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Implementing efficient selective 
quantum process tomography 
of superconducting quantum gates 
on IBM quantum experience
Akshay Gaikwad1, Krishna Shende1, Arvind1,2 & Kavita Dorai1*

The experimental implementation of selective quantum process tomography (SQPT) involves 
computing individual elements of the process matrix with the help of a special set of states called 
quantum 2-design states. However, the number of experimental settings required to prepare input 
states from quantum 2-design states to selectively and precisely compute a desired element of the 
process matrix is still high, and hence constructing the corresponding unitary operations in the lab is 
a daunting task. In order to reduce the experimental complexity, we mathematically reformulated 
the standard SQPT problem, which we term the modified SQPT (MSQPT) method. We designed the 
generalized quantum circuit to prepare the required set of input states and formulated an efficient 
measurement strategy aimed at minimizing the experimental cost of SQPT. We experimentally 
demonstrated the MSQPT protocol on the IBM QX2 cloud quantum processor and selectively 
characterized various two- and three-qubit quantum gates.

In the quest to build a real quantum computer, several difficulties need to be overcome, which include pure state 
initialization, implementing high fidelity quantum operations, performing efficient and noise-free measurements 
and protecting the quantum state against decoherence. Quantum state tomography (QST)1 and quantum process 
tomography (QPT)2 are standard tools that are extensively used for the characterization and benchmarking of 
quantum information processing devices and protocols.

Resource requirements for standard QST and QPT methods grow exponentially with increasing system 
size, and hence several novel methods have been designed that focus on simplifying and reducing experi-
mental complexity such as maximum likelihood estimation3, adaptive quantum tomography4, self-guided 
tomography5, ancilla-assisted tomography6, compressed sensing tomography7,8, and least square optimization 
based tomography9,10. These novel tomography protocols have been experimentally demonstrated on various 
physical configurations such as NMR11,12, linear-optics13, NV-centers14, ion-trap based quantum processors15, 
photonic qubits16, and superconducting qubits17–20. It has been shown that sequential weak value measurement 
can be used to perform direct QPT of a qubit channel21,22. A unitary 2-design and a twirling QPT protocol have 
been used to certify a seven-qubit entangling gate on an NMR quantum processor23.

In recent years, researchers across the globe are engaged in building quantum systems of a larger register 
size termed noisy intermediate-scale quantum (NISQ) processors, such as the IBM quantum processor based 
on superconducting technology with 32 qubits, and NMR, ion-trap based quantum computers and linear opti-
cal photonic quantum processors which have achieved register sizes of 12, 10 and 14 qubits, respectively24–26. In 
some cases on such NISQ devices, instead of the complete characterization of the large-scale quantum process, 
one is only interested in a specific part, and the method used is termed selective quantum process tomography 
(SQPT)27 which allows us to perform partial process tomography. Specifically SQPT allows us to estimate single 
and selective elements of the process matrix, and provides the desired partial information of system dynamics. 
The first implementation of SQPT was reported using optics28, which involved the preparation of special quantum 
states called quantum 2-design states. Further developments in SQPT include the generalization of the SQPT 
protocol for arbitrary dimensions29 and an efficient protocol using an NMR quantum processor30 . However, the 
experimental complexity involved in performing SQPT is still high, and better strategies to implement SQPT 
need to be designed.
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In this work we demonstrate a modified SQPT (MSQPT) protocol on a five-qubit IBM QX2 quantum informa-
tion processor and use it to characterize several two- and three-qubit superconducting quantum gates. We pro-
pose a general quantum circuit for initial input state preparation to efficiently implement the MSQPT protocol. 
We implement an efficient measurement framework wherein detection is performed on only a single qubit. Our 
experimental results show that one can use the modified SQPT protocol to efficiently and selectively characterize 
the desired quantum process. We demonstrate that the MSQPT results can be further refined to construct the 
underlying true quantum process by solving a constrained convex optimization problem.

