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Abstract
In a companion paper Balbona et al. (Behav Genet, in press), we introduced a series of causal models that use polygenic 
scores from transmitted and nontransmitted alleles, the offspring trait, and parental traits to estimate the variation due to the 
environmental influences the parental trait has on the offspring trait (vertical transmission) as well as additive genetic effects. 
These models also estimate and account for the gene-gene and gene-environment covariation that arises from assortative 
mating and vertical transmission respectively. In the current study, we simulated polygenic scores and phenotypes of parents 
and offspring under genetic and vertical transmission scenarios, assuming two types of assortative mating. We instantiated 
the models from our companion paper in the OpenMx software, and compared the true values of parameters to maximum 
likelihood estimates from models fitted on the simulated data to quantify the bias and precision of estimates. We show that 
parameter estimates from these models are unbiased when assumptions are met, but as expected, they are biased to the degree 
that assumptions are unmet. Standard errors of the estimated variances due to vertical transmission and to genetic effects 
decrease with increasing sample sizes and with increasing r2 values of the polygenic score. Even when the polygenic score 
explains a modest amount of trait variation ( r2 = .05 ), standard errors of these standardized estimates are reasonable ( < .05 ) 
for n = 16K trios, and can even be reasonable for smaller sample sizes (e.g., down to 4K) when the polygenic score is more 
predictive. These causal models offer a novel approach for understanding how parents influence their offspring, but their use 
requires polygenic scores on relevant traits that are modestly predictive (e.g., r2 > .025) as well as datasets with genomic and 
phenotypic information on parents and offspring. The utility of polygenic scores for elucidating parental influences should 
thus serve as additional motivation for large genomic biobanks to perform GWAS’s on traits that may be relevant to parent-
ing and to oversample close relatives, particularly parents and offspring.

Keywords  Vertical transmission (VT) · Nature of nurture · OpenMx · Structural equation modeling (SEM) · Assortative 
mating (AM)

Introduction

While behavioral genetics is sometimes viewed as being 
concerned with cataloging heritability ( h2 ) and its determi-
nants across traits, there has traditionally been great interest 
in understanding how family members directly impact each 
other environmentally. However, disentangling the genetic 
and environmental factors that cause familial resemblance 
has proven difficult, and is made all the more so when these 
factors are correlated. One likely reason for such a corre-
lation is vertical transmission (VT), which occurs when 
a parental trait has a direct environmental influence on an 
offspring trait. VT leads to a covariance between the trait’s 
genetic and parental influences—a type of gene-environment 
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covariance that has recently been termed genetic nurture by 
Kong et al. (2018).

Kong et al. (2018) showed that genetic nurture can be 
estimated from the covariance between the offspring’s phe-
notypic value and a polygenic score (PGS) calculated from 
the alleles not transmitted from parents to offspring. This 
covariance was denoted as �NT in Kong et al. (2018), which 
we also adopt here. Furthermore, the direct genetic effect 
of the PGS after removing the influence of genetic nurture 
can be estimated by subtracting �NT from the covariance 
between the transmitted PGS and the offspring phenotypic 
value ( �T ). However, primary phenotypic assortative mating, 
which we denote in this paper simply as assortative mating 
(AM), occurs when mates choose each other based on phe-
notypic similarity, and complicates the modeling of �NT and 
�T considerably. A single generation of AM on a heritable 
trait leads to a positive “trans” covariance between mates’ 
PGS’s (Robinson et  al. 2017; Hugh-Jones et  al. 2016). 
Such a covariance is a competing explanation for non-zero 
observations of �NT ; specifically, part of �NT may be due to 
the AM-induced covariance between the transmitted PGS 
from the mother (which has a direct genetic influence on 
the offspring), the nontransmitted PGS from the father, and 
vice-versa.

Kong et al. recognized this confounding influence of AM 
on estimates of genetic nurture. In their study on educa-
tional attainment, they found evidence for AM in the paren-
tal generation but not before, and their approach to account 
for AM was therefore restricted to this scenario (disequi-
librium AM). However, when AM occurs across multiple 
generations (equilibrium AM), recombination mixes causal 
variants of different parental origins on the same haplotype, 
leading to “cis” covariance between causal variants within-
haplotypes that is eventually (at equilibrium) equal to the 
trans covariance across mates. In this case, part of �NT may 
also be due to the AM-induced cis covariance between the 
transmitted PGS and the nontransmitted PGS from the same 
parent. Therefore, when there is evidence for equilibrium 
AM, this additional covariance must be accounted for to 
avoid bias.

