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OBJECTIVE—Glucose-dependent insulinotropic polypeptide
(GIP) has been implicated in lipid metabolism in animals. In
humans, however, there is no clear evidence of GIP effecting lipid
metabolism. The present experiments were performed in order to
elucidate the effects of GIP on regional adipose tissue metabolism.

RESEARCH DESIGN AND METHODS—Eight healthy sub-
jects were studied on four different occasions. Abdominal sub-
cutaneous adipose tissue metabolism was assessed by measuring
arterio-venous concentration differences and regional adipose
tissue blood flow during GIP (1.5 pmol/kg/min) or saline infused
intravenously alone or in combination with a hyperinsulinemic-
hyperglycemic (HI-HG) clamp.

RESULTS—During GIP and HI-HG clamp, abdominal subcuta-
neous adipose tissue blood flow, hydrolysis of circulating triac-
ylglycerol (TAG) (P � 0.009), and glucose uptake (P � 0.03)
increased significantly while free fatty acid (FFA) output (P �
0.04) and FFA/glycerol release ratio (P � 0.02) decreased com-
pared with saline and HI-HG clamp.

CONCLUSIONS—In conclusion, GIP in combination with hy-
perinsulinemia and slight hyperglycemia increased adipose tis-
sue blood flow, glucose uptake, and FFA re-esterification, thus
resulting in increased TAG deposition in abdominal subcutane-
ous adipose tissue. Diabetes 59:2160–2163, 2010

S
everal animal studies support the idea that glu-
cose-dependent insulinotropic polypeptide (GIP)
may play a direct role in lipid metabolism, which
could be to ensure efficient deposition of dietary

fat in body stores in times of plenty (1,2). GIP enhances
insulin release during a meal and because insulin is a
major hormonal regulator of lipogenesis, a component of
GIP’s action on fat metabolism is probably indirect (3–5).
However, there is no clear evidence of a GIP effect on lipid
metabolism in humans. We recently studied the effect of
GIP on the removal rates of plasma triacylglycerol (TAG)
and on free fatty acid (FFA) concentrations, which were
increased after either a mixed meal or infusion of In-
tralipid and insulin (6). Under these experimental condi-

tions, we were not able to demonstrate any effects of GIP
on the removal rates of either chylomicron-TAG or In-
tralipid TAG concentrations. However, we found evidence
for enhanced FFA re-esterification under conditions with
combined high plasma GIP and insulin concentrations.
Based on these findings, we hypothesized that GIP per se
plays a role in the regulation of adipose tissue re-esterifi-
cation of FFA, a process that is of central importance in
adipose tissue handling of fatty acids (7,8). Therefore, the
aim of the present study was to elucidate the effects of GIP
alone or in combination with hyperinsulinemia and hyper-
glycemia on regional adipose tissue metabolism.

RESEARCH DESIGN AND METHODS

Eight healthy males with a mean age of 30 years � 6 (means � SD) and BMI
of 23.2 � 1.4 were studied. The ethics committee in Copenhagen Municipality
approved the protocol (H-D-2008-043).
Experimental design. Each subject participated in randomized order in four
different experiments separated by approximately 3 weeks. On two of the
occasions, the subjects underwent a hyperinsulinemic (150–200 pmol/l)–
hyperglycemic (6.5–7 mmol/l) (HI-HG) clamp with continuous infusion of
either GIP (1.5 pmol�1 � kg�1 � min�1) or saline during 300 min. On two other
occasions, GIP or saline was infused alone during the study.
Protocol and methods. The subjects’ habitual dietary intakes were recorded
for 1 day before the first experiment and were replicated before subsequent
experiments. The subjects arrived at 8:00 a.m. after having fasted for at least
12 h. The investigations were performed with the subjects in a supine position
in a room kept at 24°C. A catheter was inserted into an antecubital vein for the
infusion of GIP, glucose, insulin, or saline. The subjects were further cathe-
terized in a subcutaneous vein on the anterior abdominal wall (9) and in a
radial artery. After three baseline measurements, a continuous infusion of
either GIP or saline alone or in combination with an HI-HG clamp was
initiated at time � 0.
GIP infusion and HI-HG clamp. Synthetic human GIP (1–42) (Polypeptide
Laboratories, Wolfenbüttel, Germany) was dissolved in sterilized water contain-
ing 2% human serum albumin (Human Albumin; CSL Behring, Germany) and
sterile filtrated. Vial content was tested for sterility and bacterial endotoxins
(European pharmacopoeia 2.6.14, Method C, turbidimetric kinetic method). The
peptide was demonstrated to be �97% pure and identical to the natural human
peptide by high-performance liquid chromatography, mass, and sequence
analysis.