Preliminaries
Standard selective quantum process tomography.  A quantum process denoted by the superoperator 
� can be described using the Kraus operator representation31:

with {Ei} being a fixed set of basis operators, and ρ being the quantum state evolving under � . The matrix χ 
with elements χmn characterizes the given quantum process � . Estimating the complete matrix χ is referred to 
as performing QPT of � . Full QPT is achieved by preparing a complete set of linearly independent quantum 
states {ρi} and then letting them evolve under the quantum process under consideration32. However, sometimes 
it suffices to estimate specific elements of the χ matrix, a procedure referred to as selective QPT (SQPT), with an 
experimental complexity which is lower than the full QPT protocol27.

A specific element χmn of the process matrix can be determined by computing ‘average survival probabilities’ 
Fmn as28:

where {|φi�} are a set of quantum 2-design states30, K is their cardinality and D is the dimension of the Hilbert 
space.

From Eq. (2), it can be seen that in order to compute Fmn , one has to prepare the system in the state 
(E†m|φj��φj|En) , let it pass through the given quantum process � and then calculate the overlap with the original 
state |φj��φj| for all quantum 2-design states. However, the operator (E†m|φj��φj|En) is in general not a valid den-
sity operator. Previous implementations28 have proposed an alternative way to resolve this issue, i.e. instead of 
the operator (E†m|φj��φj|En) , the quantum system is prepared in the state (Em ± En)

†|φj��φj|(Em ± En) (which 
has to be divided by its trace for normalization), passed through the given quantum channel, the overlap with 
the original state is measured, the modified average fidelities F±mn are computed and finally the real part of Fmn 
is determined as:

 This approach is not experimentally viable as the number of experiments are quadrupled and to esti-
mate a single element of the χ matrix we need to construct a large number of unitary operations cor-
responding to (Em + En)

†|φj��φj|(Em + En) and (Em − En)
†|φj��φj|(Em − En) for the real part and 

(Em + iEn)
†|φj��φj|(Em + iEn) and (Em − iEn)

†|φj��φj|(Em − iEn) for the imaginary part of the process matrix 
for all |φj� . For different values of m and n, we would again need to experimentally construct different sets of 
unitary operations which is a hard task to perform. Although the SQPT protocol is computationally less resource-
intensive as compared to the standard QPT method, the number of experimental settings required to prepare 
the input states for computing a selected element of the process matrix is still quite high.

Protocol for modified selective quantum process tomography. 

We propose a generalization of the SQPT method, namely the MSQPT protocol, which considerably reduces 
the experimental complexity of computing a desired element of the process matrix with high precision. We have 
designed a more efficient way of performing SQPT on an IBM quantum processor. We rewrite the operators 
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∑
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†.
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(E†m|φj��φj|En) and �j = |φj��φj| in Eq. (2) in terms of fixed basis operators {Ei} as E†m�jEn =
∑

i
jc
mn
i Ei and 

�j =
∑

k
jekEk (with jek ∈ R ), which leads to the compact form:

 where the complex scalar quantities jβmn
ki = jek

jcmn
i  can be computed analytically and do not depend upon 

the quantum process. It turns out that if we choose Pauli matrices as basis operators, then for given values of 
m and n, the tensor jβmn

ki  is sufficiently sparse and most of its values are zero. We hence only need to compute 
Tr[Ek�(Ei)] ≡ Ēik for those values of i and k for which jβmn

ki  = 0 . The sparsity of jβmn
ki  is directly connected to 

the experimental complexity in terms of the number of coefficients Ēik that need to be estimated.
The question now arises about the estimation of the coefficients Ēik . Given a set of operators Ei(n-qubit Pauli 

operators), one can associate a well defined (positive and unit trace) density operator ρ̃i with it as follows:

 It is easy to see that

 Equation (6) hinges on the fact that the identity operator does not evolve under the process matrix � . This 
provides us with a way to experimentally estimate the desired coefficients Ēik , where we need to prepare the 
system in states ρ̃i , let it evolve under the process � and then measure Ek.