In our companion paper (Balbona et al., in press), we 
introduce a series of causal models that use transmitted and 
nontransmitted PGS’s, along with the offspring phenotypic 
value, to estimate genetic nurture and direct genetic effects 
of the PGS under both equilibrium and disequilibrium AM 
scenarios. Importantly, these models also provide esti-
mates of the full variance due to VT ( VF ). In particular, we 
showed that the full VF can be estimated when there is no 
AM regardless of the predictive ability of the PGS ( r2

PGS
 ). 

When there is AM, inclusion of parental phenotypic data or 
an assumption about h2

t0
—the total h2 in the base popula-

tion (before AM, or at “time 0”)—allows estimates of the 
full VF , the full genetic nurture, and the full additive genetic 

variation. The causal modeling framework we used allows 
these models to be easily extended to account for different 
mechanisms of AM, to incorporate sibling and/or twin data, 
and to fit two traits bivariately in order to test cross-trait VT 
and AM.

The goal of this paper is to quantify the performance of 
the base models described in Balbona et al. (in press) when 
their assumptions are met, and to understand their sensi-
tivity to assumptions when they are unmet. To do this, we 
simulated additive genetic effects, vertical transmission, 
and two types of AM (equilibrium and disequilibrium), and 
generated polygenic scores and phenotypes of parents and 
offspring. We instantiated the models in the OpenMx (Boker 
et al. 2011; Neale et al. 2016) structural equation modeling 
software, and compared the true values of parameters to 
maximum likelihood estimates from the simulated data to 
quantify their bias and precision.

Methods

Causal models

In Balbona et al. (in press), we described three causal mod-
els that differ in their assumptions and data used, and we 
derive the expectations of parameters in each. Model 0 uses 
data on the offspring phenotype ( Yo ) and on PGS’s calcu-
lated from four sources: the transmitted paternal ( Tp ), the 
nontransmitted paternal ( NTp ), the transmitted maternal 
( Tm ), and the nontransmitted maternal ( NTm ) haplotypes. 
Model 0 assumes no AM and no genetic effects other than 
those due to the PGS. Counter-intuitively, even when this 
last assumption is violated and the PGS explains little trait 
h2 , we show mathematically that the estimate of the variance 
due to VT is unbiased. We verify this conclusion below. 
Note that VT is a process, not a score. In our path diagrams 
(Balbona et al., inpress), we denote F as the “familial” score 
caused by VT. Hence, the variation due to VT is denoted VF 
with estimate V̂F

Model 1 uses the same data as Model 0, but incorporates 
the influence of AM on parameter expectations. As with 
Model 0, it assumes the PGS explains all genetic variation. 
Even though it models the influence of AM, Model 1 does 
not account for the influences of AM on the genetic effects 
not captured by the PGS. Thus, both Model 0 and Model 
1 yield biased estimates when there is AM and the PGS 
explains less than the full h2 . Because no PGS currently 
explains the full h2 for any trait, these two models should 
not be used when there is evidence of AM, and the utility of 
modeling AM in Model 1 is mostly a didactic example of 
how AM can be modeled.

In addition to the data used in the models above, Model 
2 includes observed maternal ( Ym ) and paternal ( Yp ) 
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phenotypic values in order to model the effects of both the 
PGS (with variance estimate V̂PGS ) and the latent genetic 
score (LGS, with variance estimate V̂LGS ). The LGS is the 
unobserved genetic score defined to be statistically orthogo-
nal to the PGS in the base population. Furthermore, Model 2 
provides estimates of the full genetic nurture effect ( ̂v + ŵ ), 
due to the covariance of parental effects with both the PGS 
( ̂w ) and the LGS ( ̂v ). We also investigated the performance 
of a modification of Model 2 (Model 2-NP) that uses no 
parental phenotype information, and instead uses assumed 
values of the h2 in the base population, or at “time 0” ( h2

t0
 ). 

Such assumed values would presumably come from the 
literature, from models that provide decent estimates of 
h2
t0

 after accounting for AM and genetic nurture, such as 
extended twin family models (Keller et al. 2010) or related-
ness disequilibrium regression (RDR; Young et al. 2018; see 
Balbona et al. (in press) for a caveat about using estimates 
from RDR for this). For Models 1 and 2, we either assumed 
that AM has reached equilibrium (Models 1e and 2e) or that 
it is at disequilibrium (Models 1d and 2d), having occurred 
for only a single generation. Modeling other types of AM is 
discussed in our companion paper, but these are not exam-
ined here.

