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Atopic dermatitis (AD) is a chronic and relapsing cutaneous disorder characterized by
compromised immune system, excessive inflammation, and skin barrier disruption. Post-
translational modifications (PTMs) are covalent and enzymatic modifications of proteins
after their translation, which have been reported to play roles in inflammatory and allergic
diseases. However, less attention has been paid to the effect of PTMs on AD. This review
summarized the knowledge of six major classes (including phosphorylation, acetylation,
ubiquitination, SUMOylation, glycosylation, o-glycosylation, and glycation) of PTMs in AD
pathogenesis and discussed the opportunities for disease management.
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INTRODUCTION

Atopic dermatitis (AD) is one of the most common heterogeneous diseases, affecting 2.7%–20.1% of
children and 2.1%–4.9% of adults worldwide (Barbarot et al., 2018; Silverberg et al., 2021). It
manifests as systemic inflammation and epidermal barrier disruption, with multifactorial genetics,
age, ethnicity, and geography (Yew et al., 2019). Ameliorating clinical signs and allergy burdens,
preventing of recurrence and comorbidities, and improving quality of life are the key points on the
disease management. Meanwhile, the allergic symptoms of AD are varied and complex, which range
from mild to severe and even life-threatening anaphylaxis.

Extrinsic environmental factors are responsible for tremendous impacts on allergic disease;
besides, the epigenetic modification is thought to determine, at least partly, in etiology and
pathophysiology of allergies (Alashkar Alhamwe et al., 2020). Studies based on quantitative
proteomic analysis have identified alterations in the protein post-translational modifications
(PTMs) profile of patients with AD lesions compared with non-lesional sites (Winget et al.,
2016). Indicating that PTMs emerge key roles in AD development (Kim et al., 2016; Potaczek
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et al., 2017). In this review, we overview the roles of PTMs in the
pathophysiology of AD, focusing on the known mechanisms and
functions of PTMs with particular emphasis on their therapeutic
potential.

POST-TRANSLATIONAL MODIFICATIONS
RELEVANCE

PTMs are the chemical modifications of proteins following
translation that confer functional diversity and maintain
proteomes stability (Banerjee Mustafi et al., 2017). It can
rapidly regulate a variety of biological functions (including
cellular signaling, growth, survival, and proliferation) and
modify inflammatory signaling pathways (Wu et al., 2017; Liu
et al., 2019). Notably, aberrant PTMs may drive the development
of inflammatory dermatitis with genetic predisposition, such as
psoriasis and AD (Yi and McGee, 2021). Identifying the
relationship between AD and PTMs could shed light on the
disease pathogenesis and provide targets for the development of
novel therapeutic and diagnostic tools. This review summarizes
the seminal discoveries of six major PTMs (phosphorylation,
acetylation, ubiquitination, SUMOylation, glycosylation, and
glycation during the progression of AD and arouse in-depth
research into the pathogenesis of disease.

CLINICAL RELEVANCE

Notably, AD ranks 15th among the largest nonfatal disease
burdens worldwide, while its pathogenesis is multifactorial and
unclear in most affected individuals (Laughter et al., 2021;
Ständer, 2021). Moreover, PTMs show therapeutic potential
for curbing inflammation and restoring barriers, which are
closely linked to numerous skin and autoimmune disorders
(Yang and Yan, 2022). Exploring the indexes of PTMs
therefore yield novel therapeutic targets, predictive events,
monitor trends, or prognostic indicators for the clinical
outcomes of AD patients. Current PTMs-related agents are
insufficient for implying clinical utility, and further
mechanistic studies ought to be conducted.

PATHOLOGICAL MANIFESTATIONS IN
ATOPIC DERMATITIS
The Intricate Immune Responses in Atopic
Dermatitis
The lesional skin has two major cell compartments: resident skin
cells, which include keratinocytes (KCs), and infiltrating cells,
which include inflammatory cells. Those cells function in synergy
and produce numerous inflammatory mediators to recruit
immune cells, activate intracellular signaling pathways, and
stimulate adaptive immune responses, resulting in exacerbating
pathogenicity in AD (Ständer, 2021). The elevated
immunoglobulin E (IgE) level is a hallmark of AD, which
causes a systemic inflammatory response; moreover, the

activated cytokines and chemokines, in turn, are responsible
for inducing IgE production (Gandhi et al., 2016). Once the
epidermal barriers have been destroyed, alarm-type cytokines
[such as IL-25, IL-31, IL-33, and thymus stromal lymphopoietin
(TSLP)] could initiate innate immune components group 2
innate lymphoid cells (ILC2s), followed by the dysregulation
of the T helper (TH) 2 response (Ständer, 2021). Skin DCs,
which include epidermis-resident DCs, Langerhans cells, and
dermal DCs, could simultaneously recognize allergens and
microbes, enter the dermis, and migrate to the draining lymph
node in response to specific antigens by promoting the
polarization of TH 2 cells (Callard and Harper, 2007; Novak,
2012).

Concerning adaptive immunity responses in AD, the presence
of TH2/TH22 bias is shown in acute phases, while the TH1/TH17
bias is shown chronic phases (Patrick et al., 2021). In the acute
phase, TH2 cells secreted cytokines (primarily IL-4, IL-5, and IL-
13) that stimulate B cells to produce IgE antibodies and activate
eosinophils, basophils, and mast cells in allergic responses; IL-5 is
responsible for the trafficking and production of eosinophils in
vivo (Gandhi et al., 2016). Activated ILC2s (expressing high levels
of IL-5 and IL-13) could simultaneously facilitate TH2
differentiation and repress TH1 differentiation (Maggi et al.,
2017), and IL-4 performs similar functions in AD
pathogenesis (Murphy and Reiner, 2002; Chen et al., 2004;
Lazarski et al., 2013). With the further identification of
adaptive immunity in AD, acute lesions are always driven by
the TH2/TH22 dominant allergic responses, while chronic lesions
are driven by a TH1 response (Nograles et al., 2009; Lou et al.,
2017). Local TH1 responses tend to induce KCs apoptosis through
skin-infiltrating T cells (Grewe et al., 1998; Trautmann et al.,
2000), and a correlation between TH17 cells and TH1 cells was
found in the chronic phase of AD (Sugaya, 2020). The level of T
regulatory cells (Tregs) is elevated during AD pathogenesis,
which could suppress responses from allergen-specific T cells
and participate in multi-directional immune reactions following
TH2 and TH17 cells (Figure 1) (O’Shaughnessy et al., 2007;
Agrawal et al., 2011; Jonak et al., 2011; Ma et al., 2014;
Roesner et al., 2015; Niiyama et al., 2016).

The Disruption of the Skin Barrier in Atopic
Dermatitis
Cutaneous irritation and sensitization can give rise to barrier
dysfunction and prolonged inflammation. Impaired epidermal
barrier is indicated mainly by skin irritations, hypersensitivity,
increased transepidermal water loss, decreased liposomes, and
elevated pH (Ishikawa et al., 2010; Jungersted et al., 2010; Janssens
et al., 2012). For instance, filaggrin (FLG, a major structural
protein in the upper epidermis) assists in the formation of the
epidermal barrier (O’Regan et al., 2008; Weidinger and Novak,
2016), which presents a loss-of-function in approximately
10%–40% of patients with AD (Rodríguez et al., 2009; Winge
et al., 2011; Margolis et al., 2014; Feketea and Tsabouri, 2017).
Besides, the breakdown of the skin barrier function is multi-
factorial, involving disruption of the biological, immunological,
and mechanical barriers (Weidinger and Novak, 2016), and its
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exacerbation is caused by infection, chronic irritation,
inflammation, and immune dysregulation (Biniek et al., 2012;
Yosipovitch et al., 2019). Notably, altered expressions of these
epidermal proteins could favor TH2 dominance in T-cell
differentiation (Figure 1) (Hönzke et al., 2016).

