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Abstract
Background and objective
The aim of this study was to investigate whether the maximum inspiratory and expiratory pressure are
correlated with the apnea-hypopnea index (AHI) in patients with obstructive sleep apnea syndrome (OSAS).

Methods
Fifty-two patients with OSAS were divided into two groups (AHI, events/hours: <30, n=28, versus ≥30, n=24).
For each patient, anthropometric characteristics, spirometry parameters, maximum inspiratory (MIP) and
expiratory pressure (MEP), and cardiopulmonary function (CPF) parameters (oxygen uptake at rest (VO2),

carbon dioxide output (VCO2), heart rate (HR), minute ventilation (VE), tidal volume at inspiratory (TVin)

and expiratory (TVex), breath frequency (fβ), end-tidal carbon dioxide pressure (PETCO2), end-tidal oxygen

pressure (PETO2), and mean arterial pressure (MAP)) in sitting position for three minutes were recorded. The

independent t-test was used to measure the differences between groups (events/hours <30 versus ≥30) and
Pearson correlation analysis was used for statistical comparison between parameters.

Results
Results showed differences between groups (AHI, events/h ≥30 versus <30) in MIP (102.0±18.3 versus
91.1±12.1 % of predicted, p=0.013) and CPF parameters TVin (0.8±0.2 versus 0.7±0.1, L, p=0.047), PETCO2

(34.6±4.2 versus 31.4±3.7, mmHg, p=0.007), and MAP (88.4±6.5 versus 82.9±6.2, mmHg, p=0.003). Pearson
correlation analysis between respiratory muscle strength (MIP and MEP) and polysomnography (PSG)
parameters, MIP is related to AHI (r=.332, p=0.016) and desaturation index (r=.439, p=0.001), as well as MEP
to percent of REM sleep stage (r=-.564, p<0.001).

Conclusion
The data from the present study support that maximal inspiratory pressure relates to the severity of AHI and
intermittent breath-holding during sleep increases the inspiratory muscle strength.

Categories: Pulmonology
Keywords: respiratory muscle strength, sleep apnea, male, cardiopulmonary function

Introduction
Obstructive sleep apnea syndrome (OSAS) is a common condition affecting 9% to 38% of the general
population [1] and is characterized by recurrent upper airway collapse during sleep, leading to intermittent
nocturnal hypoxia and sleep fragmentation and resulting in major pathophysiological changes [2]. OSAS
symptomatology appears as a reduction (hypopnea) or complete cessation (apnea) of airflow through the
airways despite continued respiratory efforts and is diagnosed by clinical history and polysomnography
(PSG) [2]. According to Mendes et al., OSAS is classified by an apnea-hypopnea index (AHI >15 or an AHI >5)
with daytime and nighttime symptoms while apnea severity is classified as mild (AHI 5 to 15), moderate
(AHI 15.01 to 30), or severe (AHI>30.1) [3]. Patients with OSAS experience increased resistive load as
compared to normal subjects while intermittent hypoxemia and sleep deprivation or fragmentation impair
inspiratory muscle endurance and lower respiratory function [4].

On the other hand, breath-holding (BH) is a widespread tactic of athletes to improve endurance by
weakening the chemical signals of hypercapnia that trigger breathing [5]. The difference with OSAS is that
the suppression of breathing occurs voluntarily by maintaining respiratory muscles at a chosen volume,
along with involuntary diaphragmatic breathing movements [6]. Hence, during a maximal inspiratory BH,
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the pulmonary stretch receptors are activated, sending central signals to ameliorate the urge to breath [7].
This protective stimulus during respiratory distress in OSAS, to restore breathing, seems to be attenuated
[2].

The purpose of this study was to investigate whether the maximum inspiratory and expiratory pressure are
associated with the apnea-hypopnea index in patients with OSAS. Moreover, we examined possible
differences among patients in cardiopulmonary function in resting relate to the severity of the syndrome.
We hypothesized that the OSAS syndrome could affect the respiratory muscle strength independent of the
severity of the syndrome.

