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Abstract

Existing methods for computational prediction of transcription factor (TF) binding sites
evaluate genomic regions with similarity to known TF sequence preferences. Most TF
binding sites, however, do not resemble known TF sequence motifs, and many TFs are
not sequence-specific. We developed Virtual ChIP-seq, which predicts binding of
individual TFs in new cell types, integrating learned associations with gene expression
and binding, TF binding sites from other cell types, and chromatin accessibility data in
the new cell type. This approach outperforms methods that predict TF binding solely
based on sequence preference, predicting binding for 36 TFs (MCC > 0.3).

Background
Each TF can harmonize expression of many genes by binding to genomic regions that
regulate transcription. Alteration in sequence or quantity of a given TF can be the primary
cause of hereditary disorders, complex disease, autoimmune defects, and cancer [1].
TFs bind to accessible chromatin based on weak non-covalent interactions between

amino acid residues and nucleic acids. DNA’s primary structure (sequence) [2], secondary
structure (shape) [3], and tertiary structure (conformation) [4] all play roles in TF binding.
Many TFs bind to DNA indirectly. In these cases, performance of models trained on in
vitro data are poor when applied on in vivo experiments [5, 6]. To address this challenge,
we must explore how to better model context-dependent TF binding.
Chromatin immunoprecipitation-sequencing (ChIP-seq) [7] can map the presence of a

given TF in the genome of a biological sample. Tomap TFs, ChIP-seq requires aminimum
of 1,000,000 to 100,000,000 cells, depending on properties of the TF itself and available
antibodies. Large numbers of cells are not often available from clinical samples. Therefore,
it is impossible to systematically assess TF binding in most disease systems. Assess-
ing chromatin accessibility through transposase-accessible chromatin using sequencing
(ATAC-seq) [8], however, requires only hundreds or thousands of cells. While chromatin
accessibility does not determine TF binding exclusively, several methods use this infor-
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mation together with knowledge of TF sequence preference, genomic conservation, and
other genomic features to predict TF binding [9–11].
We propose that using more accurate tools to predict TF binding will allow understand-

ing the role of TF binding in more contexts.
Several methods use unsupervised approaches such as hierarchical mixture models

[9] or hidden Markov models [10] to identify TF footprint using chromatin accessibility
data. These approaches use sequence motif scores to attribute footprints to different TFs.
Sequence motif scores, however, suffer from high false positives (FPs) and high high false
negatives (FNs) (Additional file 1: Fig. S1). Variation in sequence specificity and cooper-
ative binding of some TFs prevents these methods from accurately predicting binding of
all TFs.
Most studies use different benchmarking approaches. For example, some methods [9,

12] only assess prediction on genomic regions that match the TF’s sequence motif. By
excluding ChIP-seq peaks not matching the TF’s sequence motif from benchmarking,
these methods underestimate FN peaks and overestimate prediction accuracy. Recently,
the Encyclopedia of DNA Elements (ENCODE)-DREAM in vivo TF Binding Site Pre-
diction Challenge (DREAM Challenge) introduced guidelines for assessing TF binding
prediction [13]. They recommend reporting both area under the receiver operating
characteristic curve (auROC), which assesses FN predictions and the area under the
precision-recall curve (auPR), which also assesses FPs. As multi-threshold integration
metrics [14], both auROC and auPR assess model performance of a scoring classifier
independent of score threshold used. All scoring classifiers, by definition, depend on a
threshold for stratifying the predictions. In addition to auPR and auROC, we also report
the performance of our model on a predefined threshold using the Matthews correlation
coefficient (MCC), which ranges between −1 and 1 (higher values indicate better perfor-
mance). MCC takes into account all of true positives (TPs), FPs, true negatives (TNs), and
FNs; therefore, it does not bias against FNs for imbalanced classifications. [15, 16].

Virtual ChIP-seq

Here, we introduce Virtual ChIP-seq, a novel method for more accurate prediction of TF
binding in new cell types. Virtual ChIP-seq predicts TF binding by learning from publicly
available ChIP-seq experiments, genomic conservation, and the association of expression
of all genes with TF binding. It does so by learning a novel representation of the effect of
transcriptome on TF binding and integrating various epigenomic and genomic features
using a supervised multi-layer perceptron.
Virtual ChIP-seq also accurately predicts the locations of some DNA-binding proteins

without known sequence preference. This would be impossible for most existing meth-
ods, which rely on sequence preference. Strictly speaking, only some of these proteins are
TFs. We use the term chromatin factors [17] in this paper to refer to factors subject to
ChIP.
Virtual ChIP-seq predicted binding of 36 chromatin factors in new cell types with amin-

imum MCC of 0.3. Eight of these chromatin factors (GTF2F1, HCFC1, HDAC2, NRF1,
RAD21, SIN3A, SMC3, and TAF1) do not have DNA-binding domains and therefore are
not TFs according to Lambert et al. [18]. We predicted binding of these 36 chromatin fac-
tors on 33 Roadmap Epigenomics [19] cell types and provide these predictions as a track
hub for community use (https://virchip.hoffmanlab.org).

https://virchip.hoffmanlab.org
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Results
Model, performance, and benchmarking

Datasets

For training, our method requires ChIP-seq data of each chromatin factor in as many cell
types as possible, with matched RNA-seq data from the same cell types. We used ChIP-
seq data (fromCistromeDB [20] and ENCODE [21]) and RNA-seq data (fromCancer Cell
Line Encyclopedia (CCLE) [22] and ENCODE [23]) to assess Virtual ChIP-seq’s binding
predictions for 63 chromatin factors in new cell types.
In addition to benchmarking on our own held-out test cell types, we wanted to compare

against the DREAMChallenge [13]. To do this, we also used their datasets, which include
ChIP-seq data for 31 chromatin factors. The DREAM Challenge included ChIP-seq data
for only 12 of these chromatin factors in completely held-out cell types. Completely hold-
ing out cell types better fits the real-world scenarios that require binding site prediction.
Using the datasets we generated, we had matched data in enough cell types to train and
validate models for 9 of these 12 chromatin factors (CTCF, E2F1, EGR1, FOXA1, GABPA,
JUND, MAX, REST, and TAF1).