Details on model assumptions and parameter expecta-
tions for each model are in Balbona et al. (in press). Table 1 
of Balbona et al. (in press) provides an overview of all 
parameter names, whereas Table 1 of this paper provides 
an overview of the principal differences between the mod-
els. We translated each of the seven models in Table 1 into 
OpenMx code in R. We used the NPSOL optimizer (Gill 
et al. 1986) in OpenMx due to its ability to handle the many 
nonlinear constraints that were required to fit these models. 
The OpenMx scripts used here are available at https​://githu​
b.com/yoki5​348/VT_SEM.

Data simulation

We simulated data using a modified version of the GeneE-
volve software (Tahmasbi and Keller 2017), which can 

simulate all the processes discussed here and create phe-
notypic data and genotypic data that has the same patterns 
of physical linkage disequilibrium observed in real SNP or 
sequence data. Our data did not require realistic patterns of 
linkage disequilibrium, and given that we needed to generate 
thousands of simulated datasets, we created a modified ver-
sion of GeneEvolve in R in which all causal variants (CVs) 
were in linkage equilibrium in the base population. AM 
thereafter created realistic directional covariances between 
CVs.

For each simulation, we drew m = 100 binomially dis-
tributed CVs with minor allele frequencies (p) drawn from 
∼ U(.1, .5) and with effect sizes ∼ N(0,

h2
t0

2mp(1−p)
) where m is 

the number of causal variants. Half of the CVs contributed 
to the PGS and half to the LGS. We scaled the PGS so that 
it explained varying proportions of VY in the base popula-
tion ( r2

PGS,t0
 ), from h2

t0
 to .025, and we scaled the LGS to 

explain h2
t0
− r2

PGS,t0
 proportions of VY  . We summed the 

PGS and LGS to create a total genetic score and created 
an environmental score � ∼ N(0,V(PGS+LGS),t0) such that 
h2
to
= .50 and standardized Y such that VY ,t0 = 1 exactly in 

the base population. The same scaling coefficients were 
then used across all generations, such that the variances of 
parameters could increase over their base population val-
ues as a consequence of VT or AM.

GeneEvolve chose mates such that the mate correlation, 
rmate , was either 0 or .25 across generations. Each mate 
couple had two offspring. The two haplotypes of mates 
recombined at random, leading to four haplotypes (trans-
mitted vs. nontransmitted crossed by maternal vs. paternal 
origin) for each offspring. To simulate VT, the offspring 

familial environment was F = fYp + fYm , where f =
√

VF,t0

2VY ,t0

 

was constant across generations. It should be noted that VF 
reaches equilibrium after a single generation, whereas AM 
takes ∼ 5–10 generations before its consequences reach 
equilibrium. We therefore ran the modified GeneEvolve for 
a single generation to simulate disequilibrium AM, and for 
20 generations to simulate equilibrium AM.

At the end of each simulation, we generated nfam = 16K 
trio families such that no siblings existed in the final data, 
although more distant collateral relatives existed sporadi-
cally. Because our models only use within-family infor-
mation to estimate parameters, we do not expect that 
non-independence across families due to distant relatives 
influenced our point estimates, but it may have led to 
slightly smaller standard errors (SE’s) of estimates than 
would occur if all families were unrelated. For the results 
presented in Figs. 1, 2, and 3, h2

t0
= 0.5 , r2

PGS,t0
= 0.05 or 

0.5, VF,t0 = 0.15 , rmate = 0 or 0.25, and AM was at equilib-
rium or disequilibrium. We also investigated other param-
eter values of h2

t0
 , rmate , and VF,t0 , but results from these 

Table 1   Description of causal models

Model AM Use Yp and Ym? Assume 
r2
PGS,t0

= h2
t0

?

0 No AM No Yes
1e Equilibrium No Yes
1d Disequilibrium No Yes
2e Equilibrium Yes No
2d Disequilibrium Yes No
2e-NP Equilibrium No No
2d-NP Disequilibrium No No

https://github.com/yoki5348/VT_SEM
https://github.com/yoki5348/VT_SEM
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simulations did not change conclusions and so for brevity, 
we do not present these results.

To estimate the standard errors for varying sam-
ple sizes, we generated datasets with the parameters 
h2
t0
= 0.5 , r2

PGS,t0
= 0.05 , rmate = 0.25 , and VF,t0 = 0.15 

a n d  va r i e d  nfam ∈ {1K, 2K, 4K, 8K, 16K, 32K, 64K} . 
To understand the inf luence of r2

PGS,t0
 , we used the 

above parameters but with fixed nfam = 16K  and varied 
r2
PGS,t0

∈ {0.5, 0.35, 0.25, 0.15, 0.05, .025} . For all scenar-
ios, we simulated data 1K times. So that the influence of 
AM and VT on the true parameter values are apparent, 
we chose not to standardize estimates in Figs. 1, 2, 3, 4, 
but we provide the equilibrium values of VY to aid in the 
interpretation of estimate values.