Materials And Methods
Participants
Fifty-two newly diagnosed male volunteers patients with OSAS were consecutively enrolled in our study and
divided into two groups (AHI: <30 events/hours, n=28, versus AHI: ≥30 events/hours, n=24). All subjects
completed the PSG study in the Sleep Apnea Laboratory of Respiratory Medicine Department, University of
Thessaly [8]. Exclusion criteria were age <20 and >60 years old, comorbidity, body mass index (BMI) ≥40

kg/m2, neurological and psychiatric disorders, musculoskeletal disorders [9], daily physical activity [10],
manual work, and weekly exercise ≥100 min [11].

Data collected
For each patient, anthropometric and morphological characteristics (body height, body mass, body mass
index (BMI = weight (kg)/height (m)2), neck, waist and hip circumference, and body composition (body fat
and total body water, Tanita MC-980: Tanita Corporation of America, Inc., Arlington Heights, Illinois)) were
recorded. Moreover, calculating the body surface area (BSA = (height (cm) x weight (kg))/3600½) and
estimated the lean body mass (LBM (kg) = 0.407 x weight (kg) + 0.267 x height (cm)-19.2).

All participants underwent standard spirometry and lung volume measurements, in line with American
Thoracic Society (ATS)/European Respiratory Society (ERS) guidelines [12]. For each pulmonary function
test, three maximal flow-volume loops were obtained to determine forced vital capacity (FVC) and forced
expiratory volume in the first second (FEV1) [2].

In addition, we recorded the maximum inspiratory (MIP) and expiratory pressure (MEP) by a MicroRPM
portable device (Care Fusion, California) and calculated the percent of predicted values according to the
equation [13]:

MIP (cmH2O) = 142 - (1.03 x Age(yrs)), MEP (cmH2O) = 180 - (0.91 x Age (yrs))

Moreover, we recorded parameters for cardiopulmonary function at rest (oxygen uptake (VO2, ml/min),
carbon dioxide output (VCO2, ml/min), heart rate (HR, bpm), minute ventilation (VE, L/min), tidal volume in
inspiratory (TVin, L) and expiratory (TVex, L), breath frequency (fβ, 1/min), end-tidal carbon dioxide
pressure (PETCO2, mmHg), end-tidal oxygen pressure (PETO2, mmHg)) in sitting position for three minutes

by a MasterScreen-CPX (VIASYS HealthCare, Germany) [2]. Moreover, a 12-lead electrocardiogram (ECG)
was also employed for HR monitoring while a pulse oximeter (MasterScreen, Germany) informed about
SpO2. Blood pressure (cuff manometry, Mac, Japan) was recorded prior to the cardiopulmonary function
assessment [2].

All sessions were performed in the Laboratory of Cardiopulmonary Testing and Pulmonary Rehabilitation,
Respiratory Medicine Department, University of Thessaly, with the environmental temperature at 24±1 °C
and humidity at 46±5%. The evaluation was made between 10:00 a.m. and 13:00 p.m.

Statistical analysis
The Kolmogorov-Smirnov test was used for the normality of the distribution. The independent t-test was
used between groups (events/hours <30 versus ≥30). Pearson correlation analysis was used for statistical
comparison between parameters. For each test, the level of significance was set to p<0.05. Continuous
variables of interest were characterized by mean values with standard deviation (Mean±Sd). The IBM
Statistical Package for the Social Sciences (SPSS) 21 statistical package (IBM Corp., Armonk, NY) was used
for statistical analyses.

Results
Polysomnography study
Results showed a difference between groups in polysomnography study parameters. Patients with AHI ≥30
events/hours observed higher values compare to the group with AHI <30 events/hours in apnea, desaturation
index, and minimum oxygen saturation during sleep (Table 1). The percentage distribution of the stages of
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sleep the group with AHI ≥30 events/hours showed higher values in Stage 1 (4.7±2.7 versus 3.0±1.6, %,
t(46)=2.695, p=0.010) and lower values in Stage 3-4 (8.4±5.1 versus 19.3±5.6, %, t(50)=-7.247, p<0.001)
compared to the group with AHI <30 events/hours. Stage 2 (AHI ≥30 events/hours: 59.5±7.6 versus AHI <30
events/hours: 60.9±13.1, %, t(50)=0.500, p=0.619) and REM stage (AHI ≥30 events/hours: 12.1±6.1 versus
AHI <30 events/hours: 11.5±4.9, %, t(50)=-0.354, p=0.725) were not different between the groups. The
parameters Epworth sleepiness scale (ESS) questionnaire and sleep duration during PSG and hypopnea were
not different between groups (Table 1).

