Published in final edited form as: Mod Pathol. 2016 October; 29(10): 1254–1261. doi:10.1038/modpathol.2016.101. # CCNE1 Amplification and Centrosome Number Abnormality in Serous Tubal Intraepithelial Carcinoma- Further Evidence Supporting its Role as a Precursor of Ovarian High-Grade Serous Carcinoma Elisabetta Kuhn¹, Tian-Li Wang¹, Kai Doberstein², Asli Bahadirli-Talbott¹, Ayse Ayhan^{1,3}, Ann Smith Sehdev⁴, Ronny Drapkin², Robert J. Kurman^{1,5}, and le-Ming Shih^{1,5} ¹Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA ²Penn Ovarian Cancer Research Center, Department of Obstetrics and Gynecology, University of Pennsylvania, Philadelphia, USA ³Department of Pathology, Seirei Mikatahara Hospital, Hamamatsu, Japan, ⁴Legacy Health Systems, Portland, OR, USA ⁵Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA #### **Abstract** Aberration in chromosomal structure characterizes almost all cancers and has profound biological significance in tumor development. It can be facilitated by various mechanisms including overexpression of cyclin E1 and centrosome amplification. Since ovarian high-grade serous carcinoma has pronounced chromosomal instability, in this study we sought to determine if increased copy number of *CCNE1* which encodes cyclin E1 and centrosome amplification (> 2 copies) occur in its putative precursor, serous tubal intraepithelial carcinoma. We found *CCNE1* copy number gain/amplification in 8 (22%) of 37 serous tubal intraepithelial carcinomas and 12 (28%) of 43 high-grade serous carcinomas. There was a correlation in *CCNE1* copy number between serous tubal intraepithelial carcinoma and high-grade serous carcinoma in the same patient (p <0.001). There was no significant difference in the percentage of *CCNE1* gain/amplification between serous tubal intraepithelial carcinoma and high-grade serous carcinoma (p=0.61). Centrosome amplification was recorded in only 5 (14%) of 37 serous tubal intraepithelial carcinomas, and in 10 (40%) of 25 high-grade serous carcinomas. The percentage of cells with centrosome amplification was higher in high-grade serous carcinoma than serous tubal intraepithelial carcinoma (p<0.001). Induced expression of cyclin E1 increased the percentage of ## Conflict of Interest: Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms Correspondence: I-M Shih, MD, PhD, Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, USA, ishih@jhmi.edu and E. Kuhn, MD, Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, USA, elisabettakuhn@hotmail.it. The authors have disclosed that they have no significant relationships with, or financial interest in, any commercial companies pertaining to this article. fallopian tube epithelial cells showing centrosome amplification. Our findings suggest that gain/amplification of *CCNE1* copy number occurs early in tumor progression and precedes centrosome amplification. The more prevalent centrosome amplification in high-grade serous carcinoma than serous tubal intraepithelial carcinoma supports the view that serous tubal intraepithelial carcinoma precedes the development of many high-grade serous carcinomas. #### **Keywords** serous intraepithelial carcinoma; ovarian high-grade serous carcinoma; cyclin E1; centrosome # Introduction Ovarian high-grade serous carcinoma is the leading cause of gynecologic cancer-related death in the United States¹. Over the last decade, one of the major advances towards understanding the development of ovarian cancer was the recognition that a lesion in the fallopian tube, designated "serous tubal intraepithelial carcinoma", is the most likely precursor of many high-grade serous carcinomas^{2–4}. serous tubal intraepithelial carcinomas are identified on hematoxylin-and-eosin stained sections based on morphology alone or in combination with immunostaining patterns of p53, Ki-67, laminin C1 and stathmin 1 immunoreactivity⁵⁻⁸. Using a comprehensive sampling technique of the fallopian tubes (i.e., the SEE-FIM protocol)^{9, 10}, investigators have identified serous tubal intraepithelial carcinomas in 50-60% of patients with concurrent hi and in approximately 5% of women without ovarian cancer but who have a genetic predisposition to ovarian high-grade serous carcinoma at the time of risk reducing salpingo-oophorectomy^{9, 10}. Besides those discovered at the time of risk reducing salpingo-oophorectomy, serous tubal intraepithelial carcinomas have also been reported as incidental findings in women undergoing hysterectomy and bilateral salpingo-oophorectomy for a variety of benign and malignant conditions 11-15. The tubal origin of high-grade serous carcinoma is supported by molecular and epidemiologic studies^{6, 9, 16, 17} and genetically engineered mouse models^{4, 18, 19}. Despite the recent advances in elucidating the roles of serous tubal intraepithelial carcinoma in the early pathogenesis of high-grade