The Dysbiosis of the Skin Microbiome in
Atopic Dermatitis
Dysbiosis of the skin microbiome was detected in the dermis of
AD patients, which contributes as a prominent environmental
factor in the pathogenesis (Nakatsuji et al., 2016; Nakatsuji and
Gallo, 2019). Specifically, the colonization of Staphylococcus
aureus in the dermal lesions is associated with increased
disease severity (Nakatsuji et al., 2016), which could
exacerbate skin inflammation by activating lymphocytes and
macrophages in adaptive and innate immune responses
(Nakatsuji and Gallo, 2019). In addition, TH2 cytokines
inhibit the generation of antimicrobial peptides of S. aureus
in the skin and contribute to strenuous dysbiosis and infection
during AD progression (Figure 1) (Howell et al., 2006;
Nakatsuji and Gallo, 2019).

INVOLVEMENT OF POST-TRANSLATIONAL
MODIFICATIONS IN ADS

PTMs are essential for regulating protein folding, stability,
localization, and functional activities. With the deep
exploration of proteomics, exploring the involvement of PTMs
in AD pathogenesis could generate novel ideas for disease
therapeutics, control, and prevention. Several types of PTMs
including phosphorylation, acetylation, ubiquitination,
SUMOylation, glycosylation and glycation were summarized
under current research situation.

Phosphorylation
Protein phosphorylation is an important modification for
modulating protein stability, which occurs in almost one-third
of the human proteome. The reversible process of
phosphorylation/dephosphorylation is catalyzed by protein
kinases and phosphatases, and is involved in cellular
proliferation, growth, differentiation, and signal transduction
(Krebs and Beavo, 1979). Phosphorylation frequently occurs at
serine, threonine and tyrosine, which modulates various cellular
signaling pathways and biological processes.

FIGURE 1 | Main pathogenesis and mechanisms of AD. Epidermal barrier disruption mainly caused by mechanical scratch and aberrant inflammatory reactions.
Reduced FLG contributes to inflammatory changes, while the releasing proinflammatory cytokines and chemokines result in further FLG deficiency. It is a positive
feedback loop. LC and DC recognize the allergens and microbial components and stimulate adaptive immune responses—predominantly TH2/TH22 bias in the acute
phase and TH1/TH17 bias in the chronic phase. The release of alarmins (including IL-10, IL-31, and TSLP) from epithelial cells promotes ILC2 induction as an innate
immune response and aggravates TH2 immune response. TH2 cytokines IL-4, IL-5, and IL-13 recruit eosinophils and increase B cell IgE production during the acute
phase. IL-22, produced by TH22, promotes TH2-type inflammation. In the chronic stage, TH1 and cytokines predominate in skin lesions, leading to further inflammation
and epidermal hyperplasia. Inflammatory cytokines simultaneously impair the skin barrier by inhibiting barrier proteins and disrupting skin microbiota, thereby increasing
the risk of S. aureus colonization.
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Mitogen-Activated Protein Kinases
MAPKs, a cluster of serine/threonine kinases protein, could be
activated by phosphorylation, which participant in cell
proliferation, differentiation, survival and regulate pivotal
signal transcription (Song et al., 2015; Park et al., 2020). Three
major MAPKs have been identified, including p38, extracellular
signal-regulated protein kinase (ERK), and c-Jun N-terminal
kinases (JNK).

MAPKs play facilitatory roles in the susceptibility to
inflammation, which could activate the TNF-α signaling
cascades and energize the NF-κB signaling pathways
(Giridharan and Srinivasan, 2018); in turn, inflammatory
cytokines could promote MAPK phosphorylation and
aggravate the secretion of those mediators in AD development
(Hong et al., 2015; Ryu et al., 2015; Noh et al., 2016; Pinto et al.,
2018; Naruke et al., 2021; Ogura et al., 2021). Specifically, higher
FcεRI (a receptor of IgE, can be upregulated by p38
phosphorylation) is detected in peripheral blood monocytes of
AD patients compared with normal individuals, which increases
the susceptibility of microbial antigens and allergens (Song et al.,
2015). Besides, FcεRI-bound IgEmigrates to the lymph nodes and
stimulates naive T cells to expand and trigger the TH2 immune
response in AD pathogenesis (Figure 1) (Song et al., 2015).
Increased IL-9 levels in AD lesions suggest the activation of
ERK phosphorylation, which contributes to the spontaneous
induced inflammation (Hong et al., 2015). Intelectin-1
(ITLN1, can induce ERK phosphorylation and help to amplify
the TH2 responses) is overexpressed in AD skin lesions,
accompanied by significant expression of allergen-induced
TSLP, IL-33, and IL-25 (Tsuji et al., 2001; Yi et al., 2017). In
AD therapies for the pediatric population, vitamin K2 exerts an
anti-inflammatory effect bymeans of inhibiting the JNK signaling
and ERK1/2 phosphorylation (Zhang et al., 2021). Above studies
present that MAPKs phosphorylation is a crucial biologic
activator in triggering immune responses and amplifying
allergic inflammation in the pathogenesis of AD.

Consistent with the results in AD patients, an increasing level
of phosphorylated ERK1/2 was found in the 2,4-
dinitrochlorobenzene (DNCB)-induced mouse model (Choi
et al., 2021). Deletion of AnxA1 (an upstream regulator of
ERK) leads to ERK hyperphosphorylation and aggravates local

skin lesions with severe erythema, erosion, dryness, and
epidermis thickening in the OVA-induced AD mice (Perretti
and Gavins, 2003; Parisi et al., 2019). Alternatively,
phosphorylated JNK and ERK inhibit the expression of FLG,
which lead to the impaired epithelial integrity in AD mouse
model (Cha et al., 2019a). Hence, we theorized that skin barrier
homeostasis could be disrupted not only by phosphorylated
MAPKs directly, but also by phosphorylation-activated
inflammatory environment.

Based on the overexpressed ITLN1 in skin lesions of AD
patients, further investigation confirmed that ITLN1 inhibitor
could interfere with the phosphorylation of epidermal growth
factor receptor (EGFR) and ERK and suppress the TH2 immune
responses in vitro (Yi et al., 2017). High phosphorylated ERK1/2
was found in the TNF-α/IFN-γ induced HaCaT, which could
activate the NF-κB and signal transducer and activator of
transcription 1 (STAT1) signaling pathways and enhance
inflammatory cytokines (Choi et al., 2021). Similar to other
cytokine receptors, the activation of ERK phosphorylation
requires calcium propagation; that is, the inhibition of calcium
could, at least partially, disrupt ERK phosphorylation and
ameliorate AD symptoms (Hong et al., 2015). IL-31, a
relatively novel itch-relevant cytokine associated with TH2
cytokines, gives rise to calcium propagation and inflammation
in primary human KCs in vitro (Lee et al., 2012). Moreover,
phosphorylated JNK and ERK increases TSLP level in HaCaT
(Jang et al., 2013), whereas the phosphorylation of p38 and ERK
up-regulates IL-33 expression in IL-17A-induced normal human
epidermal keratinocytes (NHEK) cells (Meephansan et al., 2013).
Apart from proinflammatory properties, MAPKs
phosphorylation is associated with fragile skin barrier as well.
Hyperphosphorylated p38 can inhibit several junctional proteins
(such as ZO-1 and RhoA) and destroy barrier function, and those
barrier junctional proteins can be restored by inhibiting p38
kinase in NHEK cells (Jackson et al., 2011; Kanemaru et al., 2017).
Furthermore, the inhibition of JNK could recover the reduction of
FLG in TNF-α/IFN-γ induced HaCaT and block TNF-α-
mediated inhibition of FLG and loricrin (LOR) in primary
human KCs (Kim et al., 2011; Cha et al., 2019b).