 Apnea-Hypopnea Index
P-value

 <30 events/h ≥30 events/h

Age, years 46.9 ± 10.2 43.8 ± 10.7 0.289

Body Mass Index, kg/m2 30.0 ± 4.0 32.5 ± 5.0 0.052

Body Surface Area, m2 2.3 ± 0.6 2.4 ± 0.5 0.654

Lean Body Mass, kg 65.9 ± 9.9 67.4 ± 9.1 0.586

Total Body Water, % 52.7 ± 2.7 51.6 ± 2.8 0.218

Body Fat, % 30.6 ± 4.5 28.6 ± 4.3 0.327

Neck Circumference, cm 40.9 ± 4.1 40.7 ± 4.5 0.921

Waist Hip Ratio, cm 1.0 ± 0.1 1.0 ± 0.1 0.818

AHI, Events/h 21.9 ± 3.8 59.3 ± 19.7 <0.001

Apnea, Events/h 4.1 ± 3.4 36.1±24.7 <0.001

Hypopnea, Events/h 23.6±14.1 23.4±12.6 0.958

Epworth Sleepiness Scale, score 8.9 ± 2.9 7.8 ± 4.6 0.295

Desaturation Index, % 18.6±5.7 60.6±21.9 <0.001

minSaO2, % 82.4± 6.1 77.4 ± 11.0 0.043

Sleep Duration, min 321.8± 62.0 295.2 ± 65.4 0.121

FEV1, % pred 111.6±37.3 99.1±11.6 0.189

FVC, % pred 118.5±37.8 102.3±15.2 0.054

TABLE 1: Results between patients with OSAS
Continuous variables are presented as mean ± standard deviation.

Note: OSAS = obstructive sleep apnea syndrome; AHI = apnea-hypopnea index; FEV1 = forced expiratory volume in the first second; FVC = forced
vital capacity; minimum SaO2 = minimum oxygen saturation during sleep

Spirometry and respiratory strength
Additionally, MIP showed differences between groups. Patients with AHI ≥30 events/hours observed higher
values as compared to the group with AHI <30 events/hours (102.0±18.3 versus 91.1±12.1 % of predicted,
t(50)=2.590, p=0.013, Figure 1). The MEP (AHI ≥30 events/hours: 52.1±11.1 versus AHI <30 events/hours:
50.1±12.8, % of predicted, t(50)=0.579, p=0.565, Figure 1), FEV1 (AHI ≥30 events/hours: 99.1±11.6 versus AHI
<30 events/hours: 111.6±37.3, % of predicted, t(50)=-0.613, p=0.189) and FVC (AHI ≥30 events/hours:
102.3±15.2 versus AHI <30 events/hours: 118.5±37.8, % of predicted, t(50)=-1.971, p=0.054) were not
different between groups (Table 1).
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FIGURE 1: Results between groups in maximum inspiratory (MIP),
expiratory pressure (MEP), and respiratory muscle strength (RMS = MIP
- MEP ratio)
*p<0.05

Cardiopulmonary function
Results showed a difference between groups in cardiopulmonary function parameters. Patients with AHI ≥30
events/hours observed higher values compared to the group with AHI <30 events/hours in tidal volume
during inspiration (TVin: 0.8±0.2 versus 0.7±0.1, L, t(50)=2.041, p=0.047), end-tidal carbon dioxide pressure
(PETCO2: 34.6±4.2 versus 31.4±3.7, mmHg, t(50)=2.838, p=0.007), and mean arterial pressure (MAP: 88.4±6.5

versus 82.9±6.2, mmHg, t(50)=3.175, p=0.003) (Table 2). The parameters oxygen uptake, carbon dioxide
output, heart rate, ventilation, tidal volume in expiratory, breath frequency, and end-tidal oxygen pressure
were not different between groups (Table 2).
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 Apnea-Hypopnea Index
P-value