Results

Figures 1, 2, and 3 show a comparison of estimates from 
five of the seven models we investigated. We show the 
results for the two models that used assumed values of 
h2
t0

 rather than parental phenotypes to derive estimates 
of latent genetic effects (Models 2e-NP and 2d-NP) in 

Supplement Figs. 1, 2, 3. When the assumed values of h2
t0

 
are correct, estimates from Models 2e-NP and 2d-NP are 
very similar to estimates from Models 2e and 2d, although 
their SE’s are slightly higher. Of course, estimates from 
Model 2e-NP and 2d-NP will be biased to the degree that 
assumed values of h2

t0
 are incorrect. It should be noted 

that Model 2d-NP is most similar to the approach taken 
by Kong et al, although they did not attempt to estimate 
VF . Nevertheless, the results in Figs. 1, 22, 3 from Model 
2d should mimic most closely how their approach would 
perform, under the assumption that the value they assumed 
for h2

t0
 of educational attainment, taken from RDR (Young 

et al. 2018), was correct.
Figure 1 shows the equilibrium true parameter values 

(grey dotted lines) and parameter estimates (boxplots) from 
the five models when there is no AM. In the absence of 
AM, all the models provide unbiased estimates of VPGS , VF , 
w, and � , both when the PGS explains all the h2 (Fig. 1a) 
or only 10% of it (Fig. 1b). That Models 0 and 1 estimate 
the full VF even when their assumption that r2

PGS,t0
= h2

t0
 is 

violated confirms our conclusion in the companion paper, 
where we explain why this occurs. Thus, in the absence of 
AM, the full variation due to VT can be estimated simply 

Fig. 1   Comparison of estimates 
across models when there 
is VT but no AM. For each 
simulation, h2

t0
= .50 , r

mate
= 0 , 

V
F,t0

= .15 , and n
fam

= 16K . a 
r
2

PGS,t0
= .50 . b r2

PGS,t0
= .05 . 

Boxplots show first quartile, 
median, and third quartile of 
estimates, with whiskers at the 
2.5% and 97.5% quantiles. Equi-
librium values of parameters 
are grey dashed lines. *Models 
where assumptions about AM 
and r2

PGS,t0
 are met
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from a weakly predictive PGS from both parents and values 
of the offspring trait. Model 2 provides unbiased estimates 
of VLGS and v, and therefore provides full estimates of the 
additive genetic variation ( VPGS + VLGS ) and the full genetic 
nurture effect ( w + v ). VLGS , v, and � are not estimated in 
Model 0 and VLGS and v are not estimated in Model 1, and 
so these estimates are not shown in the figures.

When there is equilibrium AM and the PGS explains all 
h2 , the estimates from the models that assume equilibrium 
AM (1e and 2e) are unbiased (Fig. 2a). Estimates from 
Model 2e are unbiased when there is equilibrium AM and 
the PGS is weakly predictive, but Model 1e’s estimates are 
sensitive to the assumption that r2

PGS,t0
= h2

t0
 when AM exists 

(Fig. 2b). This is because AM induces an unmodeled covari-
ance between the PGS and the LGS (i) that inflates �NT , 
which in turn upwardly biases estimates of VF and w from 
Model 1e. However, Model 1e’s estimates of the direct effect 
of the PGS, which come from �T − �NT , remain unbiased 
because i inflates �NT and �T to the same degree. Estimates 
from models that assume no AM (Model 0) or that model 
the wrong type of AM (Model 1d and 2d) do not properly 
account for the covariances between haplotypes that are 
induced by equilibrium AM, and therefore yield downwardly 
biased estimates when r2

PGS,t0
= h2

t0
 and upwardly biased esti-

mates when r2
PGS,t0

< h2
t0

 . Nevertheless, the bias and spread 
of estimates from Model 2d are smaller than those of Model 
1d because the observed mate covariance, as well as the 

covariance between one mate’s PGS and the other mate’s 
trait, are used in Model 2d, which decreases the bias in � 
and therefore improves the estimation of other parameters.

When there has been a single generation of AM (dis-
equilibrium AM), estimates from Model 2d are unbiased 
regardless of the predictive ability of the PGS, and estimates 
from Model 1d are unbiased as r2

PGS,t0
 approaches h2

t0
 (Fig. 3). 