serous carcinoma, the molecular events involved in the development of serous tubal intraepithelial carcinoma and progression from serous tubal intraepithelial carcinoma to high-grade serous carcinoma are still not completely understood. A lingering question is whether serous tubal intraepithelial carcinoma is a precursor of highgrade serous carcinoma or a metastasis²⁰. In order to further characterize serous tubal intraepithelial carcinoma, particularly in regard to the molecular events involved in the transition from serous tubal intraepithelial carcinoma to high-grade serous carcinoma, we studied two related markers, *CCNE1* copy number and centrosome amplification, in a series of serous tubal intraepithelial carcinomas and high-grade serous carcinomas, many of which were concurrent in the same patient. We focused on *CCNE1* because it encodes cyclin E1 which binds to cyclin-dependent kinase 2 (CDK2) and plays an important role not only in cell cycle progression (G1 to S phase transition) but also in centrosome duplication, a tightly regulated process that maintains genetic stability²¹. *CCNE1* gene amplification is one of the most common molecular genetic alterations that characterize high-grade serous carcinoma, especially in those tumors that develop resistance to platinum-based chemotherapy^{22–25}, and overexpression of cyclin E1 can be detected in many high-grade serous carcinomas as well as in some serous tubal intraepithelial carcinomas²⁶. It has been recently reported that cyclin E1 upregulation occurs early in fallopian tube secretory cell transformation to high-grade serous carcinomas²⁷. As in many other types of solid tumors, amplification and overexpression of CCNE1 in high-grade serous carcinomas are associated with increased chromosomal instability and poor clinical outcome^{28–30}. One of the main mechanisms that contribute to the aggressive behavior of cancers with abundant cyclin E1 proteins is the promotion of aberrant centrosome duplication, where more than two centrosomes appear in a cell, creating chromosomal instability after cytokinesis^{21, 31}. Chromosomal instability, in turn, fuels tumor evolution, as it provides an expanding repertoire of tumor subpopulations to develop drug resistance and other highly malignant phenotypes. Indeed, multivariate survival analysis of The Cancer Genome Atlas of ovarian cancer shows that a higher degree of chromosomal aberrations, reflecting a history of chromosomal instability, was significantly associated with a poor overall survival in high-grade serous carcinoma patients³². In the current study we used fluorescence *in situ* hybridization and immunofluorescence to analyze *CCNE1* DNA copy number and centrosome number, respectively, on tissue sections and cells in culture. By comparing serous tubal intraepithelial carcinomas and high-grade serous carcinomas, we determined whether chromosomal instability, as reflected by both markers, occurred early in tumor progression, and also what was the temporal sequence for tumor cells to acquire these aberrations. #### Materials and methods ## Case selection A total of 43 high-grade serous carcinomas and 37 serous tubal intraepithelial carcinomas were retrieved from the pathology files of the Johns Hopkins Hospital (Baltimore, MD) and the Legacy Health System (Portland, OR). In this series, 19 cases contained both serous tubal intraepithelial carcinomas and high-grade serous carcinomas from the same patients. Among them, 11 patients had two discrete serous tubal intraepithelial carcinomas; resulting in a total of 30 serous tubal intraepithelial carcinomas that were concurrently associated with high-grade serous carcinomas and 7 serous tubal intraepithelial carcinomas that were not associated with high-grade serous carcinomas. Germline *BRCA1/2* status was not known. All the available slides were reviewed to confirm the diagnosis using criteria that have been previously described⁵. Whole sections were used for experiments in all specimens except 23 high-grade serous carcinomas that were arranged in tissue microarrays composed of 1 mm tissue cores in triplicate. The tissue collection was approved by the Institutional Review Board of the Johns Hopkins Medical Institutions and the Legacy Health System. ### Fluorescence in situ hybridization Two-color FISH assay was used to measure the gene copy number of *CCNE1* per cell in serous tubal intraepithelial carcinoma and high-grade serous carcinoma as detailed previously³³. Briefly, 4-µm thick sections were deparaffinized in xylene, hydrated through graded ethanol and incubated with proteinase K at 37°C for 33 minutes. After washing in 2X Aniara saline-sodium citrate, the slides were placed in a denaturation solution (70% formamide/2X saline-sodium citrate) at 75°C for 5 minutes, rinsed in 2X SSC. The slides were then dehydrated through graded ethanols, and