In summary, MAPKs work as inflammatory amplification
regulators and skin homeostasis destroyers in the pathogenesis

TABLE 1 | Crosstalk between post-translational modifications involved in AD.

Crosstalk Forms Main findings Functions References

Acetylation and
Phosphorylation

Positive ERK phosphorylation depends on HDAC6 Contributes to skin inflammation Kwon et al. (2021)
Positive lysine acetylation of STAT proteins promotes

phosphorylation STAT, HDAC inhibitors decrease
p-STAT

Contributes to TH2 differentiation
and pruritus

Krämer et al. (2009), Zhuang
(2013), Rösler et al. (2018)

Phosphorylation and
Ubiquitination

Positive NF-κB activation depends on phosphorylation-induced
IκB ubiquitination

Contributes to skin inflammation
and innate immune response

Choi et al. (2018), Giridharan and
Srinivasan (2018)

Ubiquitination and
SUMOylation

Positive Trim32 induces PIAS4 ubiquitination and decreases
SUMOylation levels

Contributes to skin inflammation
and TH2 differentiation

Albor et al. (2006), Liu et al. (2010),
Samaka and Basha (2020)

Uiquitination and
Acetylation

Positive p62 inhibits HDAC6 and prolonged protein
ubiquitination

Contributes to keratinocyte
apoptosis

Hou et al. (2020)

MARCH-1 target HDAC11 ubiquitination Contributes to TH2 differentiation Oh et al. (2013), Kishta et al. (2018)

Abbreviation: AD, atopic dermatitis; ERK, extracellular signal-regulated protein kinase; MARCH-1, membrane associated Ring-CH-1; Trim32, tripartite motif 32; TH2, T helper 2 cells;
SUMO, small ubiquitin-like modifier; STAT, signal transducer and activator of transcription 1; PIAS4, protein inhibitor of activated STAT 4; HDAC, histone deacetylase.
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of AD. The initial inflammatory responses activate MAPKs
phosphorylation and the downstream factors, and then
phosphorylated MAPKs urge the release of multiple pro-
inflammatory factors, exacerbate the TH2 immune skew (Park
et al., 2015; Choi et al., 2021), and involve in the regulation of skin
barrier functions. Although there are no direct functional
evidences of MAPKs necessity in AD pathogenesis, it
demonstrated that MAPKs is associated with the disease attack
and their inhibitors may provide new insights into the therapeutic
drugs of AD treatment.

AKT (Protein Kinase B)
AKT, also called protein kinase B, is a serine/threonine kinase
phosphorylated by phosphoinositide-dependent kinase-1 and
mammalian target of rapamycin (the mTORC1 inhibitor)
complex2 (Laplante and Sabatini, 2012; Nitulescu et al., 2018).
Phosphoinositide 3-kinase (PI3K) could activate AKT and its
downstream mTOR pathways, and AKT phosphorylates
downstream factors in the promotion of diverse cellular
functions, including growth, proliferation, and metabolism
(Liu et al., 2014; Huang et al., 2018). Recent research have
demonstrated that the PI3K/AKT/mTOR pathway contributes
to the development of hyperproliferative and inflammatory skin
diseases via regulating KCs proliferation and immune responses
(Mercurio et al., 2021).

The PI3K/AKT/mTOR pathway is activated abnormally in AD
patients’ skin lesions and peripheral T cells, as well as in the skin
of DNCB-induced and oxazolone-induced AD mouse models
(Xiao et al., 2017; Hu et al., 2021; Zheng et al., 2022). LY294002
(an inhibitor of PI3K signaling) rescues claudin1 expression in

AD mice via inhibiting AKT phosphorylation (Hu et al., 2021).
Rapamycin proved to balance TH1 and TH2 immune responses
via influencing cytokines production and suppressing serum IgE
in an AD mouse model (Yang F. et al., 2014a); besides, it could
increase the levels of FLG, LOR, and involucrin in vitro (Jia and
Zeng, 2020).

AKT phosphorylation has been implicated in skin
inflammation, which determines the activation of NF-κB
cascade and participants in the hyperproliferation and
expanded inflammation in human primary KCs (Lee et al.,
2011; Madonna et al., 2012; Mercurio et al., 2021; Xiao et al.,
2017). In parallel, normal AKT activity is required for epidermal
barrier function, while the AKT/mTOR pathway controls the
formation and maintenance of skin barrier (Naeem et al., 2017;
Ding et al., 2020; Hu et al., 2021; Mercurio et al., 2021). Knock-
down or deletion of AKT could decrease the expression of FLG
and instigate hyperkeratosis both in vivo and ex vivo (Thrash
et al., 2006; O’Shaughnessy et al., 2007; Naeem et al., 2017); the
absence of AKT could impede KCs proliferation in HaCaT
(Buerger et al., 2017). Further, mTORC2 and its related
proteins control the expression of FLG through AKT in a
phosphoinositide-dependent kinase 1-dependent manner
(Naeem et al., 2017; Ding et al., 2020). Alternatively,
LY294002 could attenuate the hyperproliferation of T cells and
the secretion of pro-inflammatory cytokines in AD patient-
derived T cells (Xiao et al., 2017).

In summary, these studies suggest that the inhibitor of AKT
phosphorylation could act as putative candidates in inhibiting
skin immunological reactions and restoring skin barrier
dysfunction in AD.

TABLE 2 | Potential therapeutic target in AD associated with protein post-translational modifications.

Modifiers Agents Targets Functions References

MAPK
inhibitors

vitamin K2 JNK, ERK Suppress skin inflammation; attenuate activated T-cell
immunity

Zhang et al. (2021)

Galactose ITLN1 Interfere ERK phosphorylation; suppress TH2 immune
responses

Yi et al. (2017)

BTP2/SKF96365 STIM1 Suppress skin inflammation Hong et al. (2015)
SB202190 p38 MAPK Repair skin barrier Kanemaru et al. (2017)
SP600125 JNK Repair skin barrier Cha et al. (2019a)

AKT inhibitors LY294002 PI3K Suppress T cell immune responses; inhibit serum IgE and skin
inflammation; repair skin barrier

Xiao et al. (2017), Hu et al. (2021)

Rapamycin mTOR Suppress TH2 immune responses; repair skin barrier Yang et al. (2014a)
PKC inhibitor 4,5-bis (4-

fluoroanilino)
PKCβII Inhibit l-plastin phosphorylation Pazdrak et al. (2011)

HDAC
inhibitor

Butyric acid Most HDACs, except
Class IIB and III

Reduce S. aureus colonization; decrease pro-inflammatory
interleukins

Davie (2003), Traisaeng et al. (2019)

Phenylbutyrate Most HDACs, except
Class IIB and III

Inhibit local mast cells; activating Tregs Chung and Pui (2011)

Tubastatin A HDAC 6 Rescue barrier dysfunction; inhibit skin inflammation; activating
Tregs

Kwon et al. (2021)

Belinostat Class I, II Rescue barrier dysfunction Liew et al. (2020), Quah et al. (2021)
Trichostatin A Class I, II Suppress TH2 immune response Kim et al. (2010), Banerjee et al.