Learning from the transcriptome

Different cell types have distinct transcriptomic and epigenomic states [24]. We hypothe-
sized that some gene expression changes would lead to consistent and observable changes
in chromatin factor binding. As an extreme example, eliminating expression of a chro-
matin factor would eventually eliminate binding of that chromatin factor genome-wide.
To account for both direct and indirect effects of the expression of regulatory genes, one
must model the dependency of each chromatin factor binding site on expression of all
genes [25]. To exploit this model, we identified all of the genes with significantly positive
or negative correlation with chromatin factor binding at any given genomic bin.
For each chromatin factor, we created an association matrix measuring correlation

between expression of genes with variant expression among different cell types and bind-
ing of that chromatin factor in previously collected datasets (Fig. 1a–c). In this matrix,
each value corresponds to the Pearson correlation betweenChIP-seq binding of that chro-
matin factor at one genomic bin and the expression level of one gene. We used missing
values when there was no significant association between gene expression and chromatin
factor binding (unadjusted p > 0.1).
We calculated an expression score for a chromatin factor in a new cell type using

the association matrix and RNA-seq data for the new cell type, but no ChIP-seq data.
The expression score is the Spearman correlation between the non-NA values for that
genomic bin in the association matrix and the expression levels of those genes in the
new cell type (Figs. 1d and 2a). We used the rank-based Spearman correlation to make
the score robust against slight differences in analytical methodology used to estimate
gene expression. We used the expression score as one of the variables in a multi-layer
perceptron (see the “Methods” section).
The expression score can only provide predictions for genomic regions bound to the

chromatin factor in training cell types. Across these genomic regions, expression score
has a mean auPR of 0.16 (range 0–0.57). The expression score relies on the number of
cell types used in calculating the correlation scores. Decreasing the number of training
cell types resulted in decrease in auPR of the expression score in 12/17 TFs we tested.
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Fig. 1 Virtual ChIP-seq learns from association of gene expression and chromatin factor binding at each
genomic bin. This example shows Virtual ChIP-seq analysis for the MYC TF. a Gene expression levels for 5000
genes in 12 cell types. For simplicity of visualization, we showed only 100 of these genes in the matrix and
labeled only one quarter of the genes. We ranked RNA-seq RPKM expression values within each cell type. This
matrix shows a subset of 5000 high-variance genes, sorted by variance of each gene’s expression between cell
types. Blue: row minimum; white: median expression; red: row maximum. b ChIP-seq signal for 100 bp bins in
12 cell types, taken from four larger regions (25 bins each) on chromosome 5. We quantile-normalized ChIP
signal fromMACS software among cell types. This matrix shows a subset of the 54,037 bins on chromosome 5
which have TF binding in at least one training cell type. White: column minimum (0.0); black: column
maximum (1.0). Cyan: a region in the NREP locus withMYC binding in GM12878; magenta: a region upstream
of SLC22A4 withMYC binding in K562. c Association matrix: gene expression–ChIP signal correlation between
100 genomic bins and 5000 high-variance genes. This is a subset of the larger 54,037×5000 association
matrix for chromosome 5. Each cell shows the Pearson correlation for 12 cell types between expression for a
particular gene and ChIP signal at a particular genomic bin. Orange: negative correlation; white: p-value of
Pearson correlation greater than 0.1 (NA); Purple: positive correlation. d (Top) Expression score plots for a
100 bp bin in the NREP locus. Each plot has one point for each of 184 genes with non-NA correlation values at
that bin in the association matrix. Each point displays the rank of correlation value for that gene among one
row of the association matrix against the rank of expression for that gene among 5000 high-variance genes
in (left) GM12878 and (right) K562 cell types. The expression score at a bin for a cell type is Spearman’s rank
correlation coefficient ρ between those two ranks. Blue line: best linear fit to data; grey region: 95%
confidence interval of the fit. (Bottom) UCSC Genome Browser display of 550 bp around that region. Blue
rectangle:MYC ChIP-seq peak in GM12878 or K562. Here,MYC binds only in GM12878. e Expression score
plot and Genome Browser display for a 100 bp bin upstream of SLC22A4. Here,MYC binds only in K562

Only CTCF and EP300 had more than 8 training cell types. For both these factors, using
fewer training cell types decreased prediction performance, a decrease only statistically
significant in EP300 (Pearson correlation r = −0.42; p = 0.003).

Learning from other predictive features

Virtual ChIP-seq includes as input for each genomic bin the frequency of the chromatin
factor’s presence in existing ChIP-seq data (Fig. 2b). Since most chromatin factor binding
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Fig. 2 Optimizing and training a multi-layer perceptron. We used a number of features to predict chromatin
factor binding in each bin. These include (a) expression score (Fig. 1d, e), (b) the number of training cell types
with binding of that chromatin factor, (c) chromatin accessibility, (d) PhastCons genomic conservation in
placental mammals, and (e) any sequence motif corresponding to that TF in the JASPAR database. In JASPAR,
some chromatin factors have no sequence motifs, while others have up to seven different sequence motifs.
This led to a number of features p ∈ [4, 11], excluding features from HINT footprints or CREAM peaks not used
in the main model. (f) For each chromatin factor, we trained a multi-layer perceptron using these features for
selected bins in four chromosomes (5, 10, 15, and 20). Specifically, we selected bins with accessible
chromatin or ChIP-seq signal in at least one training cell type (selected regions with vertical blue bars are for
illustration purpose). To optimize hyperparameters, we repeated the training process with different
hyperparameters using fourfold cross validation, excluding one chromosome at a time. For each chromatin
factor, we performed a grid search over (g) activation function (sigmoid, tanh, and rectifier), (h) number of
hidden units per layer (2(p + 1), 50, or 100), (i) number of hidden layers (2, 5, 10, or 50), and (j) L2
regularization penalty (0.0001, 0.001, or 0.01). We chose the quadruple of hyperparameters which resulted in
the highest mean Matthews correlation coefficient (MCC) over all four chromosomes. (k) Schematic of the
matrix of input features for training the multi-layer perceptron. We used a number of features to predict
chromatin factor binding in each bin. (l) Cross-validation MCC of chr5 as a function of the number of hidden
layers, for several other hyperparameter values. Size: number of hidden units within each layer. Shape
indicates activation function: logistic (circle) or rectifier (triangle). Color indicates L2 regularization penalty:
0.01 (turquoise) or 0.0001 (orange)
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occurs within accessible chromatin [26], we also used evidence of chromatin accessibility
from DNase-seq or ATAC-seq (Fig. 2c).
While many intra-species genomic differences lie in the non-coding genome [27], we

expect some regulatory elements to be conserved among closely related species. To
learn from patterns of genomic conservation, we used PhastCons [28, 29] scores from
a 7-way primate and placental mammal comparison (https://hgdownload.cse.ucsc.edu/
goldenPath/hg38/phastCons7way) in our model (Fig. 2d).
We used sequence motif score where available (Fig. 2e; see the “Methods” section). For

each TF, we represented sequence preference using the FIMO score of JASPAR sequence
motifs of that TF or a similar TF. JASPAR has no motif for some chromatin factors,
such as EP300. Where JASPAR has more than one motif for a TF, we included all of
each TF’s motifs as features in its model (Additional file 2: Tables X1–X2). We used grid
search to optimize the hyperparameters (Fig. 2f–j). Most changes of hyperparameter led
to minimal differences in performance. Increasing the number of hidden units and hid-
den layers, however, particularly with a logistic activation function, inhibited the model
from converging (Methods; Fig. 2l; Additional file 1: Fig. S4).