dried in an oven at 62°C for 2 minutes. *CCNE1/CEN19p* FISH probe (cat# FG0013, Abnova Corp, Taipei, Taiwan) was applied to the slides and cover slipped. DNA was denatured through incubation for 15 minutes at 80°C and hybridization was performed at 37°C for 20–24 hours. After washing for 20 minutes in 1.5 mol/L urea in 0.2X SSC, slides were drained, dehydrated through graded ethanol, airdried, mounted with ProLong® Gold Antifade Reagent with DAPI (cat# P-36931, Invitrogen, Eugene, Oregon, USA) and imaged. The same assay was also applied to cell lines in culture including FT282 fallopian tube epithelial cells, OVCAR3, COV318, OVCA8 and OVSAHO ovarian cancer cells. OVCAR3 and COV318 were *CCNE1* amplified lines while OVCAR8 has a *CCNE1* gain and OVSAHO has a normal *CCNE1* status. Percentage of cells with more than two centrosomes was estimated by counting at least six fields of view, each containing 20–100 randomly selected cells. #### **Immunofluorescence** Two-color immunofluorescence assay was used to measure the centrosome number per interphase cell in serous tubal intraepithelial carcinoma and high-grade serous carcinoma as previously described³⁴. Briefly, 5 μ m sections from each tissue block was de-paraffinized in xylene then rehydrated through graded alcohols. Antigen retrieval was performed in Trilogy solution for 10 minutes. The slides were then incubated at room temperature for two hours with primary mouse-monoclonal γ -tubulin (T-5326, Sigma-Aldrich, dilution 1:200) and rabbit-monoclonal α -tubulin (ab52866, Abcam, 1:200). Signal detection was performed by incubating the slides with fluorochrome-conjugated secondary antibodies (from Jackson ImmunoResearch Laboratories) goat anti-mouse Rhodamine-Rd antibody (1:200), and goat anti-rabbit FITC (1:400) at room temperature for one hour. Three TBST washes were carried out before tissue sections were counterstained with DAPI and mounted. # Image analysis Three images from each serous tubal intraepithelial carcinoma, high-grade serous carcinoma and normal fallopian tube were captured using a Nikon 50i epifluorescence microscope equipped with fluorescence excitation/emission filters for different fluorophores (Omega Optical) for both CCNE1 FISH and two-color immunofluorescence. Grayscale images were captured using Nikon NIS-Elements software and an attached Photometrics Cool snap EZ digital camera. For presentation purposes, images were pseudo-colored and merged. For each marker, three images from lesions were captured. Grayscale images were captured using Nikon NIS-Elements software and an attached Photometrics Cool snap EZ digital camera. The copy number was classified into five FISH strata. *CCNE1* gain/amplification was defined as the presence of loose or tight *CCNE1* signal cluster or *CCNE1* to centromeric probe (CEP19) ratio 2 in more than 20% of the analyzed cells. *CCNE1* copy number analysis was performed counting FISH dot signals in 100 discrete nuclei for each lesion. Centrosomes were visualized with immunofluorescent staining using the γ -tubulin antibody (labeled red), and mitotic spindles using the α -tubulin antibody (labeled green). Centrosome amplification was defined as if there were more than 2 centrosomes per cell or if they were organized in large patchy aggregates (diameter 2 μ m). Centrosome analysis, we performed counting in all discrete nuclei present in the pictures (minimum of 100) for each lesion to determine the fraction of tumor cells showing centrosome amplification. #### Statistical analysis Statistical analysis was carried out using GraphPad Prism software version 5.0 (GraphPad Software, San Diego, CA, USA). Comparisons of FISH findings between matched serous tubal intraepithelial carcinomas and high-grade serous carcinomas were obtained using the two-tailed Wilcoxon signed rank test. The difference in the percentage of *CCNE1* FISH and centrosome positive cases between serous tubal intraepithelial carcinomas and high-grade serous carcinomas was analyzed by paired two-tailed t test. Comparisons of *CCNE1* copy number outcome with centrosomes were performed using the two-tailed Fisher's exact test. p-values of 0.05 or less were considered statistically significant. ### Results CCNE1 copy number was classified into five categories- gain/amplification, high polysomy, low polysomy, trisomy and disomy. In this study, CCNE1 gain/amplification and high polysomy were considered as FISH positive. We found that 8 (22%) of 37 serous tubal intraepithelial carcinomas were CCNE1 FISH positive, of which 6 had amplification and 2 had high polysomy (Fig. 1). Interestingly, one out of 7 serous tubal intraepithelial carcinomas that were not associated with high-grade serous carcinoma showed CCNE1 high polysomy (FISH positive). For high-grade serous carcinomas, 12 (28%) of 43 high-grade serous carcinomas were CCNE1 FISH