(2012), Shi et al. (2012)
Glycan
inhibitor

neuraminidase sialic acid Attenuate allergic response Shade et al. (2020)

Abbreviations: AD, atopic dermatitis; AKT, protein kinase B; ERK, extracellular signal-regulated protein kinase; HDAC, histone deacetylase; ITLN1, intelectin-1; JNK, c-Jun N-terminal
kinases; mTOR, mammalian target of rapamycin; PI3K, phosphoinositide 3-kinase; PKCβII, protein kinase C βII; S. aureus, Staphylococcus aureus; STIM, stromal interaction molecule 1;
TH2, T helper 2 cells; Treg, T regulatory cells; MAPK, mitogen-activated protein kinases.
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AMP-Activated Protein Kinase
AMPK is a serine/threonine kinase as well, whose early activation
was evidenced by phosphorylation (Giansanti et al., 2020). It is
always phosphorylated at threonine172 by liver kinase B1 and
calcium/calmodulin-dependent protein kinase β (Shaw, 2009).
AMPK is a principal cellular regulatory system, which maintains
immune homeostasis and controls metabolic processes (Garcia
and Shaw, 2017; Herzig and Shaw, 2018). Aberrant AMPK
activation may contribute to diseases with abnormal
proliferation of histiocytes, such as psoriasis and cancers
(Garcin et al., 2015; Shen et al., 2021). Besides, AMPK is
reported as a negative regulator of ERK signaling, as its
deletion increased the ERK phosphorylation and the upstream
pathway of ERK activation (Wu et al., 2013).

IL-37, an anti-inflammatory and immunosuppressive
cytokine, counterbalances excess inflammation via activating

AMPK signaling (Pan et al., 2020). Clinically, increased IL-37
expression was detectable in the skin lesions and serum of AD
patients (Fujita et al., 2013), whereas IL-37 could attenuate
inflammation symptoms, eliminate eosinophil infiltration, and
increase Treg cells through the AMPK/mTOR signaling (Hou
et al., 2020). Furthermore, AMPK could regulate the mTOR
signaling to influence a range of cellular functions, including
cell proliferation and metabolism (Shaw, 2009). The loss of
AMPK performs direct effects on KC hyperproliferation and
hyperactive mTOR signaling in a transgenic mice (Crane
et al., 2021). Moreover, nicotine could decrease the risk of AD
by inhibiting the expression of TSLP through a AMPK-mediated
suppression of NF-κB signaling both in vivo and in vitro (Dong
et al., 2016).

Above results reflect the mechanism of maintaining
immunologic homeostasis and suppressing inflammation via

FIGURE 2 | Major PTMs involved in the pathogenesis of AD. Six major classes of PTMs involved in AD include phosphorylation, acetylation, ubiquitination,
SUMOylation, glycosylation, o-glycosylation, and glycation. Phosphorylation of PTM-related enzymes (MAPKs, AKT and AMPK) and l-plastin may regulate epidermal
inflammation and TH2 immune response by modulating inflammatory cytokine secretion (IL-9, IL-25, IL-31, IL-33, TSLP, and IL-37), promoting eosinophils migration,
and activating AD-related pathways (such as NF-κB, JAK-STAT, mTOR signaling). Moreover, MAPK p38 phosphorylation upregulates FcεRI and results in allergen-
induced hypersensitivity; besides, MAPK phosphorylation inhibits epidermal proteins (FLG, LOR) and tight junction proteins (RhoA, ZO-1), thereby disrupting the barrier
functions. Meanwhile, both AKT phosphorylation and AMPK phosphorylation are involved in epidermal barrier function. Phosphorylation of AKT and HSP27 are required
for KCs differentiation and epidermis formation. Histone deacetylases (SIRT1, HDAC) play paramount importance in regulating inflammation and maintaining skin barrier
functions. Additionally, HDAC inhibitors exhibit antibacterial properties in AD treatment. Multiple E3 ubiquitin ligases are linked to dysregulated T-cell activation and
excessive inflammatory infiltration. Ubiquitination editing enzyme A20 maintains skin barrier hemostatic and alleviates inflammation. Other ubiquitination-related proteins
(TMEM79, Sharpin) act as mediators in inflammation responses and barrier repair as well. MiR-146 targets SUMO1 to regulate epidermal inflammation, whereas PIAS1
restricts the differentiation of Tregs by elevating IL-13. PGM3 reduces inflammation by inhibiting IgE production and T cell differentiation. β-N-acetylglucosamine
modifications promote the identification and the interaction of LCs with S. aureus, thereby triggering bacterial skin infections. AGEs are formed by glycation process and
exacerbating inflammatory responses via releasing proinflammatory factors; RAGE, the receptor of AGEs, stimulates skin inflammation via activating NF-κB
phosphorylation.
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TABLE 3 | Summary of major post-translational modifications involved in AD.

PTMs Factors Expression Subjects Process
participation

Functions Reference

Phosphorylation ERK ↑ Human AD Increase IL-9, IL-33, and
TSLP; activate NK-κB and
STAT1 signaling; inhibit
FLG induction

Promote inflammation;
amplify the TH2
responses; disrupt barrier

Jang et al. (2013),
Meephansan et al. (2013),
Hong et al. (2015), Yi et al.
(2017), Cha et al. (2019b), Park
et al. (2019), Choi et al. (2021),
Zhang et al. (2021), Zeze et al.
(2022)

Animal: DNFB-induced
mice, MC903-induced
mice
NC/Nga mice
Cell: HaCaT, NHEK

p38 ↑ Human AD Upregulate FcεRI, IL-33;
inhibit ZO-1 and RhoA

Increase antigen-
sensitivity; trigger TH2
immune response;
disrupt barrier

Meephansan et al. (2013),
Song et al. (2015), Kanemaru
et al. (2017)

Cell: NHEK

JNK ↑ Human AD Increase TSLP; inhibit FLG
and LOR induction

Promote inflammation;
disrupt barrier

Kim et al. (2011), Jang et al.
(2013), Cha et al. (2019a),
Zhang et al. (2021)

Animal: DNCB-
induced mice
Cell: HaCaT, NHEK

AKT ↑ Human AD Increase inflammatory
cytokines, reduce FLG,
LOR, INV, claudin1

Promote skin
inflammation; promote
hyperproliferation; disrupt
barrier

Yang et al. (2014b), Naeem
et al. (2017), Xiao et al. (2017),
Jia and Zeng (2020), Hu et al.
(2021), Mercurio et al. (2021)

Animal: DfE-induced
mice, oxazolone-
induce mice
Cell: HaCaT, rat
epidermal
keratinocytes

AMPK ↑ Animal: MC903-
induced mice

Inhibit NK-κB and mTOR
signaling; suppress KC
hyperproliferation

Suppress skin
inflammation; suppress
hyperproliferation

Hou et al. (2020), Crane et al.
(2021), Dong et al. (2022)

Cell: co-culture of
primary human dermal
fibroblasts and
eosinophils, PAM212
cells

Ribosomal
protein S6

↑ Human AD Increase inflammatory
cytokines and KCs
differentiation

Promote skin
inflammation

Ruvinsky and Meyuhas (2006),
Ruf et al. (2014)

L-plastin ↑ Human AD Enhance eosinophil
migration

Promote skin
inflammation

Pazdrak et al. (2011), Noh et al.
(2016)Cell: EoL-1 cells

HSP 27 ↑ Human AD Promote KC differentiation
and FLG processing

Improve barrier formation (O’Shaughnessy et al., 2007;
Jonak et al., 2011; Niiyama
et al., 2016)

Acetylation HDAC3 ↑ Animal: DNFB-induced
mice

Active MCP1 Promote skin
inflammation

Kim et al. (2012)