Virtual ChIP-seq predicts binding of 36 chromatin factors with high accuracy

We evaluated the performance of Virtual ChIP-seq in validation cell types (K562, PANC-
1,MCF-7, IMR-90, H1-hESC, and primary liver cells) which we did not use their ChIP-seq
data in calculating the expression score, training themulti-layer perceptron, or optimizing
hyperparameters (Additional file 2: Tables X3–X4). Before predicting in new cell types, we
chose a posterior probability cutoff for use in point metrics such as MCC, accuracy, and
F1 score. When a chromatin factor had ChIP-seq data in more than one of the validation
cell types, we chose the cutoff that maximizes MCC of that chromatin factor in H1-hESC
cells. Then, we excluded H1-hESC when reporting threshold-requiring metrics. For these
chromatin factors, we pre-set a posterior probability cutoff of 0.4, the mode of the cutoffs
for other chromatin factors (Additional file 2: Table X5).
We evaluated the performance of Virtual ChIP-seq for 63 chromatin factors with bind-

ing in validation cell types (Additional file 2: Table X6; Additional file 1: Fig. S2–S3). For 36
of these chromatin factors, we achieved MCCs ranging from 0.31 to 0.73, F1 scores rang-
ing from 0.21 to 0.73, and accuracy ranging from 0.99 to 1. For 59 of these chromatin
factors, Virtual ChIP-seq predicted true chromatin factor binding in regions without con-
servation among placental mammals. For 44 out of 63 chromatin factors, Virtual ChIP-seq
predicted true chromatin factor binding in regions without chromatin factor binding in
any of the training ChIP-seq data. These novel predictions range from 4 in CTCF to
27,752 peaks in ATF2 (29.7% of total peaks, Additional file 2: Table X7). From these 63
chromatin factors, 43 are sequence-specific, and for all of these chromatin factors, Vir-
tual ChIP-seq predicted true binding for regions that did not match the TF’s sequence
motif. For 47 chromatin factors, Virtual ChIP-seq even correctly predicted chromatin
factor binding in regions that did not overlap chromatin accessibility peaks (Additional
file 2: Table X7). Most of these regions were frequently bound to the chromatin factor in
publicly available ChIP-seq data. Along with an ablation study on removing individual fea-
tures from training (Additional file 1: Fig. S4), and investigating the biological relevance
of genes whose expression determined the expression score (Additional file 1: Fig. S5),
these results showed that the multi-layer perceptron learned to leverage multiple kinds

https://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons7way
https://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons7way
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of information and predict chromatin factor binding accurately, even in the absence of
features required by previous generations of binding site classifiers.
Virtual ChIP-seq predicts binding of 36 chromatin factors in validation cell types with

MCC > 0.3, auROC > 0.86, and 0.19 < auPR < 0.84 (Fig. 3a; Table 1; Additional file 2:
Table X6).

Comparisonwith DREAMChallenge

DREAM Challenge rules forbid using genomic conservation or ChIP-seq data as train-
ing features directly. This also excludes the expression score, as creating its association
matrix relies on ChIP-seq data. The challenge also required training and validation on its
own provided datasets. These datasets have ChIP-seq data in only a few cell types. This
restricts Virtual ChIP-seq’s approach which leverages all publicly available datasets. The
DREAM Challenge ChIP-seq datasets use only two replicates for each experiment and
requires that peaks have a irreproducibility discovery rate (IDR) [30] of less than 5%. In
these cases, we included peaks that pass a false discovery rate (FDR) threshold of 10−4 in
at least two replicates (Additional file 2: Table X8).
We trained and benchmarked Virtual ChIP-seq both on DREAM Challenge data, and

on the Cistrome database, which provides a higher number of ChIP-seq datasets. The
DREAM Challenge assessed participant entries by measuring performance on three
validation chromosomes (chr1, chr8, and chr21), combined.
To assess performance of Virtual ChIP-seq onDREAMChallenge data, we did the same.

To assess performance on Cistrome data, however, we measured performance on each
chromosome independently. This allowed us to examine the variance in performance
among these chromosomes.
Although Virtual ChIP-seq used features not allowed in the DREAM Challenge, com-

paring with DREAM Challenge participants is the only sound way to show how any
method including these features compares to the state of the art. Leading DREAM Chal-
lenge methods potentially could improve their performance by including the features
used by Virtual ChIP-seq.We compared Virtual ChIP-seq with DREAMChallenge results
when we trained and validated on either Cistrome DB data or DREAM Challenge data.

Prediction accuracy varies by TF

The final submission round of the DREAM Challenge evaluates predictions for 12 chro-
matin factors in held-out cell types. The datasets we used, however, allow us to predict
binding of 63 chromatin factors in new cell types. Of these chromatin factors, 41 are
unique to our dataset and do not overlap any of the DREAM Challenge chromatin
factors (Additional file 2: Table X9).
For CTCF, FOXA1, TAF1, and REST, Virtual ChIP-seq had a higher auPR in at least one

validation cell type than any DREAM Challenge participant [31, 32]. For EGR1 and E2F1,
Virtual ChIP-seq performed better than at least one of the four top-performing meth-
ods of the challenge in one of the validation cell types (Fig. 3b). For MAX, GABPA, and
JUND, the 4 best-performing methods achieved a higher performance than Virtual ChIP-
seq. DREAMChallenge and Cistrome ChIP-seq peak calls had different class imbalances,
making auPR statistics not directly comparable (Additional file 2: Table X9). The differ-
ences in class prevalence are both minor and in diverging directions. Because of this, they
do not bias the baseline auPR of evaluation on Cistrome datasets in a particular direction
when compared to evaluation on DREAM Challenge datasets.
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Fig. 3 Virtual ChIP-seq predicts chromatin factor binding with high accuracy. Using ChIP-seq and RNA-seq
data, we learned from the association of gene expression and chromatin factor binding for 63 chromatin
factors. a Box plots show distribution of auPR among 4 chromosomes (5, 10, 15, and 20) for 63 chromatin
factors assessed in four cell types (blue: H1-hESC; orange: IMR-90; green: K562; brown: MCF-7). Dashed line:
medians. Grey shapes: prevalence of bound bins in the chromosome, the auPR baseline. Axis label colors
categorize median auPR (purple: greater than 0.5, red: between 0.25 and 0.5, black: below 0.25). Sequence
logos indicate one of a TF’s JASPAR motifs, when available. When multiple motifs existed, we displayed the
shortest motif here. Numbers 1–9: The nine chromatin factors that the DREAM Challenge also evaluated in its
final round. bWe compared Virtual ChIP-seq’s performance to that of the top 4 performing methods in the
DREAM Challenge across-cell type final round. For CTCF, MAX, GABPA, REST, and JUND, we had enough cell
types to train and validate the performance of Virtual ChIP-seq on DREAM data. For these chromatin factors
we trained on chromosomes 5, 10, 15, and 20 in training cell types and validated performance on merged
data of chromosomes 1, 8, and 21 in validation cell types. For other chromatin factors, we trained the model
and validated our performance using publicly available Cistrome and ENCODE data. auPR values are only
directly comparable for the same cell type and test set. The black vertical line in each panel separates test sets
based on genome assembly and source. Axis label color: reference genome assembly (black: GRCh37,
grey: GRCh38). cWe compared Virtual ChIP-seq’s performance to that of Catchitt, the co-winner of the
ENCODE-DREAM Challenge on GRCh38 datasets. The x-axis shows the training cell type we used for training
the model. Multiple: data of multiple cell types concatenated for training. Average: indicates average of
posterior probability from models trained on each of the training cell types. We examined performance on
three different validation cell types: H1-hESC (circle), K562 (triangle), and MCF-7 (rectangle). Turquoise: Virtual
ChIP-seq. Orange: Catchitt. Black horizontal lines clarify the vertical position performance of each point
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Table 1 Performance of Virtual ChIP-seq for 36 chromatin factors on validation cell types. Each row
displays median values ± standard deviation of several performance metrics for prediction of a
chromatin factor across 4 chromosomes for each available validation cell type. MCC, Matthews
correlation coefficient; auROC, area under the receiver operating characteristic curve; auPR, area
under the precision-recall curve; N, number of validation cell types for 36 chromatin factors with
MCC > 0.3. We reported auROC and auPR across all the validation cell types across all posterior
probability cutoffs. Black chromatin factors: we found the posterior probability cutoff which
maximized MCC in H1-hESC, and then reported F1, accuracy, and MCC of the other validation cell
types