Insulin (Actrapid Human; Novo Nordisk, Denmark) was infused at a continu-
ous rate of 10 �U � m�2 � min�1. During concomitant GIP infusion, the insulin
infusion rate was adjusted according to the expected endogenous insulin secre-
tion in response to GIP aiming toward plasma insulin levels comparable with
those obtained during insulin infusion alone. Therefore, insulin was infused at a
lower rate (7 �U � m�2 � min�1) under these conditions.
Adipose tissue metabolism. Adipose tissue metabolism was measured by
Ficks principle (10). Adipose tissue blood flow (ATBF) was measured
continuously by the 133Xenon washout technique (11).
Blood samples and analysis. Arterial and venous blood samples were drawn
simultaneously at time �30, �15, 0, and hereafter every 30 min until
discontinuation of the infusion. Glucose concentrations were measured every
10 min for clamp adjustments.

Blood samples were analyzed for TAG, glycerol, FFA, and glucose by
enzymatic methods modified to run on a Hitachi 912 automatic analyzer
(Boehringer Mannheim). In addition, arterial blood was analyzed for GIP (12)
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and insulin and C-peptide by autoDELPHIA automatic fluoroimmunoassays
(Wallac, Turku, Finland).
Statistical analysis. All results are presented as means � SEM. Changes in
concentrations with time and between the four experiments were compared
using mixed linear models with repeated measures where time, treatment, and
interaction time � treatment were included in the model as fixed factors, and
the subjects were included as random effects. The t test for paired data was
used for comparing GIP and saline experiments. A significance level of 0.05
was chosen. The Statistical Analysis Software, version 9.1, was used for
statistical calculations.

RESULTS

Arterial hormone and glucose concentrations. During
GIP alone and GIP in combination with the HI-HG clamp
experiment, intact GIP concentrations reached physiological
postprandial levels after �60 min at 68.3 � 1.5 and 66.5 � 1.6
pmol/l, respectively (Fig. 1A). During infusion of saline alone
and saline in combination with the HI-HG clamp experiment,
GIP concentrations remained at fasting levels (14.7 � 1.6 and
15.8 � 1.8 pmol/l, respectively; P � not significant).

During the HI-HG clamp experiment with and without
GIP, insulin concentrations increased rapidly during the
first 30 min to a mean plateau of 169 � 4 and 167 � 2
pmol/l, respectively (P � 0.0001) (Fig. 1C). C-peptide
concentrations increased as well during the HI-HG clamp
experiment with and without GIP from fasting levels at
493 � 7 and 409 � 9 pmol/l, respectively (P � not
significant) (Fig. 1D) to a mean plateau of 1,108 � 27 and
635 � 17 pmol/l, respectively (P � 0.0001). During GIP
alone, insulin and C-peptide concentrations increased
slightly but significantly during the first 60 min compared
with saline (P � 0.02) (Fig. 1C and D), while no difference
occurred during 60–300 min.

During the HI-HG clamp experiments with and without
GIP, glucose levels increased toward target levels during
the first 60 min (6.7 � 0.1 and 6.8 � 0.2 mmol/l, respec-
tively) (Fig. 1B) and remained constant and similar during

60–300 min (6.6 � 0.1 and 6.7 � 0.1 mmol/l). There was no
significant difference between the amounts of glucose
infused during these two experiments (118 � 11 and 110 �
8 g). During GIP infusion alone, a decrease in glucose
concentrations occurred during the first 60 min compared
with saline infusion (P � 0.01) as a result of stimulation of
endogenous insulin secretion during GIP infusion (Fig.
1B). No significant differences in plasma glucose concen-
trations were seen during 60–300 min.
Arterial metabolite concentrations. The arterial con-
centrations of the metabolites during the four experiments
are given in Fig. 2. During the HI-HG clamp experiments
with and without GIP, arterial TAG, FFA, and glycerol
concentrations decreased significantly with no differences
seen between the two experiments. During GIP or saline
alone, arterial TAG concentrations remained constant and
no differences were seen between the two experiments.
Arterial FFA and glycerol concentrations did not differ
significantly during saline and GIP infusions alone and
increased steadily during the 300 min.
Adipose tissue metabolism. Figure 3 shows the subcuta-
neous abdominal adipose tissue blood flow during the four
experiments. During the GIP and HI-HG clamp experiment,
ATBF increased significantly during the first 30 min, reached
a plateau of 3.9 � 0.4 versus 1.4 � 0.1 ml � min�1 � (100 g
tissue)�1 after 90 min, and differed significantly from the
saline and HI-HG clamp experiment (1.4 � 0.1 ml � min�1 �
[100 g tissue]�1, P � 0.0001). During the saline and HI-HG
clamp experiment, ATBF remained virtually constant with a
tendency toward a slight decrease at the end of the experi-
ment. During GIP alone, a slight but significant ATBF in-
crease was seen during the first 60 min when compared with
saline (1.6 � 0.02 vs. 1.1 � 0.01 ml � [100 g tissue]�1 � [60
min]�1, respectively; P � 0.04) concomitant with elevated
insulin levels. After 60 min, ATBF was similar during the two
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FIG. 1. Data are means � SEM. Plasma arterial GIP (A), glucose (B), insulin (C), and C-peptide (D) concentrations during HI-HG clamp
experiment with GIP (Œ) and without GIP (‚), GIP alone (F), or saline alone (E).
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experiments and increased steadily and differed significantly
from ATBF during the HI-HG clamp experiment without GIP
during the last hour (P � 0.05).