Cell: RBL2H3 cells,
mast cell

HDAC6 ↑ Animal: DNCB-
induced mice, TNCB-
induced mice

Increase CD8+ T cell
inflammation

Promote skin
inflammation

Tsuji et al. (2015), Kwon et al.
(2021)

Cell: HaCaT, co-
culture of mouse skin
dermal fibroblast cells
and mast cells

SIRT1 ↓ Human AD Suppress inflammatory
cytokines; deacetylate NF-
κB; promote FLG
expression

Suppress skin
inflammation; improve
barrier dysfunction

Kauppinen et al. (2013), Ming
et al. (2015), Lee et al. (2016),
Kwon et al. (2021)

Animal: DNCB-
induced mice,
ovalbumin
-induced mice
Cell: HaCaT

Ubiquitination TRIM32 ↓ Human AD Ubiquitinate PKCζ and
inactivate NF-κB and TLR
signaling

Restrain TH2
differentiation

Liu et al. (2017), Wang et al.
(2021)Animal: MC903-

induced mice
ITCH ↓ Animal: itchy mice Ubiquitinate Tab1 and

JunB; inhibit p38α
phosphorylation

Restrain TH2
differentiation

(Fang et al., 2002;
Theivanthiran et al., 2015)

TMEM79 ↓ Animal: flaky tail mice
(Continued on following page)
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AMPK phosphorylation in AD disorders; whereas additional
molecular mechanisms are required to further clarify the
relationship between AMPK and AD.

Other Proteins
In addition to the aforementioned signaling molecules, we
identified the other known proteins and their status associated
with AD. Phosphorylation of ribosomal protein S6 is required for
translation initiation and occurs on the serine residues of
carboxyl-terminus, which is associated with the inflamed
extent (Ruvinsky and Meyuhas, 2006; Ruf et al., 2014).
Increased phosphorylated ribosomal protein S6 has been
observed in epidermal lesions of AD patients, which is
activated by the mTOR and Ras/ERK signaling (Ruf et al.,
2014). Phosphorylated l-plastin (a leukocyte-specific actin-
binding protein) increases in eosinophils from AD patients
compared to healthy individuals (Noh et al., 2016), which
could enhance inflammatory cell migration and aggravate
phosphorylation in turn (Wabnitz et al., 2007; Pazdrak et al.,

2011; Noh et al., 2016). Consistently, l-plastin phosphorylation
could increase the migration of eosinophils (Pazdrak et al., 2011).
Reflected that proteins phosphorylation play important roles in
the migration of inflammatory cells and the amplification of
immune responses. Heat shock proteins 27 (HSP27) can directly
bind to AKT and result in increased phosphorylation of AKT and
MAPK, which are required for KCs differentiation and epidermis
formation (O’Shaughnessy et al., 2007; Jonak et al., 2011); further,
elevated HSP27 levels were correlated with increased severity of
the AD disease severity (Niiyama et al., 2016).

In general, phosphorylation is involved in the major
pathogenesis of AD, including inflammation infiltration,
immunization amplification, increased allergen sensitivity, and
barrier maintenance. Multiple targets regulate distinct signaling
pathways and provide diagnostic potential in AD management.

Acetylation
Protein acetylation is one of the most common PTMs in which
the acetyl group is introduced to a specific site on a polypeptide

TABLE 3 | (Continued) Summary of major post-translational modifications involved in AD.

PTMs Factors Expression Subjects Process
participation

Functions Reference

Inhibit Wnt/Frizzled
signaling

Maintain skin barrier
integrity

(Sasaki et al., 2013; Saunders
et al., 2013; Chen et al., 2020)

c-CBL ↑ Human AD Ubiquitinate PTKs; inhibit
TCR signal transduction

Promote T-cell apoptosis Loeser and Penninger (2007a),
Mohapatra et al. (2013a),
Salva et al. (2017)

Cell: humanCTCL cells

Sharpin ↓ Human AD Inactivate IL-33/ST2, NF-
κB, and JAK/STAT
signaling; suppress FLG
expression

Restrain TH2 immune
Response improve
barrier dysfunction

(Tang et al., 2018; Sundberg
et al., 2020)Animal: mouse

Cell: HaCaT

A20 ↓ Human AD Ubiquitinate IκBα; inhibit
NF-κB activation

Suppress skin
inflammation; restrain
TH2 differentiation

G’Sell et al. (2015), Devos et al.
(2019), Harirchian et al. (2019)Animal: mouse

Cell: NHEK

SUMOylation SUMO1 ↓ Human AD Targeted by miRNA-146a Promote skin
inflammation

Yan et al. (2019b)
Animal: DNCB-
induced mice
Cell: 293T cells

PIAS1 ↓ Animal: AD dogs Restrict Tregs
differentiation

Suppress skin
inflammation

Majewska et al. (2016)

Glycosylation PGM3 ↓ Human Decrease IgE levels and
TH2/TH17 cytokines

Suppress allergic
response

Zhang et al. (2014)

β-N-
acetylglucosamine

↑ Animal: epicutaneous
infection mice

Trigger Staphylococcus
aureus

Induce skin inflammation van Dalen et al. (2019)

Cell: MUTZ-3-derived
LCs, primary
human LCs

Glycation RAGE ↑ Animal: DfE- induced
mice, DNCB-induced
mice

Activate NF-κB
phosphorylation

Promote skin
inflammation

Karuppagounder et al. (2015),
Wang et al. (2018)

Abbreviations: A20, Zinc finger protein A20; AD, atopic dermatitis; AGE, advanced glycation end products; AKT, protein kinase B; AMPK, AMP-activated protein kinase; c-CBL, casitas
B-lineage lymphoma; CTCL, cutaneous T-cell lymphoma; DfE, dermatophagoides farina extract; DNCB, 2,4-dinitrochlorobenzene; ERK, extracellular signal-regulated protein kinase; FLG,
filaggrin; HDAC, histone deacetylase; Hsp, heat shock proteins 27; IL, interleukin; INV, involucrin; JAK, janus kinase; JNK, c-Jun N-terminal kinases; KC, keratinocytes; LC, langerhans
cells; LOR, loricrin; MC903, calcipotriol; MCP1, monocyte chemoattractant protein; NHEL, normal human epidermal keratinocyte; SIRT1, sirtuin1; PGM3, phosphoglucomutase3; PIAS1,
protein inhibitor of activated STAT1; PKCζ, protein kinase C zeta; PTK, protein tyrosine kinase; RAGE, receptor for AGEs; STAT, signal transducer and activator of transcription; STAT,
signal transducer and activator of transcription; SUMO, small ubiquitin like modifier; Tab1, TGF-β activated kinase 1; TH2, T helper 2 cell; TNCB, 2, 4, 6-trinitrochlorobenzene; TLR, toll-like
receptor; TMEM79, transmembrane protein 79; Trim32, tripartite motif 32; TSLP, thymic stromal lymphopoietin.
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chain. Acetylation is a reversible process regulated by acetylase
and deacetylase enzymes, involved in modulating chromatin
structure, gene expression, and protein function (Verdin and
Ott, 2015). The caveat here is that acetylation of histones
(catalyzed by histone acetyltransferases) is associated with
transcriptional activation; while histone deacetylation
(catalyzed by histone deacetylases) is associated with
transcriptional repression. Evidence suggests that histone
acetylation and deacetylation are essential regulators of pro-
inflammatory genes in allergic diseases, including histone
deacetylase 3 (HDAC3), HDAC6, and sirtuin1 (SIRT1)
(Alaskhar Alhamwe et al., 2018).