Chromatin factor F1 Accuracy MCC auROC auPR N

ATF2 0.270±0.002 0.990±0.001 0.314±0.008 0.917±0.026 0.443±0.022 1

BHLHE40 0.334±0.021 0.997±0.000 0.356±0.010 0.974±0.002 0.382±0.010 1

CEBPB 0.510±0.091 0.992±0.002 0.515±0.072 0.964±0.017 0.534±0.073 3

CHD2 0.399±0.038 0.998±0.000 0.406±0.034 0.950±0.012 0.386±0.046 1

CREB1 0.362±0.131 0.997±0.002 0.371±0.121 0.868±0.135 0.335±0.174 2

CTCF 0.667±0.126 0.995±0.004 0.675±0.092 0.985±0.050 0.841±0.108 6

E2F1 0.256±0.097 0.998±0.002 0.314±0.078 0.978±0.019 0.291±0.105 2

ELF1 0.431±0.047 0.997±0.001 0.456±0.038 0.949±0.042 0.493±0.066 2

ELK1 0.430±0.069 1.000±0.000 0.465±0.054 0.991±0.009 0.420±0.054 2

ESR1 0.372±0.103 0.993±0.006 0.430±0.049 0.883±0.033 0.461±0.019 2

FOS 0.333±0.027 0.997±0.001 0.393±0.020 0.861±0.004 0.394±0.008 1

FOSL1 0.319±0.006 0.994±0.001 0.316±0.006 0.929±0.006 0.272±0.012 1

FOXA1 0.433±0.082 0.997±0.004 0.492±0.072 0.981±0.022 0.568±0.117 3

GABPA 0.298±0.049 0.994±0.002 0.393±0.036 0.986±0.012 0.496±0.036 3

GTF2F1 0.235±0.120 0.996±0.001 0.312±0.070 0.985±0.015 0.191±0.081 2

HCFC1 0.459±0.021 0.999±0.000 0.487±0.024 0.990±0.005 0.515±0.044 2

HDAC2 0.303±0.033 0.986±0.005 0.370±0.018 0.948±0.051 0.281±0.040 2

HSF1 0.350±0.149 1.000±0.000 0.378±0.145 0.999±0.012 0.309±0.240 1

JUN 0.218±0.127 0.998±0.001 0.311±0.153 0.983±0.009 0.456±0.257 2

JUND 0.341±0.163 0.993±0.002 0.386±0.135 0.979±0.019 0.326±0.161 4

MAFK 0.354±0.041 0.997±0.001 0.423±0.028 0.989±0.005 0.513±0.103 3

MAX 0.400±0.045 0.996±0.002 0.444±0.059 0.961±0.012 0.491±0.111 3

MAZ 0.370±0.025 0.997±0.001 0.422±0.019 0.987±0.005 0.493±0.070 2

MXI1 0.394±0.018 0.999±0.000 0.402±0.017 0.993±0.004 0.381±0.025 1

NRF1 0.658±0.042 1.000±0.000 0.664±0.038 0.994±0.014 0.720±0.051 3

RAD21 0.593±0.062 0.996±0.002 0.626±0.056 0.983±0.033 0.740±0.095 3

REST 0.482±0.120 0.999±0.001 0.493±0.091 0.985±0.008 0.567±0.095 3

SIN3A 0.389±0.048 0.998±0.002 0.394±0.029 0.966±0.004 0.411±0.037 3

SMC3 0.733±0.016 0.999±0.000 0.734±0.016 0.998±0.001 0.792±0.018 1

SRF 0.353±0.060 0.998±0.001 0.364±0.070 0.982±0.008 0.365±0.115 2

TAF1 0.378±0.073 0.999±0.001 0.437±0.097 0.987±0.009 0.490±0.168 3

TEAD4 0.344±0.061 0.990±0.002 0.385±0.020 0.967±0.023 0.343±0.019 2

TP53 0.275±0.103 1.000±0.000 0.382±0.086 1.000±0.008 0.660±0.222 1

USF1 0.353±0.047 0.993±0.001 0.382±0.040 0.891±0.012 0.372±0.046 1

USF2 0.410±0.040 0.999±0.000 0.427±0.028 0.982±0.007 0.437±0.032 1

YY1 0.397±0.049 0.996±0.001 0.408±0.058 0.945±0.043 0.417±0.104 2

The power of Virtual ChIP-seq to learn from the transcriptome data diminishes when
fewer cell types are available, as in the DREAMChallenge data. Nonetheless, when trained
on DREAM Challenge data, Virtual ChIP-seq outperformed 13/14 DREAM Challenge
participants when predicting CTCF binding in PC-3 cells. When predicting CTCF bind-
ing in induced pluripotent stem cell (iPSC) cells, Virtual ChIP-seq had a higher auPR than
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8/14 Challenge participants. The Virtual ChIP-seq auPR for binding of REST in liver was
also higher than that of 9/14 DREAMChallenge participants (Additional file 2: Table X9).
Virtual ChIP-seq predicted binding of 36 chromatin factors with a median MCC > 0.3.

These 36 chromatin factors had an auPR between 0.27 and 0.84 (Table 1). Some of these
chromatin factors show high levels of consistent binding among different cell types, which
makes predictions easier. The fraction of bins bound to a chromatin factor in at least
half of training cell types, however, varies between 0 and 15.75% across all chromatin
factors. For some chromatin factors, Virtual ChIP-seq fails to predict binding accurately
(auPR < 0.3). Chromatin factors with low auPR and low MCC include chromatin modi-
fiers such as KAT2B, KDM1A, and EZH2 and chromatin binding proteins such as CHD1
and BRD4. Chromatin factors with low prediction accuracy include ATF2, CUX1, E2F1,
EP300, FOSL1, FOXM1, JUN, RCOR1, RELA, RXRA, SREBF1, TCF12, TCF7L2, and
ZBTB33.