 <30 events/hours ≥30 events/hours

VO2, ml/min 330.7±10.3 348.9±72.5 0.472

VCO2, ml/min 249.1±97.1 278.9±66.5 0.211

VE, L/min 9.9±3.7 11.2±2.0 0.128

Tidal Volume inspiratory, L 0.7±0.1 0.8±0.2 0.047

Tidal Volume expiratory, L 0.6±0.2 0.7±0.2 0.062

fβ, 1/min 15.7±3.8 16.3±4.1 0.626

PETCO2, mmHg 31.4±3.7 34.6±4.2 0.007

PETO2, mmHg 109.8±4.5 109.5±6.1 0.826

HR, bpm 77.6±6.6 84.1±13.7 0.030

MAP, mmHg 82.9±6.2 88.4±6.5 0.003

TABLE 2: Cardiopulmonary function results
Continuous variables are presented as mean ± standard deviation.

Note: fβ = breath frequency; HR = heart rate; MAP = mean arterial pressure; PETCO2 = end-tidal carbon dioxide pressure; PETO2 = end-tidal oxygen
pressure; VCO2 = carbon dioxide output, VE = minute ventilation; VO2 = oxygen uptake

Patient’s characteristics
Anthropometric and morphological characteristics weren’t different between groups (Table 1).

Correlation results
According to Spearman's correlation analysis between respiratory muscle strength (MIP and MEP) and PSG
parameters, MIP is related to AHI (r= .332, p=0.016) and desaturation index (r= .439, p=0.001) and MEP is
related to percent of REM sleep stage (r= -.564, p<0.001) and sleep duration (r= -.309, p=0.026).

Discussion
The aim of this study was to investigate whether the maximum inspiratory and expiratory pressure are
correlated with the apnea-hypopnea index in patients with OSAS. Our main finding was that MIP is related
to the severity of AHI and affected by the desaturation index.

Previous studies have reported that AHI severity was correlated with some respiratory parameters, as well as
mean arterial pressure [11]. The increase of tidal volume during inspiration and of PETCO2 is indicative of

the instability of central respiratory motor output to airway and pump muscles during sleep while the
association between OSAS and hypertension has been well-established in the context of chronic
sympathetic excitation [10]. In the present study, we observed higher values in PETCO2, tidal volume in

inspiratory, mean arterial pressure, and heart rate in resting in patients with AHI ≥30 compared to the group
with <30 events/hours. In agreement with our findings, Stavrou et al. reported increased PETCO2

(approximately 4 mmHg) in patients with OSAS as compared to the control group [2].

Our data present that patients with AHI ≥30 events/hours had higher values in TV in inspiratory compared to
patients with AHI <30 events/hours group (Table 2). Breathing is the exchange of O 2 and CO2 gases in order

to remove the excess of CO2 from the system. CO 2 is a regulator of blood pH and its fluctuations may disturb

the homeostasis if levels are not maintained in the normal range [2]. Breathing occurs automatically and is
regulated, according to the metabolic demands, by the autonomic nervous system (ANS) and, more
specifically, by the interconnection of the vital reflexes (respiratory (RC), vasomotor (VMC), and cardiac
centers (CC)) located in the medulla oblongata, with the RC being the principal regulator [14]. Voluntary
control of breathing and, therefore, the involvement of distinct areas of the cerebral cortex is possible but
only temporally [6]. In our data, patients with AHI ≥30 events/hours had higher values P ETCO2 at 3.1 mmHg
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than patients with AHI <30 events/hours group. The increased PETCO2, like the ones measured in our

patients, is an end product of a complex conglomerate influenced by factors such as the severity of sleep
apnea, daytime PaO2, blunted respiratory drive, respiratory mechanics, and respiratory muscle fatigue [2]. If
apnea is willingly prolonged - as seen in professional athletes to improve endurance - various physiological
processes occur to compensate for the detrimental effects of CO2 retention. Central and peripheral

chemoreflexes are activated due to hypoxia, the sympathetic nervous system (SNS) tone is increased due to
the stimulation of VMC and CC, leading to hypertension and bradycardia due to the stimulation of the vagus
nerve, and lung volume is reduced due to chest compression and dilation of thoracic vasculature [15].
However, the effects are transient and reversible during rest time intervals.