A clinical study confirmed that HDAC inhibitors could
mitigate pruritus via decreasing IL-31 expression in peripheral
blood from leukemic cutaneous T cell lymphoma patients
(Cedeno-Laurent et al., 2015). As we know, to some extent,
AD and T-cell mediated dermatitis share a similar underlying
pathological mechanism. SIRT1 (an NAD-dependent protein
deacetylase, which exists interdependent functions with
HDAC6) plays a critical role in skin barrier maintenance,
and is decreased in skin lesions of AD patients (Ming et al.,
2015). Besides, belinostat (a histone deacetylase inhibitor)
could restore skin barrier function and increase FLG
expression in an ex vivo human skin culture model (Liew
et al., 2020). Aryl hydrocarbon receptor nuclear translocator
(ARNT; the loss-of-ARNT could increase HDAC levels) is up-
regulated in skin lesions of AD patients compared to normal
participants (Robertson et al., 2012; Kim et al., 2014; Hong
et al., 2016). Results showed that some protein deacetylation
could promote skin barrier renovation, while the relationship
between barrier restoration and deacetylation degree remains
obscure.

Furthermore, HDAC3 (a regulator of gene expression) is
proven to mediate allergic inflammation, and its inhibitor
could alleviate the skin inflammation of dinitrofluorbenzol
(DNFB) -induced mice model (Kim et al., 2012). Similarly,
HDAC6 (a regulator of immune responses) is a key point in
regulating the activation and function of CD8+ T-cell
inflammation responses in an AD mouse model (Tsuji et al.,
2015) Phenylbutyrate (a kind of HDAC inhibitor) shows
therapeutic effects on both acute and chronic skin
inflammation via inhibiting local mast cells and activating
Tregs in a DNFB-induced AD mouse model (Chung and Pui,
2011). Trichostatin A (TSA, another kind of HDAC inhibitor)
can alleviate the DNFB-induced AD-like skin lesions in NC/Nga
mice by exerting anti-inflammatory protective effects and
increasing Treg cell population (Kim et al., 2010; Shi et al.,
2012). In addition, SIRT1 is decreased in the cutaneous tissues
of AD mouse model, and its modification provides relief from
inflammation symptoms via suppressing the expressions of
TSLP, cyclooxygenase-2, macrophage inflammatory protein 2,
and C-X-Cmotif chemokine ligand 13 in vivo (Kwon et al., 2021).
Previous studies have documented that SIRT1 plays an anti-
inflammation role mainly by deacetylating NF-κB signaling
(Yang et al., 2012; Kauppinen et al., 2013). On the other hand,
mice lacking SIRT1 in KCs became susceptible to obtaining a
fragile epithelial barrier with low expression of FLG (Ming et al.,

2015). These findings suggest that HDAC inhibitors are found to
be protective in various aspects of AD.

Notably, many studies focused on the use of HDAC inhibitors,
and several active agents could work as HDAC inhibitors. Butyric
acid and its derivatives, conducting as HDAC inhibitors, exert
in vitro anti-inflammatory and antibacterial properties in HaCaT
(Traisaeng et al., 2019). Similarly, sodium butyrate promotes
cellular terminal differentiation and alleviates inflammatory
responses induced by EGFR inhibition in NHEK cells (Leon
Carrion et al., 2014). Propionate and valerate can also inhibit
HDAC activity; they could increase pro-inflammatory factors
secreted by KCs and decrease pro-inflammatory factors secreted
by myeloid-derived immunocytes and ultimately exert a strong
anti-inflammatory potential (Sanford et al., 2016). Given that
those HDAC inhibitors should also be a group of anti-infective
and anti-inflammatory proteins that play vital roles in
inflammatory hyperproliferative diseases. Another, belinostat
has been shown as a potential treatment for AD for its role in
restoring FLG expression via inducing sustained miR-335
expression in N/TERT-1 cells (Liew et al., 2020). TSA
decreases levels of FLG and LOR in N/TERT cells, resulting in
worsen skin barrier (Robertson et al., 2012).

Overall, these findings suggest that acetylation modifications
play an essential role in the skin barrier maintenance and
inflammatory responses in AD progression. HDAC inhibitors
emerging as promising therapeutic targets for AD treatment,
while further in-depth studies are required.

Ubiquitination
Ubiquitination is a dynamic and reversible PTM conserved in
eukaryotic cells, which can tag proteins by proteasomes
degradation (Feng et al., 2017). Proteasome is a part of the
ubiquitin-proteasome system. The ubiquitin-proteasome
system mediates the cellular polyubiquitination of substrate
proteins and proteolytic degradation, including three types of
enzymes: E1 ubiquitin-activating enzymes, E2 ubiquitin-
conjugating enzymes, and E3 ubiquitin ligases.
Deubiquitinating enzymes (DUBs) are responsible for
specifically removing ubiquitin from ubiquitinated proteins
and contributing to their stability (Ciechanover, 2015). Thus,
ubiquitin could be re-used rather than degraded. Ubiquitinating
and deubiquitinating can change intracellular homeostasis and
modulate the cellular cycle, proliferation, and survival (Kwon and
Ciechanover, 2017). Notably, current studies confirmed that E3
ubiquitin ligases and DUBs play roles in the AD pathophysiology
(Fang et al., 2002; Loeser and Penninger, 2007a; Mohapatra et al.,
2013a; G’Sell et al., 2015; Theivanthiran et al., 2015; Liu et al.,
2017; Salva et al., 2017; Tang et al., 2018; Devos et al., 2019;
Harirchian et al., 2019; Sundberg et al., 2020; Wang et al., 2021).

Genome-wide analysis found that AD pathogenesis involves a
variety of gene expression abnormalities and ubiquitinated
proteins (Acevedo et al., 2020). The tripartite motif 32
(Trim32, a member of the Trim E3-ubiquitin ligase family) is
decreased in the skin lesions of AD patients, which implicates in
inflammatory and immune processes (Guttman-Yassky et al.,
2009; Liu et al., 2017). Sharpin (an adaptor protein for the linear
ubiquitin chain assembly complex) is decreased in the lesions of
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AD patients, which appears as a potential anti-inflammatory
candidate (Tang et al., 2018). Besides, casitas B-lineage
lymphoma (c-CBL, a ring-type E3 ubiquitin ligase) presents
the high expression level in the skin lesions from AD patients,
which associated with T cell activation dysregulation and excess
inflammatory infiltration (Loeser and Penninger, 2007b;
Mohapatra et al., 2013b; Salva et al., 2017). Zinc finger protein
A20 (A20, a ubiquitin-editing enzyme) is an endogenous anti-
inflammatory factor related to NF-κB signaling, which is down-
regulation in the epidermis from AD patients by transcriptome
analysis (Devos et al., 2019; Mooney and Sahingur, 2021).
Evidences above present a strong correlation between
ubiquitinated proteins and AD mechanisms, involving genetic
factors, inflammation extents, and immune dysregulation.

According to the down-regulation of Trim32 and Sharpin in
AD patients, similar findings were observed that Trim32-
deficient mice present TH2-biased inflammation spontaneously
developed in imiquimod-induced psoriatic dermatitis (Liu et al.,
2017; Wang et al., 2021), while KCs-specific Sharpin knockout
mice developed more severe inflammatory AD lesions compared
to normal ones (Sundberg et al., 2020). Transmembrane protein
79 (TMEM79, a predisposition gene for AD) can specifically
inhibit ubiquitin-specific peptidase 8 deubiquitination, and its
deficiency shows more susceptible to developing skin
inflammation, compromised barrier function, and spontaneous
dermatitis (Lim et al., 2013; Sasaki et al., 2013; Saunders et al.,
2013; Chen et al., 2020). ITCH (an E3 ubiquitin ligase of the
HECT family) inhibit p38α signaling by ubiquitylation of TGF-
activated kinase 1–binding protein 1; hence suppressing skin
inflammation in vivo (Theivanthiran et al., 2015). Itch-deficient
mice exhibit TH2 inflammation and a scratching phenotype, and
their lymphocytes exhibit a preference for TH2 differentiation,
which is associated with the inhibition of JunB ubiquitylation
caused by ITCH (Fang et al., 2002). Based on the anti-
inflammatory properties of A20, additional experiments
showed that A20-deficient mice developed TH2-biased immune
responses, systemic pro-inflammatory changes, epidermal
hyperplasia, and a disrupted skin barrier (Devos et al., 2019).
Further indicated that deregulated ubiquitination events were
closely related to TH2 cell differentiation, barrier reparation, and
worsened inflammatory responses in AD pathogenesis.