Comparisonwith Catchitt

J-Team tied for the first place in the ENCODE-DREAM Challenge with Yuanfang Guan’s
team. On DREAM Challenge datasets, Virtual ChIP-seq only outperformed Yuanfang
Guan when predicting CTCF binding in iPSC and PC-3 and only outperformed Catchitt
[32] when predicting CTCF binding in PC-3 and REST in liver. In addition to the spe-
cific nature of CTCF as a chromatin factor, we hypothesized that the higher number
of training cell types for CTCF compared to other chromatin factors contributed to
the superior performance of Virtual ChIP-seq. To test this, we trained Catchitt on the
same training cell types and datasets as Virtual ChIP-seq (see the “Methods” section).
In addition to sequence motifs available for the chromatin factor in multiple databases,
we used 44 sequence motif features from Epigram and DNase-seq peaks provided by the
authors (Additional file 2: Table X10). Virtual ChIP-seq outperformed Catchitt for all of
the 20 chromatin factors we used for the comparison, excluding CREB1, EP300, and ATF2
(Fig. 3c).
J-Team released their simplified algorithm as Catchitt and indicated that Catchitt per-

forms almost as well as their original implementation. To investigate whether Catchitt can
outperform Virtual ChIP-seq if trained on the same GRCh38/hg38 labels, we re-trained
Catchitt. Since Catchitt requires a specific format of labels for training, we also used IDR-
thresholded narrowPeak files and used the Catchitt labelmodule to generate peak labels.
We trained Catchitt on those datasets and evaluated performance of Catchitt as well as
Virtual ChIP-seq on those label sets. Although we disadvantaged Virtual ChIP-seq by
not re-training it on labels that Catchitt generated, Virtual ChIP-seq still outperformed
Catchitt.
We emphasize that, unlike Catchitt, Virtual ChIP-seq uses ChIP-seq data of the same

TF in training cell types as a feature. This comparison primarily shows that using these
additional features, some of which we proposed and used here for the first time, makes
Virtual ChIP-seq a superior method. We suggest that using these features will boost the
performance of all models, including future models derived from Catchitt.

Comparisonwith Avocado

While the participants of the ENCODE-DREAM challenge did not use any ChIP-seq
data for training, other methods, such as Avocado [33], do use existing ChIP-seq data for
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training. Avocado uses ChIP-seq, DNase-seq, ATAC-seq, and RNA-seq data to impute
epigenomic and transcriptomic signals over 25 bp genomic bins.
To benchmark with another method which used ChIP-seq data during training, we

compared Virtual ChIP-seq predictions in 32 chromatin factors across 3 cell types with
Avocado imputations. Specifically, we compared the predictions of Virtual ChIP-seq in
200 bp genomic windows with both mean and maximum of Avocado imputations over
those windows.
For most of the examined chromatin factors, Virtual ChIP-seq consistently had higher

predictive performance than Avocado. Specifically, in 21 of the chromatin factors, Vir-
tual ChIP-seq consistently had higher auPR (median: 0.51) than Avocado (median: 0.33;
Additional file 1: Fig. S6). For RXRA, ATF3, and GTF2F1, Avocado had higher
auPR (median: 0.32) than Virtual ChIP-seq (median: 0.18) in predicting among all of 3 cell
types (Additional file 1: Fig. S6). For the remaining 8/32 chromatin factors, however, nei-
ther method consistently had the best auPR in all cell types (Additional file 1: Fig. S6;
Additional file 2: Table X13).

A compendium of chromatin factor binding predictions for 33 tissues and cell types

Predicting chromatin factor binding in Roadmap datasets

The Roadmap Epigenomics Project [19] performed DNase-seq on 55 and RNA-seq on 39
human tissues and cell types, but not ChIP-seq of any chromatin factor. For 33 of these
tissues, they produced matched DNase-seq and RNA-seq data. This makes the Roadmap
data an ideal application for Virtual ChIP-seq.
We generated an annotation similar to peak calls by converting the multi-layer percep-

tron’s posterior probabilities to a presence or absence call. The number of binding sites
we predicted in other validation cell types and Roadmap data is similar to ChIP-seq peaks
in other validation cell types (Fig. 4a).
Using the cutoff which maximized MCC in H1-hESC only slightly decreased perfor-

mance measurements from what one could achieve with the optimal cutoff for each cell
type (Fig. 4b). For example, the MCC score showed a median decrease of 0.06 and F1
score showed a median decrease of 0.1. This also affected precision (fraction of correct
predictions compared to all positive predictions) to a lesser extent than recall (fraction of
correct predictions compared to all positive labels).
As a community resource, we created a public track hub (https://virchip.hoffmanlab.

org) with predictions for 33 Roadmap cell types (Fig. 4c). This track hub contains predic-
tions for 36 chromatin factors which had a median MCC > 0.3 in validation cell types
(Table 1).

Discussion
Performing functional genomics assays to assess binding of all chromatin factors may
never be possible in patient tissues. Scanning the genome for occurrences of each
sequence motif results in a range of 200–2000 predictions/Mbp. In some cases, this is
1000 times more frequent than experimental data from ChIP-seq peaks. Similar observa-
tions led to a futility conjecture that almost all TF binding sites predicted in this way will
have no functional role [34].
Nevertheless, there is more to TF binding than sequence preference. Most chromatin

factors do not have any sequence preference [6] (Additional file 1: Fig. S1), and indirect TF

https://virchip.hoffmanlab.org
https://virchip.hoffmanlab.org
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Fig. 4 Chromatin factor binding predictions in validation cell types and Roadmap datasets. a Number of
genomic bins that chromatin factor is predicted to bind (left) and MCC (right) as a function of posterior
probability cutoff for SRF (top) and CTCF (bottom). This relationship is shown for H1-hESC (turquoise), 2
validation cell types for SRF (blue), and 6 validation cell types for CTCF (blue). Each curve represents
predictions for one of the 4 chromosomes (chr5, chr10, chr15, and chr20). Left panels also show how many
genomic bins are predicted to bind the chromatin factor in 18 Roadmap datasets (red). Vertical red dashed
line: posterior probability cutoff which maximized MCC of the chromatin factor in H1-hESC. Horizontal red
dashed lines: number of genomic bins with chromatin factor binding in validation cell types. b Boxplot of
various performance measures when using the best cutoff for each dataset (red) and the optimal cutoff in
H1-hESC (turquoise). c UCSC Genome Browser display of a 4000 bp region on chromosome 20 using the
Virtual ChIP-seq track hub (https://virchip.hoffmanlab.org). The track hub has a supertrack for each chromatin
factor. Each supertrack contains 34 tracks: one track specifying genomic bins bound by that chromatin factor
in Cistrome and ENCODE, and one track for each of the 33 Roadmap cell types with predictions for that
chromatin factor. This example shows parts of the track hub related to CTCF, including a track with
experimental results in Cistrome DB and ENCODE with 7 out of 144 cell types enabled, and Virtual ChIP-seq
predictions in left lung, adrenal gland, B-cell, and T-cell. The height of predictions indicates the number of
overlapping genomic bins predicted to bind the chromatin factor, ranging between 0 and 4. Between are
MACS2 narrow peak calls for CTCF in NHLFs from ENCODE (ENCFF510CUI). Blue: peaks; orange: peak summits