positive, including 10 with amplification and 2 with high polysomy (Fig. 1). In this series, 30 serous tubal intraepithelial carcinomas were associated with 19 high-grade serous carcinomas, among which 11 have a second serous tubal intraepithelial carcinoma (Table 1). We found a significant concordance in CCNE1 copy number (FISH positive versus FISH negative cases) between serous tubal intraepithelial carcinoma and high-grade serous carcinoma from the same 19 patients (p <0.001). In high-grade serous carcinoma showing FISH positive (n=5), their associated serous tubal intraepithelial carcinomas were also FISH positive while in 14 FISH negative high-grade serous carcinomas, none of their associated serous tubal intraepithelial carcinomas were FISH positive (Table 1). There was no significant difference in the percentage of CCNE1 FISH positive serous tubal intraepithelial carcinomas compared to *CCNE1* FISH positive high-grade serous carcinomas (p= 0.613, Chi square). No evidence of CCNE1 copy number changes was noted in normal-appearing fallopian tube epithelium adjacent to or remote from serous tubal intraepithelial carcinomas. A representative serous tubal intraepithelial carcinoma showing CCNE1 amplification is shown in Fig. 2. There were 20 high-grade serous carcinomas examined on whole sections and 23 high-grade serous carcinomas in tissue microarrays and there was a strong correlation in percentage of CCNE1 copy number changes between whole section and tissue microarrays (r²= 0.993, p< 0.05), indicating that tissue microarray format was compatible with FISH analysis. To measure the centrosome number, we applied a double-color immunofluorescence for γtubulin and α-tubulin to simultaneously visualize centrosomes and microtubules, respectively. Only whole sections were stained for centrosome immunofluorescence. Centrosome amplification (centrosome number > 2) was significantly increased in highgrade serous carcinoma as compared to serous tubal intraepithelial carcinoma (p= 0.0006, Wilcoxon rank test) as it was recorded in only 5 (14%) of 37 serous tubal intraepithelial carcinomas, in contrast to 10 (40%) of 25 high-grade serous carcinomas (Fig. 3A and Fig. 3B). A representative serous tubal intraepithelial carcinoma showing centrosome amplification is illustrated in Fig. 4. A pair-wise comparison of normal fallopian tube epithelium, serous tubal intraepithelial carcinoma and high-grade serous carcinoma from the same cases demonstrated that 21 (88%) of 24 high-grade serous carcinomas had a higher percentage of cells showing centrosome amplification than corresponding serous tubal intraepithelial carcinomas and three of the high-grade serous carcinoma demonstrated a mild decrease in percentage of cells with centrosome amplification as compared to the matched serous tubal intraepithelial carcinomas (Fig. 3C). In general, there was a positive correlation in percentage of cells with centrosome amplification between high-grade serous carcinoma and serous tubal intraepithelial carcinoma from the same patients (Fig. 3D). We did not observe any abnormal centrosome number in normal-appearing fallopian tube epithelial or stromal cells. In order to determine whether cyclin E1 upregulation resulted in centrosome amplification, we use an epithelial cell line, FT282, established from a normal fallopian tube as previously described²⁷. Derivative cell lines (FT282-V, FT282-CE) were generated using pMSCV-neo-(empty) and pMSCV-neo *CCNE1*, encoding full-length *CCNE1* subcloned from pRc/CMV 7946. We found that as compared to FT282-V cells, FT282-CE cells had significantly higher percentage of cells with more than two centrosomes (i.e., centrosome amplification) (Fig. 5). The percentage of amplified cells in FT282-CE was similar to ovarian cancer cell lines (Fig. 5). # **Discussion** Elucidating the molecular alterations at an early stage of tumor development has greatly enhanced our understanding of cancer pathogenesis which will, in turn, have an important impact on early detection, diagnosis and prevention. The molecular analysis of serous tubal intraepithelial carcinomas has been difficult and challenging as it depends on genome-wide assays which usually require a substantial amount of tissue. The diagnosis of these extremely minute lesions is made after histological examination following formalin fixation and paraffin embedding and therefore fresh tissue is not available for gene expression analysis. In order to circumvent these limitations, we employed FISH and immunofluorescence to compare *CCNE1* copy number and centrosome number between serous tubal intraepithelial carcinoma and high-grade serous carcinoma. The results of this study provide new evidence that *CCNE1* copy number gain/amplification occurs early in ovarian tumorigenesis, i.e., in serous tubal intraepithelial carcinoma, while centrosome amplification