Recent scRNA-seq data demonstrated that overexpressed A20
could suppress inflammatory transcripts induced by IL-17A in
NHEK cells (Harirchian et al., 2019), indicating that A20 provides
a potential AD therapeutic modality against inflammation.
Reportedly, MID-1, a kind of E3 ubiquitin ligase, promotes
TH2 type inflammation in allergic asthma (Collison et al.,
2013). Nedd4 family interacting protein 2 might be a
protective factor, and its absence inhibits the catalytic function
of Nedd4-family E3 ubiquitin ligase and inappropriate TH2
responses during AD pathogenesis (O’Leary et al., 2016).
Clinical and experimental data proposed that Sharpin is
down-regulated in AD tissues, and Sharpin-silencing could
increase FLG expression in vitro, implicating Sharpin as a
novel mediator in both inflammation responses and barrier
repair (Tang et al., 2018). Furthermore, many E3 ubiquitin
ligases in regulating KCs proliferation and maintaining the

epithelial tight junction function, such as Trim21 (Yang et al.,
2018, 21), March-3 (Leclair et al., 2016, 3), Nedd4-1 (Yan et al.,
2021, 1), Nedd4-2 (Raikwar et al., 2010), Chip (Löffek et al., 2010;
Katagata, 2011), Otulin (Hoste et al., 2021; Schünke et al., 2021)
and Trip (Almeida et al., 2011).

In conclusion, above studies highlight the critical role of
ubiquitination in the initiation, progression and outcome of
AD, and E3 ubiquitin ligases might be potential therapeutic
targets for AD therapy.

Small Ubiquitin-Like Modifier Ylation
SUMOylation is similar to ubiquitination and has approximately
11 kD proteins attached to lysine residues on target proteins
covalently (Feligioni et al., 2009). SUMOylation is catalyzed by
SUMO-specific enzymes of E1, E2, and E3, and regulates several
functional properties, including chromatin organization,
transcription, and DNA repair (Flotho and Melchior, 2013).

Increased miR-146a (which targets and represses SUMO1
directly) is found in the inflamed biopsy tissues and serum of
AD patients, and its deficiency aggravates inflammation in
MC903 (calcipotriol)-induced AD mice (Rebane et al., 2014;
Yan et al., 2019a). Besides, protein inhibitor of activated
STAT1 (PIAS1, a SUMO E3 ligase) is down-regulated in the
peripheral blood mononuclear cells of AD dogs, which exhibits
increasing IL-13 concentration and functional insufficiency of
Tregs (Majewska et al., 2016; Koury et al., 2019). Several other
studies noted that PIAS1 could restrict the differentiation of Tregs
(Liu et al., 2010; Yang et al., 2013). It is suggested that miR-146a
and PIAS1 might be therapeutic targets for ADmanagement, and
deciphering the SUMOylation effects will be required to
investigate this further.

Glycosylation
Glycosylation is a highly dynamic and reversible PTMs of
proteins, which is catalyzed by a series of enzymes and
adhered to abundant glycans. The biosynthesis of glycans is an
intricate process requiring the coordinated action of multiple
glycosyltransferases and glycosidases to synthesize discrete
structures (Agrawal et al., 2017). Glycosylation has been
shown to alter the functional activities of proteins and result
in autoimmune disorders (Zhou et al., 2021); besides, impaired
glycosylation can cause marked serum IgE elevations and severe
inflammation (Yang et al., 2014b; Zhang et al., 2014). Several
types of glycosylation, including O-linked GlcNAcylation and
N-linked glycosylation, have been aroused increasing attention.

Reportedly, the deficit of phosphoglucomutase3 (a critical
sugar nucleotide in glycosylation precursor synthesis) results
in a prolonged inflammation in AD patients with increasing
serum IgE elevations (Yang et al., 2014b; Zhang et al., 2014); its
knockdown in T cells tends to produce excessive TH17 and TH2
cytokines (Zhang et al., 2014). Langerhans cells can identify and
interact with S. aureus directly through conserving β-N-
acetylglucosamine modifications on wall teichoic acid,
indicating that β-N-acetylglucosamine is a key trigger in
bacterial skin infection (van Dalen et al., 2019). The
glycosylation of IgE is important to regulate allergic diseases,
which contains seven asparagine N-linked glycosylation sites,
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providing a compelling diagnostic strategy for AD and other
atopic diseases (Shade et al., 2020). These findings highlight the
role of glycosylation in the genetic factors, external environment,
and immune progression of AD.

Glycation
Protein glycation is a common PTMs, where proteins, lipids, and
nucleic acids react non-enzymatically leading to the formation of
advanced glycation end products (AGEs) (Hanafy et al., 2021).
AGEs exacerbate the inflammatory response through promoting
the release of proinflammatory factors and the production of
reactive oxygen species; therefore, the accumulation of AGEs is
commonly associated with inflammatory andmetabolic disorders
(Botros et al., 2017; Papagrigoraki et al., 2017). Evidence showed
that the increased exogenous AGEs exposure enhances the risk of
developing AD and other atopic diseases (Smith et al., 2017).

A previous study found that urinary pentosidine, an AGE
formed by sequential glycation and oxidation, tends to be higher
in AD patients with acute exacerbation (Tsukahara et al., 2003).
Correspondingly, the level of AGEs in corneocytes from AD
patients is increasing along with lesion severity (Hong et al.,
2020). Additionally, an increasing expression of receptor for
AGEs (RAGE) is observed in AD-like mouse models, which
results in the release of pro-inflammatory cytokines (Dumitriu
et al., 2005; Karuppagounder et al., 2015; Wang et al., 2018). In
sum, AGEs provide an attractive addition to novel diagnostic
markers in AD, while further studies will be necessary to assess
the therapeutic efficacy and safety of AGE-associated inhibitors.

CROSSTALK AMONG PTMS IN ATOPIC
DERMATITIS

Remarkably, PTMs located within the same protein (especially on
histones) can influence each other, and regulate the structure,
activity and function of proteins (Narita et al., 2019). They
function as molecular switches, and modify the interaction of
proteins with DNA, lipids and other proteins (Venne et al., 2014;
Narita et al., 2019). Emerging data indicates that there is
significant regulatory crosstalk between PTMs during AD
pathophysiology, in which the initial PTM serves as an active
trigger for the addition or removal of a second PTM (detailed in
Table 1) (Lin, 2002; Laarse et al., 2018).

Janus kinase (JAK)-STAT pathway play roles in AD
pathogenesis by means of regulating TH2 differentiation, and
its activation is caused by the phosphorylation of the two main
proteins (JAK and STAT) (Szalus et al., 2020). Interestingly, the
lysine-acetylation of STAT could activate STAT phosphorylation
directly, except JAK-induced phosphorylation (Krämer et al.,
2009; Zhuang, 2013). It is promising that HDAC inhibitors
provide synergistic effects on JAK inhibitors in AD treatment
(Quintás-Cardama et al., 2012; Rösler et al., 2018; Su et al., 2021).