binding through complexes of chromatin-binding proteins complicates predictions based
solely on sequence specificity. In addition to the high number of FP motif occurrences,
many ChIP-seq peaks lack the TF’s sequence motif. Therefore, relying on sequence speci-
ficity alone not only generates too many FPs, but also many FNs. We call this latter
observation the dual futility conjecture, although it differs in degree from the original.
To provide cell-type–specific predictions, we need to teach the model about cellular
state by adding cell-type–specific features. This allows us to move beyond both futility
conjectures.
ChIP-seq–based assays may still not properly reflect in vivo chromatin factor binding

due to technical difficulties such as non-specific or low affinity antibodies [35] or false
detection of unrelated factors in hyper-ChIPable regions [36]. More robust approaches
in assessment of chromatin factor binding—such as CRISPR epitope tagging CRISPR
epitope tagging ChIP-seq (CETCh-seq) [37], which does not rely on specific antibodies—
may provide less noisy reference data for learning and prediction of chromatin factor
binding.
Deep learning models can learn from transcriptome datasets [38]. By integrating the

transcriptome with other epigenomic and genomic features, Virtual ChIP-seq predicted

https://virchip.hoffmanlab.org
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binding of 36 chromatin factors in new cell types, using from the new cell types only chro-
matin accessibility and transcriptome data. By learning from direct evidence of chromatin
factor binding and the association of the transcriptome with chromatin factor binding at
each genomic region, most use of sequence motif scores becomes redundant. As more
ChIP-seq data in diverse cell types and tissues becomes available, our approach allows
predicting binding of more chromatin factors with high accuracy.

Methods
Data used for prediction

Overlapping genomic bins

To generate the input matrix for training and validation, we used 200 bp genomic
bins with sliding 50 bp windows. We excluded any genomic bin which overlaps
with ENCODE blacklist regions (https://www.encodeproject.org/files/ENCFF419RSJ/
@@download/ENCFF419RSJ.bed.gz). Except where otherwise specified, we used the
Genome Reference Consortium GRCh38/hg38 assembly [39].

Chromatin accessibility

We used Cistrome DB ATAC-seq and DNase-seq narrowPeak files for assessing chro-
matin accessibility (Additional file 2: Table X8). We mapped the signal value of peak
summits to all the bins overlapping that summit. In rare cases where a genomic bin over-
laps more than one summit, we used the signal value of the summit closest to the p
terminus of the chromosome When data were available from multiple experiments, we
averaged signal values. Because Cistrome DB does not include raw data that one can use
for DNase footprinting, we limited the analysis of Hidden Markov model-based Identifi-
cation of Transcription factor footprints (HINT) TF footprinting and CREAM regulatory
element clustering [40] to ENCODE DNase-seq experiments on GM12878, HCT-116,
HeLa-S3, LNCaP, and HepG2.

Genomic conservation

We used GRCh38 primate and placental mammal 7-way PhastCons genomic conserva-
tion [28, 29] scores from the UCSC Genome Browser [41] (https://hgdownload.cse.ucsc.
edu/goldenPath/hg38/phastCons7way). We assigned each bin the mean PhastCons score
of the nucleotides within.

Sequencemotif score

We used FIMO [42] (version 4.11.2) to search for motifs from JASPAR 2016 [43] to iden-
tify binding sites of each TF that have the sequence motif of that TF.We used the curated,
non-redundant JASPAR database of vertebrate sequence motifs to avoid the unnecessary
complexity of having similar redundant motifs. To get a liberal set of motif matches, we
used a liberal p-value threshold of 0.001 and did not adjust for multiple testing. If the
motif for the TF did not exist in JASPAR, we used other motifs with same initial 3 letters
and counted any TF binding site which had overlap with any of those motifs. For exam-
ple, SIX5 does not have a sequence motif in JASPAR. In that case, we used the sequence
motif of SIX3 instead (Additional file 2: Table X1).
We also used FIMO and JASPAR 2016 to identify the sequence specificity of chromatin

accessible regions. For this analysis, we used a FDR threshold of 0.01%. We used any
sequence motif matching the initial 3 letters of a TF as a predictive feature of binding for

https://www.encodeproject.org/files/ENCFF419RSJ/@@download/ENCFF419RSJ.bed.gz
https://www.encodeproject.org/files/ENCFF419RSJ/@@download/ENCFF419RSJ.bed.gz
https://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons7way
https://hgdownload.cse.ucsc.edu/goldenPath/hg38/phastCons7way
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that TF. For many chromatin factors, more than one motif matched this criterion, and
we used all as independent features in the model (Additional file 2: Table X2). We used
the average FIMO score of each motif present in each 200 bp. When the chromatin factor
matched more than one motif, we used each one as an additional independent feature in
the model, up to 7 motifs maximum.

ChIP-seq data

We used Cistrome DB and ENCODE ChIP-seq narrowPeak files. We only used peaks
with FDR < 10−4. When multiple replicates of the same experiment existed, we only
considered peaks that passed the FDR threshold in at least two replicates. We considered
bound only those genomic bins overlapping peak summits. We calculated prevalence of
bound bins in each chromosome as

prevalence = bound
bound + unbound

and used it as an auPR baseline [44].

RNA-seq data

We downloaded an ENCODE expression matrix (https://public-docs.crg.es/rguigo/
encode/expressionMatrices/H.sapiens/hg19/2014_10/gencodev19_genes_with_RPKM_
and_npIDR_oct2014.txt.gz) [23] with RNA-seq data for each gene, measured in reads per
kilobase per million mapped reads (RPKM). We retrieved similar CCLE RNA-seq data
using PharmacoGx [45]. Since these data are processed differently, we limited our analysis
to Ensembl gene IDs shared between the two datasets, and ranked gene expression values
by cell type. The two datasets have 4 shared cell types: A549, HepG2, K562, and MCF-7.
Within each of these cell types, we examined the concordance of RNA-seq data between
ENCODE and CCLE after possible transformations. The concordance correlation coeffi-
cient [46] of rank of RPKM (0.827) was higher compared to untransformed RPKM (0.007)
or quantile-normalized RPKM (0.006; Welch t-test p = 10−6). The DREAM Challenge,
however, had processed RNA-seq of all cell types uniformly, allowing us to directly use
transcripts per million reads (TPM) in analysis of DREAM Challenge datasets.