appears to represent a later molecular event. This finding supports the view that serous tubal intraepithelial carcinoma is a precursor of ovarian high-grade serous carcinoma as serous tubal intraepithelial carcinomas shows less frequent centrosome amplification than high-grade serous carcinoma. The finding of a similar frequency of CCNE1 gain/amplification in both serous tubal intraepithelial carcinoma and high-grade serous carcinoma together with our previous reports^{26, 27} showing cyclin E1 overexpression in serous tubal intraepithelial carcinomas but not in adjacent fallopian tube epithelium strongly suggests that cyclin E1 upregulation occurs in the precursor stage of many high-grade serous carcinomas. This observation is similar to those in our report showing a comparable frequency of CCNE1 gain/amplification (41–45%) in uterine serous carcinoma and its precursor serous endometrial intraepithelial carcinoma³³. It is known that there is a positive correlation between *CCNE1* copy number and mRNA levels in ovarian high-grade serous carcinoma (The Cancer Genome Atlas ovarian cancer dataset). Therefore, it was expected that those serous tubal intraepithelial carcinomas with CCNE1 gain/amplification would express more cyclin E1. Cyclin E1 alone may not be able to transform non-tumorigenic epithelial cells²³ but may act in concert with other molecules to promote tumor development as induced co-expression of cyclin E1 and Rsf-1, another ovarian cancer-associated gene³⁵. Of note, Rsf-1 is also frequently amplified and overexpressed in high-grade serous carcinoma and serous tubal intraepithelial carcinoma, and both cyclin E1 and Rsf-1 interact with each other to promote tumor growth³⁵. Thus, it is likely that cyclin E1 contributes to the genesis of serous tubal intraepithelial carcinoma by transforming normal tubal epithelial cells through collaborating with Rsf-1, mutant p53 and perhaps other molecular alterations. The role of cyclin E1 in promoting chromosomal instability has been established in cancer cells^{21, 36, 37} and the result from this study demonstrating that induced expression of cyclin E1 increased the percentage of non-transformed fallopian tube epithelial cells showing centrosome amplification further supports this view. However, it should not be construed that cyclin E1 upregulation is the only mechanism contributing to chromosomal instability. For example, defective homologous recombination pathway for DNA double strand break repair and telomere attrition can also cause chromosomal instability. To that end, it has been reported that *CCNE1* gain/amplification and mutations in homologous recombination repair genes such as *BRCA1/2* are, in general, mutually exclusive, suggesting that the high level of chromosomal instability in high-grade serous carcinoma results either from aberration of the cyclin E1 pathway or the BRCA1/2 pathway²³. Another interesting observation in this study was the demonstration of greater centrosome numbers per tumor cell in high-grade serous carcinoma than in serous tubal intraepithelial carcinoma. Centrosome amplification is considered a surrogate marker of chromosomal instability because more than two centrosomes readily induce unbalanced chromosomal segregation after cell division. Accordingly, the higher level of chromosomal instability in high-grade serous carcinoma compared to serous tubal intraepithelial carcinoma suggests that serous tubal intraepithelial carcinoma precedes high-grade serous carcinoma. It has been suggested that serous tubal intraepithelial carcinomas may represent lateral extension from the invasive high-grade serous carcinoma or that serous tubal intraepithelial carcinomas are metastases but either of these processes, would demonstrate similar centrosome numbers in both the high-grade serous carcinoma and the serous tubal intraepithelial carcinoma. Accordingly our findings provide evidence that serous tubal intraepithelial carcinoma is likely the immediate precursor of high-grade serous carcinoma. In a previous study using telomere FISH, we were able to demonstrate short telomeres in serous tubal intraepithelial carcinoma compared to high-grade serous carcinoma; short telomeres have been demonstrated to be one of the earliest molecular changes in carcinogenesis¹⁷. Thus, shorter telomere and lower frequency of centrosome amplification in serous tubal intraepithelial carcinoma compared to high-grade serous carcinoma together with the finding that ALDH1A1 is expressed in high-grade serous carcinoma but not serous tubal intraepithelial carcinoma³⁸ support the proposal that serous tubal intraepithelial carcinomas are precursors of many high-grade serous carcinomas. There are several limitations in the current study that should be acknowledged. First, a number of high-grade serous carcinomas failed to show an increased fraction of cells