We note here that the identity operator is not preserved under the action of non-unital maps. In such cases, 
in order to perform modified SQPT of a given non-unital map, one needs to prepare the system in the state 
corresponding to the identity operator E0 as well, which is the maximally mixed state denoted by ρ̃0 . Hence, for 
non-unital maps, Eq. (6) is modified as:

 where Ē0k = DTr[Ek�(ρ̃0)] , which can be experimentally computed by preparing the system in the ρ̃0 state, 
passing it through the given non-unital quantum channel and then measuring the observables Ek . Once Ē0k is 
determined, the other desired coefficients Ēik can be experimentally determined using Eq. (7). The computational 
efficiency of the MSQPT protocol is based on the fact that the total number of input states that are required to 
calculate the average survival probabilities (Eq. 2) is much fewer as compared to the SQPT method, as a single 
unitary operator is applied simultaneously on all system qubits to prepare the input state. Furthermore, only a 
single detection is required at a time, which reduces the number of readouts required to determine a specific 
element of the process matrix, further reducing the experimental complexity of the protocol.

The quantum circuit to implement the n-qubit MSQPT protocol is given in Fig. 1. The symbol ‘/’ through 
the input wire represents a multiqubit quantum register. The first quantum register contains a single qubit while 
the second and third quantum registers comprise n− 1 qubits, respectively. The first and the second quantum 
registers collectively represent the system qubits denoted by |0�s , while the third quantum register represents 
the ancilla qubits denoted by |0�a . The first block prepares the desired pure input state |�i� , where H⊗(n−1) is 
applied on the second register followed by n− 1 CNOT gates, with the control being at the second quantum 
register and the target being at the third quantum register. The unitary gate Ri is then applied on the system 
qubits, where the columns of the unitary operation Ri are the normalized eigenvectors of the density matrix ρ̃i . 
For non-unital quantum channels, in order to prepare the n-qubit system in the maximally mixed state ρ̃0,one 
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Figure 1.   The quantum circuit to acquire data to perform an n-qubit MSQPT. The symbol ‘/’ through the input 
wire represents a multiqubit quantum register. The first and the second quantum registers collectively represent 
the system qubits (denoted by |0�s ), and the third quantum register represents the ancilla qubits (denoted 
by |0�a ). The first block prepares the desired pure input state |�i� . The unitary gate Ri is then applied on the 
system qubits. The second block represents the unknown quantum process which is to be applied to the system 
qubits and the last block represents the measurement settings to compute the expectation value of the desired 
observable.
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needs an extra ancillary qubit as compared to preparing other ρ̃i (i > 0) . One has to prepare the joint system 
(main system qubits+ancilla qubits) in the state: |�0� =

∑

i(|ei� ⊗ |e′i�)/
√
2n , where |ei� and |e′i� are computational 

basis vectors of the system qubits and the ancilla qubits, respectively. It is to be noted that |�0� has a Schmidt rank 
greater than 1, which demonstrates that the state is entangled. For example, for a two-qubit system, the state of 
the combined system (system + ancilla) is:

For an n-qubit system, the state ρ̃0 corresponding to the identity operator can be prepared by applying n 
Hadamard gates on n system qubits and then applying n CNOT gates with the system qubits being the control 
and ancilla qubits being the target. The unitary gate R0 is an n-qubit identity operation. The rest of the protocol 
and the quantum circuit given in Fig. 1 remains unaltered. The second block represents the unknown quantum 
process which is to be characterized and the last block represents the measurement settings to compute the 
expectation values of the desired observables. Note that in the third block, after the appropriate quantum map-
ping, only a single detection is performed at a time, to measure a desired observable.