Increased ERK phosphorylation has been found in an
HDAC6-dependent manner in mast cells isolated from AD
mice skin tissue (Kwon et al., 2021), suggesting that
acetylation is vital for regulating ERK phosphorylation. A
similar resolution has been postulated in heart failure

(Habibian and Ferguson, 2018). Besides, the activation of NF-
κB depends on IκB phosphorylation and subsequent IκB
ubiquitin-dependent degradation (Choi et al., 2018; Giridharan
and Srinivasan, 2018). Thus, inhibiting IκB protein degradation is
one proven approach for reduce immune activation and
inflammation in AD treatment.

PIAS4 (an E3-SUMOylation ligase with comparable functions
to PIAS1) was previously identified as a significant E3-ubiquitin
ligase Trim32 substrate, while the Trim32-deficiency in KCs
could result in PIAS4 accumulation and increase global
SUMOylation (Albor et al., 2006; Kudryashova et al., 2012).
Besides, Trim32 activates NF-κB to induce KCs apoptosis and
thus upregulates TH17 versus TH2 immunity, which explains the
lower expression of Trim32 observed in AD patients (Albor et al.,
2006; Liu et al., 2010; Samaka and Basha, 2020). Indicating that
Trim32 may mediate inflammatory responses through
SUMOylation and ubiquitination.

Furthermore, acetylation affects protein stability by
suppressing ubiquitination and vice versa (Li et al., 2010;
Incani et al., 2014; Shimizu et al., 2021). p62 (a ubiquitin
binding protein) has a high ubiquitin-binding activity and
facilitates protein ubiquitination and degradation (Boyault
et al., 2006; Moscat and Diaz-Meco, 2009; Galindo-Moreno
et al., 2017; Zientara-Rytter and Subramani, 2019), and it could
maintain the autophagic process in homeostasis through
inhibiting HDAC6 expression (Yan et al., 2013; Galindo-
Moreno et al., 2017). On the other hand, membrane
associated Ring-CH-1 (MARCH-1, an E3 ubiquitin ligase)
could facilitate the expression of OX40L (a co-stimulatory
molecule that could induce TH2 inflammation in AD) and
decrease the amount of thymic Treg cells via increasing
HDAC11 ubiquitination (Oh et al., 2013; Kishta et al., 2018;
Castellanos et al., 2021; Furue and Furue, 2021). These findings
suggest that E3 ligases could specifically target HDAC
ubiquitination and thus enhance histone acetylation in AD
pathophysiology (Scognamiglio et al., 2008).

While the mechanisms of PTMs crosstalk in AD have not been
thoroughly investigated, they are also important. Of additional
concern is the negative crosstalk between these two PTMs
remains poorly understood (Venne et al., 2014; Mondal et al.,
2021).

POTENTIAL CLUES FOR ATOPIC
DERMATITIS DIAGNOSIS AND
TREATMENT
The prevalence of AD is increasing worldwide, although
estimates in developed countries are stabilizing (Langan et al.,
2020). Currently, topical corticosteroids are still the first-line
therapy for AD (Cury Martins et al., 2015). If corticosteroids
become ineffective or present adverse effects, treatment with
phototherapy, systemic immunotherapy, and molecular
targeted therapies (such as dupilumab, tralokinumab,
baricitinib, and upadacitinib) would be used (Wollenberg
et al., 2019; Blauvelt et al., 2021). Given the exceptional
performance of biological agents in the treatment of

Frontiers in Cell and Developmental Biology | www.frontiersin.org July 2022 | Volume 10 | Article 94283811

Ma et al. Post-Translational Modifications in AD

https://www.frontiersin.org/journals/cell-and-developmental-biology
www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


autoimmune diseases, bio-therapeutics may be the future of
moderate-to-severe AD treatment.

We emphasized that aberrant PTMs could trigger complex
cascades of multi-cellular and multi-factorial pathways in AD
pathophysiology, and the diagnostic and prognostic significance
of PTMs should however be mentioned. Currently, dermal AGEs
and urinary pentosidine have been used as biomarkers for early
detection and prognosis estimation in AD (Tsukahara et al., 2003;
Hong et al., 2020). With the introduction of skin autofluorescence
in AGEs measurement, it raises the possibility of non-invasive
tools in assessing both the disease severity and the comorbidity
risks in the future (Ying et al., 2021). Besides, specific IgE
glycosylation sites appear to be more sensitive biomarkers
compared to serum IgE in the early differential diagnosis of
atopic diseases (Shade et al., 2019; Shade et al., 2020). Hence,
PTMs could work as potential biomarkers for diagnosis and
prognosis of AD.

Furthermore, PTMs participate in AD pathophysiology via
regulating related transcriptional factors, signaling molecules and
proteins; targeting PTMs are prone to improve the synergistic
effect of AD treatment. Growing evidence proves that PTMs are
key effectors in skin inflammation and TH2 differentiation, which
precisely improve the stability and activity of diverse signaling
pathways including JAK/STAT, PI3K/AKT/mTOR, and NF-κB
signalings (Liu et al., 2014; Choi et al., 2018; Giridharan and
Srinivasan, 2018; Huang et al., 2018; Szalus et al., 2020). Besides,
activating protein PTMs contributes to the maintenance of
epidermal homeostasis, involved in regulating KC
proliferation, sustaining tight junction function, and assisting
barrier formation. To date, HDAC inhibitors (including
vorinostat, romidepsin, belinostat, and panobinostat) have
been approved by the FDA for the treatment of cutaneous
T-cell lymphoma, peripheral T-cell lymphoma and multiple
myeloma, whereas those diseases share similar pathological
mechanisms with AD (Yi and McGee, 2021). Although there
are no demonstrated PTM targeting approaches for AD
treatment currently, some small molecule compounds (such as
HADC inhibitors, MAPK inhibitors, and AKT inhibitors)
modifying PTMs have shown therapeutic efficacy at the
animal and cellular levels (Table 2). While none of these
studies have explicitly focused on alleviating AD symptoms,
the demonstrated PTMs-related biological effects both in vivo
and in vitro are encouraging results that may bring PTMs-related
therapeutics to the forefront in AD research.

SUMMARY

PTM is one of the later steps in protein biosynthesis, and
modulating innate functions of proteins precisely.
Characterized protein modifications could cause differentiation
of pro-inflammatory T cells, altering inflammatory cytokines,
maintaining the normal skin barrier function, increasing
sensitivity to allergens, and triggering skin infections
(summarized in Figure 2 and Table 3). Targeting these

modifications could provide major benefits in AD
management. Intriguingly, the interaction among single PTMs
sites and synergistic effects among multiple PTMs through which
could account for the incredibly complex links involved in the AD
pathogenesis to some degree. Nowadays, there were no PTMs-
mediated drugs for AD treatment in clinic, although several small
molecule compounds function as HDAC inhibitors, MAPKs
inhibitors and AKT inhibitors have become available. PTMs
crosstalk can integrate diverse signals and vastly increase their
regulatory potential in the course of AD disease, while lacks
further experimental verification both in vivo and in vitro.

This review provides novel insights regarding the pathogenesis
of AD and the development of PTMs-based strategies for
inflammatory and allergic diseases therapy. However, the
identification of PTMs-related regulators in AD remains in its
infancy. Based on advanced proteomics techniques, the intensive
studies of PTMs may open up new avenues for the evaluation
criteria of AD. We look forward that PTMs-based diagnosis,
monitoring and therapeutic approaches will be prevalent in AD
patients and play major roles in the future.
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