Expression score

We created an expression matrix for each chromatin factor with matched ChIP-seq and
RNA-seq data in N ≥ 5 training cell types with the following procedure:

1. We divided the genome into M 100 bp non-overlapping genomic bins.
2. We created a non-negative ChIP-seq matrix C ∈ R

M×N
≥0 (Fig. 1a). We used signal

mean among replicate narrowPeak files generated by MACS2 [47] for each of M
bins and N cell types and quantile-normalized this matrix.

3. We row-normalized C to C′, scaling the values of each row between 0 and 1.
4. We identified theG = 5000 genes with the highest variance among the N cell types.
5. We created an expression matrix E ∈ R

N×G
∈[0,1] containing the row-normalized rank

of expression each of the G = 5000 genes in N cell types (Fig. 1b).
6. For each bin i ∈ [1,M] and each gene g ∈ [1,G], we calculated the Pearson

correlation coefficient Ai,g between the ChIP-seq data for that bin C′i,: and the
expression ranks for that gene E:,j over all cell types. If the Pearson correlation was

https://public-docs.crg.es/rguigo/encode/expressionMatrices/H.sapiens/hg19/2014_10/gencodev19_genes_with_RPKM_and_npIDR_oct2014.txt.gz
https://public-docs.crg.es/rguigo/encode/expressionMatrices/H.sapiens/hg19/2014_10/gencodev19_genes_with_RPKM_and_npIDR_oct2014.txt.gz
https://public-docs.crg.es/rguigo/encode/expressionMatrices/H.sapiens/hg19/2014_10/gencodev19_genes_with_RPKM_and_npIDR_oct2014.txt.gz
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not significant (p > 0.1), we set Ai,g to NA. These coefficients constitute an
association matrix A ∈ (R∈[−1,1] ∪ {NA})M×G (Fig. 1c).

We performed power analysis of the Pearson correlation test using the R pwr package
[48].
Power analysis identified which correlations the p > 0.1 cutoff would exclude depend-

ing on the number of available cell types with matched ChIP-seq and RNA-seq data. For
CTCF, which had the largest number of cell types available—21 cell types with matched
ChIP-seq and RNA-seq—this cutoff provided 80% power to detect an absolute value of
Pearson correlation |r| ≥ 0.52.Many chromatin factors had only 5 cell types withmatched
data and the cutoff provided 80% power to detect only larger correlations, |r| ≥ 0.92.
To predict ChIP-seq binding for a new cell type (Fig. 1d), we calculated an expres-

sion score for each genomic bin in that cell type. The expression score is Spearman’s ρ

for expression of the same G = 5000 genes in the new cell type with every row of the
association matrix A. Each of these rows represents a single genomic bin. An expression
score close to 1 indicates that genes with high expression have high values in the associ-
ation matrix, and genes with low expression genes have low values. An expression score
close to −1 indicates that genes with high or low expression have opposite values in the
association matrix (Fig. 1d).

Training, optimization, and benchmarking

Selecting hyperparameters and training

We created an input matrix with rows corresponding to 200 bp genomic windows and
columns representing the features described above. Specifically, these features included
expression score (Fig. 2a), previous evidence of binding of chromatin factor of interest
in publicly available ChIP-seq data (Fig. 2b), chromatin accessibility (Fig. 2c), genomic
conservation (Fig. 2d), sequence motif scores (Fig. 2e), HINT footprints, and CREAM
peaks. We used sliding genomic bins with 50 bp shifts, where most 200 bp bins overlap six
other bins. This provided amaximum resolution of 50 bp in binding prediction. The result
is a sparse matrix with 60,620,768 rows representing each bin in the GRCh38 genome
assembly [39]. The sparse matrix used in the main model had between 4 and 11 columns,
depending on the number of available sequence motifs.
We trained on an imbalanced subset of genomic regions which had chromatin fac-

tor binding or chromatin accessibility (FDR < 10−4) in any of the training cell types.
To speed the process of training and evaluation, we further limited training input data
to four chromosomes (chr5, chr10, chr15, and chr20). For validation, however, we used
data from these same four chromosomes in completely different cell types held out from
training. We evaluated the performance on all of the 9,635,407 bins in these four chro-
mosomes (Fig. 2f ), not just those with prior evidence of chromatin factor binding or
chromatin accessibility. To build a generalizable classifier that performs well on new cell
types with only transcriptome and chromatin accessibility data, we concatenated input
matrices from 12 training cell types: A549, GM12878, HepG2, HeLa-S3, HCT-116, BJ,
Jurkat, NHEK, Raji, Ishikawa, LNCaP, and T47D (Additional file 2: Table X3).

Themulti-layer perceptron

The multi-layer perceptron is a fully connected feed-forward artificial neural network
[49]. Our multi-layer perceptron assumes binding at each genomic window is indepen-
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dent of upstream and downstreamwindows (Fig. 2). For each chromatin factor, we trained
the multi-layer perceptron with adaptive momentum stochastic gradient descent [50] and
a minibatch size of 200 samples.We used 4-fold cross validation to optimize hyperparam-
eters including activation function (Fig. 2g), number of hidden units per layer (Fig. 2h),
number of hidden layers (Fig. 2i), and L2 regularization penalty (Fig. 2j). For training,
we only used genomic bins which overlapped chromatin accessibility peaks or previous
evidence of chromatin factor binding in any of the training cell types. For assessing per-
formance, however, we used all genomic bins of the chromosome. In each cross validation
fold, we iteratively trained on 3 of the 4 chromosomes (5, 10, 15, and 20) at a time and
assessed performance in the remaining chromosome. We selected the model with the
highest average MCC [15] after 4-fold cross validation. MCC incorporates all four cate-
gories of a confusion matrix and assesses performance well even on imbalanced datasets
[16]. For 23 chromatin factors, the optimal model had 10 hidden layers. For another set of
23 chromatin factors, the optimal model had 5 hidden layers. For the final 17 chromatin
factors, the optimal model had only 2 hidden layers.
For 57 out of the 63 chromatin factors examined, the best-performing model had 100

hidden units in each layer—the maximum number of hidden units per layer examined
in the grid search. For the remaining 6 chromatin factors, the optimal model had 10–24
hidden units in each layer. Different activation functions—hyperbolic tangent (tanh) or
rectifier—proved optimal for different chromatin factors (Additional file 2: Table X4).
We investigated if chromatin factors with the same DNA binding domain (as reported

in Lambert et al. [18]) also have similar optimized hyperparameters. All C2H2 zinc fin-
ger TFs (EGR1, CTCF, MAZ, REST, YY1, ZBTB33, ZNF143, and ZNF274) had a rectifier
activation function, 100 hidden units, and L2 regularization penalty of 10−4. The num-
ber of hidden layers ranged from 2 to 10. The other DNA binding domains which had
more than 4 TFs in our datasets, bHLH and bZIP, did not have the same hyperparameter
among their TFs (Additional file 2: Table X4). There was also no significant correlation
between number of hidden layers, hidden units, or activation function with performance
of the model in validation cell types. Some models with higher numbers of hidden lay-
ers, particularly those with logistic activation function, failed to converge and resulted in
cross-validation MCC of 0 (Fig. 2l).