In order to represent a valid quantum map, the χ matrix should satisfy following conditions33: (1) χ = χ† , 
(2) χ ≥ 0 and (3) 

∑

m,n χmnE
†
mEn = I . Using the MSQPT method, the χ matrix is Hermitian by construction, 

however there is no guarantee that it will satisfy the last two conditions. One can use the constrained convex 
optimization (CCO) technique10 to obtain a valid χcco matrix from χmsqpt as follows: 

 where χmsqpt is the experimentally obtained process matrix using the MSQPT protocol and χcco is the variable 
process matrix which represents the underlying true quantum process.

State preparation and unitary operator construction.  We note here that for an n-qubit system, all 
density operators ρ̃i in Eq. (5) represent mixed states (except for n = 1 ). We hence require ancillary qubits to 
experimentally prepare the quantum system in the state ρ̃i.

It turns out that for an n-qubit system, all non-zero eigenvalues of the operator ρ̃i in Eq. (5) are the same and 
are equal to 1/2n−1 . Let {|ui1�, |ui2�, |ui3�, . . . , |ui2n−1 �} represent the complete set of normalized eigenvectors of 
the operator ρ̃i corresponding to its non-zero eigenvalues. The state of the combined system (system + ancilla) 
we need to prepare is given by:

where |ai� are the basis states of the ancilla qubits. Note that in general |�i� represents an entangled state. After 
tracing over the ancillary qubits, the system will be in the desired state ρ̃i.

The unitary operator Ui , such that Ui|0�sys|0�ancilla = |�i� can be constructed as follows: 

1.	 Apply a Hadamard gate on ( n− 1 ) system qubits; 2n−1 number of states will be in a superposition state while 
the ancilla qubits will be in the state |0�ancilla.

2.	 Apply CNOT gates with the system qubits being the controls and ancilla qubits being the target. We hence 
have |0�ancilla −→ |ai1� , |0�ancilla −→ |ai2� , and so on.

3.	 Map the computational basis states of the system qubits to the eigenvectors of ρ̃i using the unitary gate Ri , 
where the columns of Ri are the normalized eigenvectors of ρ̃i Eq. (5). Note that the column position of 
eigenvectors depends on which computational basis vector we want to map onto which eigenvector. The 
combined system (system + ancilla qubits) will be in the |�i� state.

4.	 Repeat the steps [1–3] to prepare other states ρ̃i.

Results and discussion
The IBM quantum processor is based on superconducting qubits and is freely available through the cloud34–36, 
and has been used to demonstrate various quantum protocols37,38. More details about the architecture of the IBM 
QX2 processor and the topology of superconducting qubits are given in39 and information about the form of the 
Hamiltonian and important relaxation parameters can be found in40,41. We use the five-qubit IBM QX2 proces-
sor to demonstrate the MSQPT protocol described in the previous section. The system is prepared in an input 
state corresponding to all qubits being in the |0� state. After the gate implementation, projective measurements 
are performed in the Pauli σz basis and the quantum circuit is implemented multiple times to compute the Born 
probabilities. The IBM quantum architecture requires a pure quantum state as an input state and only allows the 
implementation of unitary operations. We hence utilize ancillary qubits to prepare the system in a mixed state 
and to simulate non-unitary evolution.

(8)|�0� =
|00�|00� + |01�|01� + |10�|10� + |11�|11�

2

(9a)min
χcco

�χmsqpt − χcco�l2
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χ cco
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†
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We implement the MSQPT protocol corresponding to two- and three-qubit gates and element wise construct 
the corresponding full χ matrices. In all the cases considered, we use the experimentally constructed χmsqpt , solve 
the CCO problem (Eq. 9a) and obtain χcco , which represents the underlying true quantum process. The fidelity 
of experimentally implemented quantum gates is computed using the measure14:

To validate our circuits, we also theoretically simulate the MSQPT protocol on the IBM processor and obtain 
χsim . The fidelity of the simulated quantum gates is computed by using a similar measure as given in Eq. (11).