According to our results, observed higher values in MIP in patients with AHI ≥30 events/hours as compared
to the <30 events/hours group. The intermittent breath-holding during hypoxia re-oxygenation in patients
with OSAS probably increases the intrathoracic pressure with successive alteration in the transmural
pressure of the cardiac cavities, similar to the ones produced during exercise [16]. During the repeated
process of hypoxia re-oxygenation, the respiratory muscles increase their fatigue strength [17], which leads
to major immediate pathophysiological changes of breath [18]. In the present study, we observed a positive
relationship between MIP and AHI (r= .332, p=0.016) and desaturation index (r= .439, p=0.001).

Regulation of breathing during sleep is principally under the control of chemoreceptors while many of the
inputs witnessed in wakefulness and, therefore, BH, are diminished [19]. Consequently, the ventilatory
feedback control system of chemoreflex is based on the fluctuations of PaO2, which are more prominent
during OSAS, making it vulnerable to instability [20]. OSAS consists of repetitive episodes of apneas and
hypopneas, which activate the circle intermittent hypoxia-hypercapnia [21], results that are compatible with
our findings (PETCO2: 31.4±3.7 versus 34.6±4.2 mmHg). The chemoreflex is stimulated entirely, increasing

the SNS tone during both sleep and wakefulness, leading to the clinical manifestation of hypertension and
tachycardia [22] in contrast to BH in trained breath-hold divers to whom PNS is not attenuated to OSAS’
extent. The present study observed higher values in HR at rest in patients with AHI ≥30 events/hours as
compared to the <30 events/hours group (77.6±6.6 versus 84.1±13.7, bpm). In fact, BH divers probably
develop enhanced and impermanent chemo-responsiveness to hypoxia with a blunted ventilatory response
to hypercapnia [23]. Therefore, it could be suggested that chemoreflex abnormalities in OSAS cannot be
merely explained by intermittent arterial oxygen desaturation [24]. Besides, sympathoexcitation occurs in
elite divers too, without the detrimental effects of chronic intermittent hypoxia witnessed in OSAS, posing a
challenge in truly understanding the mechanisms and effects of chemoreflex upregulation [25].

The suboptimal length of a muscle such as the diaphragm leads to the suboptimal release of force according
to the basic properties of muscles [26]. MIP is a measure of diaphragmatic inspiratory muscle strength,
which results in being increased in OSAS, as strength weakens [27]. Respiratory muscle function has been
correlated with vital capacity, indicating that respiratory muscle weakness contributes to hypoventilation
[28]. Thus, there has been an interest in the literature on the beneficial effects of increasing the respiratory
and especially the inspiratory muscle strength in both sports and sleep-disordered breathing (SDB). Training
protocols that involve BH [5] have been proven to be effective in improving performance while inspiratory
muscle training (IMT) alleviates accompanying SDB hypertension. It has been proposed that the conscious
apnea stimulus is beneficial, as it resembles the effects of aerobic exercise, benefiting MIP [29]. It differs
from sleep apneic episodes as, during the rest of the intervals of BH, the arterial blood gases and acid-base
status are fully reversed, attenuating the increased tone of SNS that persists in OSAS [30].

Nevertheless, in our study, there were some limitations. The participants were only men and the low number
of participants might be a statistical bias in our conclusions.

Conclusions
To conclude, data from the present study support that the maximal inspiratory pressure associated with the
severity of AHI and intermittent BH during sleep increases the inspiratory muscle strength. However, its
effects differ, since OSAS is detrimental due to the sympathoexcitation that persists, contributing to
comorbidities, whereas BH is not only reversible but also beneficial for athletic performance. As oxygen
desaturation and arterial re-oxygenation seem to affect only chemoreflex upregulation in part, further
research on respiratory muscle strength as a potential candidate for elucidating the relationship of apneas in
OSAS and BH is required.
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