Figure 4 shows net fluxes of TAG, FFA, glycerol, and
glucose in adipose tissue. Baseline TAG, FFA, glycerol,
and glucose fluxes were similar in the four experiments
(Fig. 4A, C, E, and G). TAG hydrolysis (P � 0.009) (Fig. 4B)
and glucose uptake (P � 0.03) (Fig. 4H) increased and
FFA output (P � 0.04) (Fig. 4D) decreased significantly

during the GIP and HI-HG clamp experiment compared
with the HI-HG experiment without GIP. In addition, a
decreased FFA-to-glycerol output ratio was seen during
the GIP and HI-HG clamp experiment (P � 0.02) (Fig. 4J)
compared with the HI-HG clamp alone. No differences
were seen in TAG, FFA, glycerol, and glucose fluxes
between the GIP and saline experiments.

DISCUSSION

The major finding in the present study is that GIP in
combination with hyperinsulinemia and hyperglycemia
increased blood flow, glucose uptake, TAG hydrolysis, and
FFA re-esterification, resulting in increased TAG deposi-
tion in the anterior, abdominal, subcutaneous adipose
tissue. Under fasting conditions, GIP did not affect adipose
tissue lipid metabolism.

Since the possible metabolic effects elicited via GIP in
adipose tissue has not been described previously, we used
a prolonged HI-HG clamp technique with plasma glucose
and insulin concentrations similar to those found after
ingestion of a carbohydrate-rich meal. It was found that
during the HI-HG clamp experiment in combination with
GIP, TAG hydrolysis increased significantly compared
with the HI-HG clamp experiment without GIP. This effect
was brought about concomitantly with a significant in-
crease in the subcutaneous ATBF. ATBF increases signif-
icantly postprandially, and this increase appears to be of
particular importance in the regulation of lipid metabolism
by facilitating transport and deposition of lipids in adipose
tissue (7). Insulin per se does not seem to affect ATBF,
however insulin may indirectly stimulate ATBF. Recently,
a study reported that ATBF was markedly higher after oral
glucose than during the intravenous insulin-glucose infu-
sions (13). The present findings suggest that GIP has
vasoactive effects in adipose tissue, although the design of
the study cannot rule out that other substances may play a
role. C-peptide has been found to have dose-dependent
vascular effects in skeletal muscle in the concentration
range between 0–1 nmol/l (14). In the present experi-
ments, the C-peptide concentration increased from about
0.4 to 0.7 nmol/l in the HI-HG clamp experiments without
a concomitant increase in adipose tissue blood flow. In the
HI-HG clamp experiment with GIP, the C-peptide concen-
tration increased to about 1 nmol/l. However, in light of
the missing flow increase in GIP HI-HG clamp experiment,
it seems unlikely that the flow increase found in clamp
experiments with GIP primarily is elicited via C-peptide.

Simultaneously with the increase in adipose tissue
blood flow, an increase in adipose tissue TAG hydrolysis
took place, probably reflecting an increased substrate
supply to lipoprotein lipase (LPL). Samra et al. (15) have
demonstrated that when adipose tissue blood flow in-
creased by infusion of adrenaline, TAG hydrolysis in-
creased exactly in parallel with increased blood flow,
implying that TAG hydrolysis is normally limited by sub-
strate delivery, which is consistent with our present study.

While TAG hydrolysis was significantly higher during
the HI-HG clamp with GIP compared with the clamp
without GIP (Fig. 4), the FFA release was lower in the
clamp experiment with GIP. This suggests that FFA de-
rived from LPL-mediated hydrolysis of the circulating
TAG was directed into the adipose tissue probably to be
esterified and stored, similar to what has been shown
previously in subjects examined in the fed state (8).
Concomitantly with the FFA uptake, there was an increase
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in glucose uptake during GIP in combination with insulin.
Taken together, these results indicate that GIP directs FFA
released by LPL-mediated TAG hydrolysis toward tissue
uptake instead of release to the circulation.

In vitro studies have shown that GIP stimulates lipolysis
(16,17). However, McIntosh et al. (16) found that GIP-
stimulated lipolysis in 3T3 cells was inhibited by insulin,
suggesting that the lipolytic effect of GIP is weaker than
the antilipolytic effect of insulin. In the present study, we
could not demonstrate any lipolytic effect of GIP under
any of the experimental circumstances.

In conclusion, GIP in combination with hyperinsulin-
emia and light hyperglycemia increased adipose tissue
blood flow, increased adipose tissue glucose uptake, in-
creased FFA re-esterification, and thus resulted in in-
creased adipose tissue TAG deposition.
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