MSQPT of two‑qubit quantum gates.  For two qubits, we need to prepare 15 input (mixed) states ρ̃i 
(Eq. 5) corresponding to all the Pauli operators Ei . For all ρ̃i s, it turns out that out of four eigenvalues, only two 
eigenvalues are non-zero ( �1 = �2 = 1/2 ). Let |vi1� and |vi2� represent the normalized eigenvectors of the operator 
ρ̃i corresponding to �1 and �2 , respectively. To perform MSQPT of two qubits on the IBM computer, we use one 
ancillary qubit and prepare three-qubit input (pure) states of the form:

All 15 three-qubit pure input states |ψi� corresponding to Ei are listed below:

As an illustration, the IBM quantum circuit for implementing MSQPT of a two-qubit SWAP gate, correspond-
ing to the quantum state |ψ6� and the observable E13 = σz ⊗ σx , is given in Fig. 2. The system qubits are denoted 

(11)F (χexp,χthe) =
|Tr[χexpχ

†
the]|

√

Tr[χ†
expχexp]Tr[χ

†
theχthe]

(12)|ψi� =
|vi1�|0� + |vi2�|1�√

2

|ψ1� = [(0, 1, 0, 1, 1, 0, 1, 0)/2]T ,
|ψ2� = [(0,−i, 0, 1,−i, 0, 1, 0)/2]T ,
|ψ3� = [(1, 1, 0, 0, 0, 0, 0, 0)/

√
2]T ,

|ψ4� = [(0,−1, 1, 0, 0,−1, 1, 0)/2]T ,
|ψ5� = [(1, 0, 0, 1, 0, 1, 1, 0)/2]T ,
|ψ6� = [(−i, 0, 0, 1, 0,−i, 1, 0)/2]T ,
|ψ7� = [(0, 1,−1, 0, 0, 1, 1, 0)/2]T ,
|ψ8� = [(0,−1,−i, 0, 0,−i, 1, 0)/2]T ,
|ψ9� = [(−i, 0, 0, 1, 0, i, 1, 0)/2]T ,
|ψ10� = [(−1, 0, 0, 1, 0, 1, 1, 0)/2]T ,
|ψ11� = [(0, 1, 1, 0, 0, 1, 1, 0)/2]T ,
|ψ12� = [(1, 0, 0, 1, 0, 0, 0, 0)/

√
2]T ,

|ψ13� = [(0, 1, 0, 1,−1, 0, 1, 0)/2]T ,
|ψ14� = [(0,−i, 0, 1, i, 0, 1, 0)/2]T ,
|ψ15� = [(1, 0, 0, 0, 0, 0, 0, 1)/

√
2]T

(a) IBM circuit
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Figure 2.   (a) The IBM quantum circuit to perform MSQPT of a two-qubit SWAP gate. The first block prepares 
the three-qubit input state |ψ6� . The quantum process corresponding to the two-qubit SWAP gate is applied 
in the second block and in the last block, the quantum map U13 =CNOT12 . Ry(−π

2 ) is applied to compute 
Tr(σz ⊗ σx�(ρ̃6)) by detecting the second qubit in the σz basis. (b) The histogram representing statistical results 
after implementing the quantum circuit given in (a), 4096 times. The values p0 = 0.4502 and p1 = 0.5498 
represent the probabilities of obtaining the second qubit in the |0� and the |1� state, respectively.
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by q[0] and q[1] (the first and second qubit, respectively) while the ancilla qubit is denoted by q[2]. To prepare 
the system in the pure state |ψ6� , the unitary operation U6 = S2. CNOT12.CNOT23. H 2. H 1 is applied on the initial 
state |000� in the first block. In the second block, the quantum process (�system ⊗ Iancilla) corresponding to a two-
qubit SWAP gate is implemented on the system qubits. In the last block, the quantum map corresponding to the 
unitary operation U13 = CNOT12.Ry(−π

2 ) is used to transform the output state and determine E13 = �σz ⊗ σx� by 
measuring the second qubit in the σz basis30. The quantity corresponding to Tr(σz ⊗ σx�(ρ̃6)) is experimentally 
computed, which is equivalent to Tr(σ2zU13(�(ρ̃6))U13

†) . Using Eq. (5) we obtain:

One can thus efficiently compute all the 〈Eik〉 (Eq. 4) and estimate the corresponding average survival prob-
abilities Fmn . The list of all unitary operations Ui corresponding to all quantum maps which transform output 
states in order to determine 〈Ek〉 by detecting either of the system qubits in the σz basis (i.e. by measuring either 
〈σ1z〉 or 〈σ2z〉 ) is given in30.