Training and optimization

For the purpose of training and validating the model on Cistrome datasets, we only used
chromosomes 5, 10, 15, and 20. These 4 chromosomes constitute 481.78Mbp (15.6%
of the genome). For training only, we excluded any genomic region without chromatin
accessibility signal and previous evidence of chromatin factor binding. For validation and
reporting performance, we included these regions, using the totality of the 4 chromo-
somes.We concatenated data from training cell types (A549, GM12878, HepG2, HeLa-S3,
HCT-116, BJ, Jurkat, NHEK, Raji, Ishikawa, LNCaP, and T47D; Additional file 2: Table X3)
into the training matrix.
We used Python 2.7.13, Scikit-learn 0.18.1 [51], NumPy 1.11.0, and Pandas 0.19.2 for

processing data and training classifiers. We used the default Scikit-learn method [49] to
initialize the multi-layer perceptron’s parameters β and coefficients β0. This uses random
values from a uniform distribution. The support of the uniform distribution used depends
on properties of the current layer i and the next layer i + 1. Specifically, the maximum
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value b of the uniform distribution is a function of the number of the hidden units ui in the
current layer, the number of hidden units ui+1 in the next layer, and an activation factor l
based on the activation function of the current layer. For sigmoid activation, l = 2.0, and
for other activation functions, l = 6.0. For each layer i, Scikit-learn sets

b =
√

l
ui + ui+1

.

Scikit-learn samples each parameter βi and each coefficient β0,i from the uniform
distribution U(−b, b).

Benchmarking

We used the R precrec package [52] to calculate auPR and auROC. Precision-recall
(PR) curves better assess a binary classifier’s performance on imbalanced test data than
receiver operating characteristic (ROC) [16, 44].

DREAMChallenge comparison

For comparison to DREAM results, we also trained and validated the Virtual ChIP-seq
model onGRCh37DREAMChallenge data. For training themodel onDREAMChallenge
datasets, we used the data of chr5, chr10, chr15, and chr20 of training cell types. We
evaluated performance against the union of the DREAM validation chromosomes (chr1,
chr8, and chr21) in validation cell types. For CTCF, we used MCF-7, PC-3, and iPSC for
validation and trained on all other cell types (A549, H1-hESC, HeLa-S3, HepG2, IMR-90,
and K562). ForMAX, we used all cell types except liver and K562 for training. For GABPA,
REST, and JUND, we used all cell types except liver for training. We compared these
metrics to those of DREAM Challenge participants in the final round of cross–cell-type
competition.

Comparisonwith Catchitt

We used the same set of sequence motifs as described in Keilwagen, Posch, and Grau
[32]. Some of these sequence motifs, such as those derived from ChIP-seq peaks, are
specific to each TF. Other sequence motifs, however, model epigenomic signatures such
as chromatin accessibility and were used for all TFs.
We used the Catchitt software module access using GRCh38-aligned BAM files of each

cell type to obtain the chromatin accessibility profile.
For Virtual ChIP-seq, we had generated B (bound) and U (unbound) labels. Catchitt,

however, requires at least three labels: S (summit), B (non-summit but bound), and U
(unbound). For comparison of Virtual ChIP-seq and Catchitt on GRCh38 datasets, we
tried two different strategies. Once, we kept the B labels from our datasets at the edge of
a peak region unchanged and swapped other B labels to S.
We also used the Catchitt software module labels to derive the four Catchitt labels

A (ambiguous), S, B, and U from optimal and stringent IDR-thresholded narrowPeak
files. When stringent IDR labels were not available for some ENCODE experiments, we
used the optimal IDR labels for both the c and the r parameters as recommended by the
authors.
For both set of labels, we trained Catchitt on the same training cell types and chro-

mosomes as Virtual ChIP-seq. For evaluating the binary classification performance, we



Karimzadeh and Hoffman Genome Biology          (2022) 23:126 Page 18 of 23

excluded ambiguous labels from the prediction space and considered either of S or B as
TF binding.
We compared the performances of Virtual ChIP-seq and Catchitt using the auPR curve

of predictions on chromosome 10 using identical labels in validation cell types.

Clustering chromatin factors based on enrichment of their potential targets in GO terms

To identify groups of chromatin factors involved in similar biological processes, we exam-
ined the biological pathways that the targets of each chromatin factor regulate.We ranked
genes according to the number of genomic regions where the expression of each gene cor-
related positively or negatively with chromatin factor signal. We calculated a correlation
matrix for enrichment of targets of each chromatin factor in various biological processes.
We performed hierarchical clustering on the correlation matrix. We sought to identify
clusters of chromatin factors, and the best number of clusters between 2 and 10, inclu-
sive. For use in this process, we created a Gaussian random matrix of 1681 rows and 113
columns as a control and calculated its correlation matrix. Then, we compared cluster
stability between the original correlation matrix and the control for each potential num-
ber of clusters. To do this, we subsampled 75% of each correlation matrix rows twice
without replacement. Then, we clustered chromatin factors in each matrix into the spec-
ified number clusters. For both of these clusterings, we constructed the set of every pair
of chromatin factors present in the same cluster. We then calculated the Jaccard index
between the first clustering’s constructed set and that of the second [53]. We repeated
this subsampling and clustering process 50 times for each number of clusters. We picked
the smallest number of clusters which had an increase in Jaccard index compared to the
number of clusters one smaller only in the chromatin factor correlation matrix.

Chromatin factor prediction on Roadmap data

We downloaded Roadmap DNase-seq and RNA-seq data aligned to GRCh38 from the
ENCODE Data Coordination Center (DCC) [19]. For each DNase-seq narrowPeak file
with matched RNA-seq, we predicted binding of 36 chromatin factors withMCC > 0.3 in
validation cell types (Table 1; Additional file 2: Table X6; https://virchip.hoffmanlab.org).

Colors

For plots with three categories, we used a color palette optimized for viewers with deuter-
anopia (http://mkweb.bcgsc.ca/colorblind) and chose colors also distinguishable by those
with protanopia and tritanopia.
For other plots, we either used the default ggplot2 [54] color palette or manually-

adjusted ColorBrewer [55] palettes.

Conclusions
Virtual ChIP-seq uses a fully connected neural network to integrate data from the tran-
scriptome, chromatin accessibility, genomic context, and predict TF binding. Although
Virtual ChIP-seq uses direct evidence of chromatin factor binding at each genomic region
as one of the input features, it is able to correctly predict new peaks which do not exist
in training cell types. Our datasets, using a combination of Cistrome DB and ENCODE,
allow training and validating models for predicting binding in a more extensive 63 chro-
matin factors compared to DREAM Challenge datasets. Our provided predictions of

https://virchip.hoffmanlab.org
http://mkweb.bcgsc.ca/colorblind
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binding of 36 high-confidence chromatin factors in 33 different Roadmap tissue types
will allow the research community to better investigate epigenomics of disease affecting
those tissues (https://virchip.hoffmanlab.org/). Our datasets should also accelerate the
development of future machine learning methods by many groups.
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