harboring centrosome amplification as compared to their corresponding serous tubal intraepithelial carcinomas, and therefore, they were considered uninformative. In these cases, this may have been the result of sampling bias due to a relatively small number of serous tubal intraepithelial carcinoma cells available for analysis. Alternatively, it is conceivable that not all serous tubal intraepithelial carcinomas are the precursors of the highgrade serous carcinomas so the centrosome numbers are similar between metastasis morphologically resembling serous tubal intraepithelial carcinoma and high-grade serous carcinoma. Second, geographical variation in centrosome numbers can be present because of intra-tumoral heterogeneity. The high-grade serous carcinoma areas we analyzed may represent a focal increase in centrosome number as compared to serous tubal intraepithelial carcinoma. Considering this potential problem, we attempted to sample high-grade serous carcinoma areas that were in the fallopian tube or close to the serous tubal intraepithelial carcinoma. Lastly, we did not find any correlation between CCNE1 gain/amplification and centrosome amplification in our cases although CCNE1 amplification is thought to cause centrosome amplification. Similarly, we did not observe an association between the percentage of ovarian cancer cells showing centrosome amplification and CCNE1 amplification and overexpression in cell lines (Fig. 5). This result suggests that in the context of high-grade serous carcinoma pathogenesis, redundant mechanisms other than cyclin E1 pathway exist for numeric regulation of centrosomes in tumor cells such as de novo synthesis of centrosomes³⁹. In summary, the findings of this study demonstrate that *CCNE1* copy number gain/ amplification occurs in 22% of serous tubal intraepithelial carcinomas that are associated with high-grade serous carcinomas, suggesting that amplification of *CCNE1* serves as one mechanism for the development of some serous tubal intraepithelial carcinomas. Moreover, centrosome amplification in tumor cells is more frequently detected in high-grade serous carcinomas than serous tubal intraepithelial carcinomas, indicating a progressive acquisition of chromosomal instability during tumor progression lending further support to the hypothesis that many high-grade serous carcinomas arise from serous tubal intraepithelial carcinomas. # **Supplementary Material** Refer to Web version on PubMed Central for supplementary material. # **Acknowledgements:** This study is supported in part by a grant from US Department of Defense W81XWH-11–2-0230/OC100517 (to RJK, IMS, TLW), the National Institute of Health CA165807 (to TLW), the Ephraim & Wilma Shaw Roseman Foundation (to IMS) and the HERA Women Cancer Foundation (to EK). The Dr. Miriam and Sheldon G. Adelson Medical Research Foundation (to RD), a DOD OCRP award (OC140511 to RD), and a grant from the German DFG Research Foundation (to KD). ### References - 1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2015. CA: a cancer journal for clinicians 2015; 65(1):5–29. [PubMed: 25559415] - Kurman RJ, Shih IM. The dualistic model of Ovarian carcinogenesis. revisited, revised and expanded. The American journal of pathology 2016; 186:733–47. [PubMed: 27012190] - 3. Crum CP, Drapkin R, Miron A, et al. The distal fallopian tube: a new model for pelvic serous carcinogenesis. Curr Opin Obstet Gynecol 2007; 19(1):3–9. [PubMed: 17218844] - 4. Perets R, Wyant GA, Muto KW, et al. Transformation of the fallopian tube secretory epithelium leads to high-grade serous ovarian cancer in Brca;Tp53;Pten models. Cancer cell 2013; 24(6):751–65. [PubMed: 24332043] - Visvanathan K, Vang R, Shaw P, et al. Diagnosis of serous tubal intraepithelial carcinoma based on morphologic and immunohistochemical features: a reproducibility study. The American journal of surgical pathology 2011; 35(12):1766–75. [PubMed: 21989347] - Kuhn E, Kurman RJ, Soslow RA, et al. The diagnostic and biological implications of laminin expression in serous tubal intraepithelial carcinoma. The American journal of surgical pathology 2012; 36(12):1826–34. [PubMed: 22892598] - 7. Karst AM, Levanon K, Duraisamy S, et al. Stathmin 1, a marker of PI3K pathway activation and regulator of microtubule dynamics, is expressed in early pelvic serous carcinomas. Gynecologic oncology 2011; 123(1):5–12. [PubMed: 21683992] - 8. Novak M, Lester J, Karst AM, et al. Stathmin 1 and p16(INK4A) are sensitive adjunct biomarkers for serous tubal intraepithelial carcinoma. Gynecologic oncology 2015; 139(1):104–11. [PubMed: 26206555] - Kindelberger DW, Lee Y, Miron A, et al. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. The American journal of surgical pathology 2007; 31(2):161–9. [PubMed: 17255760] - 10. Przybycin CG, Kurman RJ, Ronnett BM, Shih IM, Vang R. Are all pelvic (nonuterine) serous carcinomas of tubal origin? The American journal of surgical pathology 2010; 34(10):1407–16. [PubMed: 20861711] - 11. Morrison JC, Blanco LZ, Jr., Vang R, Ronnett BM Incidental serous tubal intraepithelial carcinoma and early invasive serous carcinoma in the nonprophylactic setting: analysis of a case series. The American journal of surgical pathology 2015; 39(4):442–53. [PubMed: 25517955] - 12. Gilks CB, Irving J, Kobel M, et al. Incidental nonuterine high-grade serous carcinomas arise in the fallopian tube in most cases: further evidence for the tubal origin of high-grade serous carcinomas. The American journal of surgical pathology 2015; 39(3):357–64. [PubMed: 25517954] - 13. Hirst JE, Gard GB, McIllroy K, Nevell D, Field M. High rates of occult fallopian tube cancer diagnosed at prophylactic bilateral salpingo-oophorectomy. International journal of gynecological cancer: official journal of the International Gynecological Cancer Society 2009; 19(5):826–9. [PubMed: 19574767] - 14. Rabban JT, Garg K, Crawford B, Chen LM, Zaloudek CJ. Early detection of high-grade tubal serous carcinoma in women at low risk for hereditary breast and ovarian cancer syndrome by - systematic examination of fallopian tubes incidentally removed during benign surgery. The American journal of surgical pathology 2014; 38(6):729–42. [PubMed: 24820399] - 15. Tang S, Onuma K, Deb P, et al. Frequency of serous tubal intraepithelial carcinoma in various gynecologic malignancies: a study of 300 consecutive cases. International journal of gynecological pathology: official journal of the International Society of Gynecological Pathologists 2012; 31(2): 103–10. [PubMed: 22317864] - 16. Kuhn E, Kurman RJ, Vang R, et al. TP53 mutations in serous tubal intraepithelial carcinoma and concurrent pelvic high-grade serous carcinoma- evidence supporting the clonal relationship of the two lesions. The Journal of pathology 2012; 226:421–6. [PubMed: 21990067] - 17. Kuhn E, Meeker A, Wang TL, et al. Shortened telomeres in serous tubal intraepithelial carcinoma: an early event in ovarian high-grade serous carcinogenesis. The American journal of surgical pathology 2010; 34(6):829–36. [PubMed: 20431479] - 18. Sherman-Baust CA, Kuhn E, Valle BL, et al. A genetically engineered ovarian cancer mouse model based on fallopian tube transformation mimics human high-grade serous carcinoma development. The Journal of pathology 2014; 233(3):228–37. [PubMed: 24652535] - 19. Kobayashi Y, Kashima H, Wu RC, et al. Mevalonate Pathway Antagonist Inhibits Proliferation of Serous Tubal Intraepithelial Carcinoma and Ovarian Carcinoma in Mouse Models. Clinical cancer research: an official journal of the American Association for Cancer Research 2015; 21:4625–62. - 20. McDaniel AS, Stall JN, Hovelson DH, et al. Next-Generation Sequencing of Tubal Intraepithelial Carcinomas. JAMA oncology 2015; 1:1128–32. [PubMed: 26181193] - 21. Fukasawa K Centrosome amplification, chromosome instability and cancer development. Cancer letters 2005; 230(1):6–19. [PubMed: 16253756] - 22. network Cgar. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474(7353):609–15. [PubMed: 21720365] - 23. Patch AM, Christie EL, Etemadmoghadam D, et al. Whole-genome characterization of chemoresistant ovarian cancer. Nature 2015; 521(7553):489–94. [PubMed: 26017449] - 24. Etemadmoghadam D, George J, Cowin PA, et al. Amplicon-dependent CCNE1 expression is critical for clonogenic survival after cisplatin treatment and is correlated with 20q11 gain in ovarian cancer. PloS one 2010; 5(11):e15498. [PubMed: 21103391] - Nakayama K, Nakayama N, Jinawath N, et al. Amplicon profiles in ovarian serous carcinomas. International journal of cancer Journal international du cancer 2007; 120(12):2613–7. [PubMed: 17351921] - 26. Sehdev AS, Kurman RJ, Kuhn E, Shih Ie M. Serous tubal intraepithelial carcinoma upregulates markers associated with high-grade serous carcinomas including Rsf-1 (HBXAP), cyclin E and fatty acid synthase. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 2010; 23(6):844–55. - 27. Karst AM, Jones PM, Vena N, et al. Cyclin E1 deregulation occurs early in secretory cell transformation to promote formation of fallopian tube-derived high-grade serous ovarian cancers. Cancer research 2014; 74(4):1141–52. [PubMed: 24366882] - 28. Farley J, Smith LM, Darcy KM, et al. Cyclin E expression is a significant predictor of survival in advanced, suboptimally debulked ovarian epithelial cancers: a Gynecologic Oncology Group study. Cancer research 2003; 63(6):1235–41. [PubMed: 12649182] - 29. Rosen DG, Yang G, Deavers MT, et al. Cyclin E expression is correlated with tumor progression and predicts a poor prognosis in patients with ovarian carcinoma. Cancer 2006; 106(9):1925–32. [PubMed: 16568440] - 30. Davidson B, Skrede M, Silins I, et al. Low-molecular weight forms of cyclin E differentiate ovarian carcinoma