The 16× 16 grid matrix plots in Fig. 3a represent χ matrix corresponding to the two-qubit SWAP gate, where 
the position of the specific grid represents the corresponding element of the χ matrix, while its color represents 
its value. For instance, the first yellow square in the matrix plot in Fig. 3a denotes the element χ11 = 0.25 of the 
theoretically constructed process matrix χthe . Only 16 yellow squares have non-zero values in the theoretically 
constructed matrix plot for the SWAP gate. The second and third columns represent matrix plots corresponding 
χmsqpt , and χcco respectively obtained by implementing MSQPT protocol on IBM QX2 processor. The differ-
ences in the theoretically computed and experimentally obtained matrix plots reflect errors due to decoherence 
and statistical and systematic errors while preparing the initial input state. The color grids in the matrix plots in 
Fig. 3 in the third column (CCO experimental) have a smaller deviation as compared to the matrix plots in the 
second column (MSQPT experimental). This improved fidelity implies that one can use the MSQPT data to solve 
CCO problem and reconstruct the full process matrix more accurately. The experimental fidelity of χmsqpt for the 
SWAP gate (Fig. 3a) turned out to be 0.799, while the improved fidelity of χcco turned out to be 0.929. We also 
computed the process matrices for the two-qubit CNOT gate and the corresponding matrix plots are shown in 
Fig. 3b. The experimental fidelity of χmsqpt for the CNOT gate turned out to be 0.828, while the improved fidelity 
of χcco turned out to be 0.953. We obtained fidelities of F (χsim) ≥ 0.99 for all the quantum gates, which ensures 
that all the quantum circuits are correct. The fidelity values of F (χcco) ≥ 0.9 shows that one can retrieve the full 
dynamics of the quantum process with considerably high precision by solving the optimization problem (Eq. 9a) 
using the experimentally constructed full χmsqpt matrix.

The standard QPT protocol is based on the linear inversion method and requires the preparation of 15 lin-
early independent input states and further requires the state tomography of each output state. Hence the total 
number of readouts to determine a specific element of the two-qubit process matrix with high precision, using 
the standard QPT protocol, is 15× 15 = 225 . The SQPT protocol uses quantum two-design states as initial input 
states and further requires a quantum operation to prepare the system in the desired state. Determining the real 
and imaginary parts of Fmn respectively requires a total of 80 state preparations. Further, to estimate the overlap 
with original state |φj��φj| (Eq. 2), three readouts need to be performed (as there are three non-zero coefficients 

(13)
Tr(σz ⊗ σx�(σx ⊗ σy)) = 4Tr(σz ⊗ σx�(ρ̃6))

= 4Tr(σ2zU13(�(ρ̃6))U13
†)
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Figure 3.   Matrix plots corresponding to the real and imaginary parts of the (a) χ matrix for the SWAP gate and 
(b) χ matrix for the CNOT gate. The first column represents the theoretically constructed process matrix χthe , 
while the second and third columns represent χmsqpt , and χcco , respectively. The top row represents the real part 
of the process matrix while the bottom row represents the imaginary part of the process matrix. The matrix plots 
were generated using MATLAB42.
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in the decomposition of �j ). Hence the total number of readouts to determine a specific element of the two-qubit 
process matrix with high precision, using the SQPT protocol, is 80× 3 = 240 . In the MSQPT protocol, the aver-
age survival probabilities can be computed quite efficiently as the total number of states that need to be prepared 
are only 15, there are only 12 readouts per mutually unbiased basis (MUB) set, and there are 5 MUB sets which 
form a complete set of quantum 2-design states. Hence the total number of readouts to determine a specific ele-
ment of the two-qubit process matrix with high precision, using the MSQPT protocol, is only 12× 5 = 60 . The 
experimental complexity and number of ancilla qubits required to determine a specific element of the process 
matrix with high precision for a two-qubit system, using the MSQPT method, are compared with the standard 
QPT and SQPT methods in Table 1.

