11—C12—C13	120.3 (5)	H14A—C14—H14B	108.752
C8—C13—C12	120.1 (5)	C8—C15—H15	116.950
S16—C14—C7	105.7 (3)	C21—C15—H15	116.938
C8—C15—C21	126.1 (3)	C15—C21—H21	118.300
S16—C17—S18	108.96 (17)	C22—C21—H21	118.323
S16—C17—N19	118.9 (3)	N20—C22—H22	119.829
S18—C17—N19	132.1 (3)	C21—C22—H22	119.850
S18—Hg—N20—N19	3.69 (13)	Hg—N20—C22—C21	7.3 (4)
S18—Hg—N20—C22	178.9 (2)	N19—N20—C22—C21	-177.4(3)
N20—Hg—S18—C17	-1.67 (7)	C3—C2—C7—C6	0.0 (6)
S18—Hg—N20 ⁱ —N19 ⁱ	170.22 (12)	C3—C2—C7—C14	-178.2(4)
S18—Hg—N20 ⁱ —C22 ⁱ	-14.5 (3)	C7—C2—C3—C4	-1.2 (7)
N20 ⁱ —Hg—S18—C17	85.38 (8)	C2—C3—C4—C5	2.0 (7)
S18 ⁱ —Hg—N20—N19	170.22 (12)	C3—C4—C5—C6	-1.8 (6)
S18 ⁱ —Hg—N20—C22	-14.5 (3)	C4—C5—C6—C7	0.6 (6)
$N20 - Hg - S18^{i} - C17^{i}$	85.38 (8)	C5—C6—C7—C2	0.2 (6)
S18 ⁱ —Hg—N20 ⁱ —N19 ⁱ	3.69 (13)	C5—C6—C7—C14	178.4 (4)
$S18^{i}$ Hg $N20^{i}$ $C22^{i}$	178.9 (2)	C2-C7-C14-S16	92.6 (4)
$N20^{i}$ Hg $S18^{i}$ $C17^{i}$	-1.67 (7)	C6—C7—C14—S16	-85.5 (4)
-			

N20—Hg—N20 ⁱ —N19 ⁱ	-111.94 (15)	C9—C8—C13—C12	0.2(5)
N20—Hg—N20 ⁱ —C22 ⁱ	63.3 (2)	C13-C8-C9-C10	0.2 (5)
N20 ⁱ —Hg—N20—N19	-111.94 (15)	C9—C8—C15—C21	2.4 (5)
N20 ⁱ —Hg—N20—C22	63.3 (2)	C15—C8—C9—C10	179.6 (3)
C14—S16—C17—S18	-166.34 (16)	C13—C8—C15—C21	-178.1 (3)
C14—S16—C17—N19	13.3 (3)	C15—C8—C13—C12	-179.3 (3)
C17—S16—C14—C7	167.73 (17)	C8—C9—C10—C11	-0.0 (5)
Hg—S18—C17—S16	179.53 (13)	C9—C10—C11—C12	-0.5 (6)
Hg—S18—C17—N19	-0.0 (3)	C10-C11-C12-C13	0.9 (6)
N20—N19—C17—S16	-176.2 (2)	C11—C12—C13—C8	-0.8 (7)
N20-N19-C17-S18	3.3 (5)	C8—C15—C21—C22	-177.1 (3)
C17—N19—N20—Hg	-4.6 (3)	C15—C21—C22—N20	-180.0 (3)
C17—N19—N20—C22	179.4 (3)		

Symmetry code: (i) -x+1, *y*, -z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H…A
C6—H6…S16 ⁱⁱ	0.95	2.75	3.692 (4)	172

Symmetry code: (ii) x, -y+1, z-1/2.