from cells of mesothelial origin and are associated with poor survival in ovarian carcinoma. Cancer 2007; 110(6):1264–71. [PubMed: 17647260] - 31. Nigg EA, Stearns T. The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nature cell biology 2011; 13(10):1154–60. [PubMed: 21968988] - 32. Cope L, Wu RC, Shih Ie M, Wang TL. High level of chromosomal aberration in ovarian cancer genome correlates with poor clinical outcome. Gynecologic oncology 2013; 128(3):500–5. [PubMed: 23200914] 33. Kuhn E, Bahadirli-Talbott A, Shih Ie M. Frequent CCNE1 amplification in endometrial intraepithelial carcinoma and uterine serous carcinoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 2014; 27(7):1014–9. - 34. Kuhn E, Ayhan A, Shih Ie M, Seidman JD, Kurman RJ. Ovarian Brenner tumour: a morphologic and immunohistochemical analysis suggesting an origin from fallopian tube epithelium. European journal of cancer 2013; 49(18):3839–49. [PubMed: 24012099] - 35. Sheu JJ, Choi JH, Guan B, et al. Rsf-1, a chromatin remodelling protein, interacts with cyclin E1 and promotes tumour development. The Journal of pathology 2013; 229(4):559–68. [PubMed: 23378270] - 36. Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature 1999; 401(6750):297–300. [PubMed: 10499591] - 37. Bagheri-Yarmand R, Biernacka A, Hunt KK, Keyomarsi K. Low molecular weight cyclin E overexpression shortens mitosis, leading to chromosome missegregation and centrosome amplification. Cancer research 2010; 70(12):5074–84. [PubMed: 20530685] - 38. Chui MH, Wang Y, Wu RC, et al. Loss of ALDH1A1 expression is an early event in the pathogenesis of ovarian high-grade serous carcinoma. Modern pathology: an official journal of the United States and Canadian Academy of Pathology, Inc 2015; 28(3):437–45. - 39. Loncarek J, Khodjakov A. Ab ovo or de novo? Mechanisms of centriole duplication. Molecules and cells 2009; 27(2):135–42. [PubMed: 19277494] **Fig. 1.** Summary of *CCNE1* FISH results in ovarian high-grade serous carcinoma and serous tubal intraepithelial carcinoma. The results are classified into 5 categories and their percentages in different lesions are shown. **Fig. 2.** *CCNE1* two-color FISH in a representative serous tubal intraepithelial carcinoma. The H&E of the lesion is shown at the left panel. Red signals: *CCNE1* probe; green signal: CEP control probe; blue: nuclear staining with DAPI. There are many serous tubal intraepithelial carcinoma cells exhibiting *CCNE1* amplification (big red dots). Fig. 3. Centrosome numbers as determined by immunofluorescence in high-grade serous carcinoma (HGSC), serous tubal intraepithelial carcinoma (STIC) and normal fallopian tube epithelium (FTE). A: percentage of lesions showing centrosome amplification in 33 STICs and 25 HGSCs. B: Percentage of tumor cells demonstrating centrosome amplification. All specimens containing normal fallopian tube epithelium do not have centrosome amplification. C: Percentage of tumor cells with centrosome amplification in paired STIC and corresponding HGSC. D. A positive correlation of percentage of tumor cells showing centrosome amplification between STICs and HGSCs (r²= 0.65, P< 0.005). Fig. 4. Detection of centrosomes using immunofluorescence in a representative serous tubal intraepithelial carcinoma. The H&E of the lesion is shown at the left panel. Red signals: γ -tubulin (stain centrosomes); green signal: α -tubulin (stains cilia); blue: nuclear staining with DAPI. There are several cells containing big red dots (i.e., centrosome amplification) in serous tubal intraepithelial carcinoma cells at the interface but not in normal fallopian tube epithelium (FTE, inset). Fig. 5. The effect of cyclin E1 expression on centrosome numbers on fallopian tube epithelial cells. A. Western blot analysis shows protein levels of cyclin E1 in fallopian tube epithelial cells (FT282-V) and cyclin E1 expressing cells (FT282-CE) which were transfected by a plasmid expressing *CCNE1* gene. Cyclin E1 expression in other ovarian cancer cell lines is also shown. B. The percentage of cancer cells with centrosome amplification (> 2 centrosomes/tumor nucleus) in each cell line. FT282-CE cells have significantly higher percentage of cells with centrosome amplification than its parental FT282-V cells (p< 0.005). **Table 1.**FISH analysis of *CCNE1* copy number in 19 primary HGSCs and concurrent STICs. | Copy number category | HGSC
n (%) | 1 st STIC
n (%) | 2 nd STIC
n (%) | |----------------------|---------------|-------------------------------|-------------------------------| | FISH negative | 14 (74) | 14 (74) | 9 (81) | | Disomy | 5 (26) | 6 (32) | 4 (36) | | Trisomy | 5 (26) | 7 (37) | 4 (36) | | Low polysomy | 4 (21) | 1 (5) | 1 (9) | | FISH Positive | 5 (26) | 5 (26) | 2 (19) | | High polysomy | 1 (5) | 1 (5) | | | Amplification | 4 (21) | 4 (21) | 2 (19) | | Total | 19 (100) | 19 (100) | 11 (100) |