MSQPT of three‑qubit quantum gates.  To perform MSQPT on a three-qubit system, we need to pre-
pare 63 input (mixed) states ρ̃i corresponding to all the three-qubit Pauli operators Ei . It turns out that for all ρ̃i , 
out of 8 eigenvalues only 4 are non zero and are equal to 1/4. Let |ui1� , |ui2� , |ui3� and |ui4� be the 4 eigenvectors of 
ρ̃i with non-zero eigenvalues. In order to prepare the system in the any of the ρ̃i states, we first need to prepare 
a five-qubit pure state:

After tracing out the two ancilla qubits, the three system qubits are in the state ρ̃i , i.e., Trancilla(|�i���i|) = ρ̃i . 
The list of all five-qubit pure input states {|�i�} is given in Supplementary Information.

Preparation of the five-qubit input state requires finding the correct decomposition of the unitary operator 
Ri (Fig. 1) in terms of CNOT gates and single-qubit rotations. We note here that finding the decomposition 
of a general unitary operation Ri is not an easy task. The complexity of the implementation of a given unitary 
operation primarily depends on the limitations of the quantum hardware being used. The IBM processor that we 
have used allows only a limited number of quantum gates to be implemented directly. Thus the implementation 
of a general unitary operation on the IBM processor involves its efficient decomposition as a sequence of the 
available quantum gate and then its implementation. Particularly in the context of MSQPT, the construction of 
unitary operators Ri is system-specific and finding a general algorithm to experimentally implement Ri on a 
given physical system is a research direction that requires more efforts. There are several techniques available 
to decompose a given unitary operation into a universal set of quantum gates44–47. In this study we have used 
the Mathematica package UniversalQCompiler46,47 as an optimization tool to prepare the input state |�i� from 
the initial state |00000� . The quantum circuit to perform MSQPT of a three-qubit Toffoli gate is given in Fig. 4, 
corresponding to the five-qubit pure input state |�50� and the observable E15 = I ⊗ σz ⊗ σy . The system qubits 
are denoted by q[0], q[1] and q[2], while the ancilla qubits are denoted by q[3] and q[4], respectively. The first 
block in Fig. 4 prepares the five-qubit pure input state |�50� while the second block represents the action of the 
Toffoli gate on the system qubits and the last block represents the action of the quantum map corresponding to 
the unitary operation U15 =CNOT23 . A measurement is made on the third qubit in the σz basis, to compute the 
quantity Tr(σ3zU15(�(ρ̃50))U15

†) , and obtain:

All the Tr(Ek�(Ei)) = �Eik� can be computed in a similar fashion, corresponding to the desired average 
survival probability Fmn . The list of all unitary operations Ui , corresponding to all quantum maps for the three-
qubit system can be found in48. The experimentally obtained 64× 64 dimensional χ matrix corresponding to 
the three-qubit Toffoli gate is depicted in Fig. 5 as a bar plot, where the first and second columns represent the 
real and imaginary parts of the χ matrix, respectively. The first row denotes the theoretically constructed process 
matrix χthe , while the second and third rows represent the experimentally constructed process matrices χmsqpt 
and χcco , respectively. The experimental gate fidelity for χmsqpt turns out to be 0.589, while the much improved 
experimental gate fidelity obtained for the case of χcco turns out be 0.946. To ensure the correctness of the circuits, 
we also simulated all the circuits on the IBM simulator, with a simulation fidelity of 0.98.

The total number of readouts to determine a specific element of the three-qubit process matrix with high 
precision, using the standard QPT protocol, is 63× 63 = 3969 . For three qubits, the cardinality of the set of 
quantum 2-design states is 72 (9 MUB sets each having a cardinality of 8). Determining the real and imaginary 
parts of Fmn respectively for three qubits requires a total of 288 state preparations using the SQPT protocol. Fur-
ther to estimate the overlap with original state �j , 7 readouts need to be performed. Hence the total number of 
readouts required to determine a specific element of the three-qubit process matrix with high precision, using 

(14)|�i� =
|ui1�|00� + |ui2�|01� + |ui3�|10� + |ui4�|11�

2

(15)
Tr(E15�(E50)) = 8Tr(E15�(ρ̃50))

= 8Tr(σ3zU15(�(ρ̃50))U15
†)

Table 1.   Experimental complexity and the number of ancillary qubits required for the implementation of two-
qubit MSQPT, SQPT and standard QPT protocols.

MSQPT SQPT Standard QPT   

Preparations 15 80 15    

Readouts 60 240 225    

Ancilla qubits 1 0 0    
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the SQPT method, is 288× 7 = 2016 . For the MSQPT method, the total number of states we need to prepare are 
63 (corresponding to the complete set of basis operators) and the total number of readouts required is 504 (for 
each MUB set we need to perform 56 readouts, so the total number of readouts is 9× 56 = 504 ). This makes the 
MSQPT method vastly more efficient as compared to the standard QPT and SQPT protocols. The experimental 
complexity and number of ancilla qubits required to determine a specific element of the process matrix with 
high precision for a three-qubit system, using the MSQPT method, are compared with the standard QPT and 
SQPT methods in Table 2.

Conclusions
We proposed a quantum circuit to efficiently implement the MSQPT protocol which reduces the experimental 
cost of performing standard SQPT. We implemented the MSQPT protocol on the IBM quantum processor. The 
system was prepared in a mixed state corresponding to all Pauli operators and the MSQPT protocol to perform 
element wise process tomography of two- and three-qubit quantum gates was successfully implemented. Our 
experimental results indicate that MSQPT is substantially more efficient as compared to SQPT and standard 
methods, when estimating specific elements of the process matrix with high precision. We also showed that 
one can utilize the full process matrix obtained experimentally via MSQPT, to solve the l2-norm minimization 
problem and reconstruct the underlying true quantum process. The MSQPT method opens up several avenues 
for future applications such as finding an optimal set of basis operators, developing generalized algorithms to find 
all sets of quantum maps to perform efficient measurements, and finding efficient decompositions of unitaries 
using the set of available quantum gates for easy experimental implementation.

Figure 4.   (a) The IBM quantum circuit to perform MSQPT of a three-qubit Toffoli gate. The first block prepares 
the five-qubit input state |�50� . The quantum process corresponding to the Toffoli gate is applied in the second 
block, and in the last block, the quantum map U15 =CNOT23 is applied to compute Tr(I ⊗ σz ⊗ σy�(ρ̃50)) by 
detecting the third qubit in the σz basis. (b) The histogram represents statistical results after implementing the 
quantum circuit given in (a), 4096 times. The values p0 = 0.51489 and p1 = 0.48511 represent the probabilities 
of obtaining the third qubit in the |0� and the |1� state, respectively.
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Figure 5.   Tomographs corresponding to the three-qubit Toffoli gate, with the first and second columns 
representing the real and imaginary part of the χ matrix, respectively. The first row represents the theoretically 
constructed χ matrix while the second and third rows represent the experimentally constructed χ matrix 
obtained by implementing the MSQPT and the CCO protocols, respectively. The tomographs were generated 
using Mathematica43.

Table 2.   Experimental complexity and the number of ancilla qubits required for the implementation of three-
qubit MSQPT, SQPT and standard QPT protocols.

MSQPT SQPT Standard QPT   

Preparations 63 288 63    

Readouts 504 2016 3969    

Ancilla qubits 2 0 0    
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