When AM is at disequilibrium, estimates from models that 
assume equilibrium AM are typically biased. In particular, 
Model 2e’s estimates related to VT ( VF , w, and v) are down-
wardly biased. This occurs because the covariances between 
haplotypic LGS’s and PGS’s (g, h, and i) implied by the 
causal model are larger than their actual values, which leads 
to expectations of �NT that are larger than those observed. To 
compensate, estimates of VF , w, and v are lowered while esti-
mates of VLGS are increased. Interestingly, when r2

PGS,t0
= h2

t0
 , 

estimates of genetic nurture ( ŵ ) are unbiased when the 
model of AM is incorrect (Model 1e and 2e; Fig. 3b). It is 
not obvious from the math why this this occurs, but may be 
because downwardly biasing 𝜇̂ compensates for values of ĝ , 
ĥ , and î implied by the causal model that are too high.

The results for the disequilibrium AM scenario are similar 
to those from equilibrium AM in that they demonstrate the 
sensitivity of these models to assumptions about how AM 
has operated. Fortunately, as we describe in our companion 
paper, there is a good deal of information in the covariances 
between the four haplotypic PGS’s, the offspring trait, and 

Fig. 2   Comparison of estimates 
across models when there is 
VT and equilibrium AM. For 
each simulation, h2

t0
= .50 , 

r
mate

= .25 , V
F,t0

= .15 , and 
n
fam

= 16K . a r2
PGS,t0

= .50 . b 
r
2

PGS,t0
= .05 . See Fig. 1 note for 

additional details
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potentially the two parental traits that allows assumptions 
regarding AM to be tested with high statistical power.

Correlations and standard errors of parameter 
estimates

A causal model is considered ’under-identified’ when a 
set of two or more estimates use exactly the same infor-
mation to estimate their values. All of the models we have 
reviewed above are identified. However, the informa-
tion used to estimate different sets of parameters in these 
models is partially redundant, sometimes highly so, which 
decreases their precision. Figure 4 shows an example scat-
ter plot between the estimates from the 1K simulated data-
sets from Model 2e (see Supplementary Fig. 4 for these 
results for Models 1e and 2e-NP). Much of the information 
to estimate VF and w comes from �NT , with both estimates 
increasing with higher values of �NT , and so it is sensible 
that these two estimates are highly ( r = .98 ) positively 
correlated. Furthermore, the assumption that the ratio of 
genetic nurture to direct genetic effects is the same for 
observed as for latent genetic effects ( v

a
=

w

�
 ) is required 

for Model 2 to be identified. Thus, v̂ is an increasing func-
tion of ŵ and therefore of �NT ; hence, v̂ is positively cor-
related with V̂F and ŵ . Much of the information to estimate 
VLGS comes from the residual parent-offspring covariance, 
cov(Yo, Y∗ ), after removing the effects having to do with 

VT ( V̂F , ŵ , and v̂ ), which explains the negative correla-
tions between V̂LGS and these three estimates. Finally, V̂PGS 
is not an observed variance (i.e., it is not simply synony-
mous with V̂Y × r̂2

PGS
 ). Rather, V̂PGS is the variance due to 

the direct effect of the PGS after removing its expected 
covariance with F, and so V̂PGS depends to some degree 
on the values of other estimates.

The high correlation values between parameter estimates 
suggests that their standard error (SE’s) will be high unless 
large sample sizes are employed. For the results displayed 
in Fig. 5, we computed SE(𝛽) =

�

1

n

∑n

i=1
(𝛽i − 𝛽)2 , where 

𝛽i is the standardized estimate for simulated dataset i, and 
� is the true standardized value of the estimate. Note that 
unlike results in Figs. 1, 2, 3, 4, SE’s shown in Fig. 5 are 
from standardized estimates for interpretability. Figure 5a 
shows the SE’s of estimates as a function of sample sizes 
(the number of trio families, nfam ) from 1K to 64K. We 
compared the SE’s of models that provide unbiased esti-
mates of VPGS , VF , and w when the PGS is weakly predic-
tive and there is equilibrium AM (Models 2e and 2e-NP). 
Model 2e also estimates VLGS whereas its value is assumed 
in Model 2e-NP, and so we show the SE’s of V̂LGS for 
Model 2e as well. As one would expect, SE’s of these 
estimates decrease as nfam increases. Because their esti-
mates correspond closely to observed statistics, V̂PGS and 

Fig. 3   Comparison of estimates 
across models when there is 
VT and disequilibrium AM. 
For each simulation, h2

t0
= .50 , 

r
mate

= .25 , V
F,t0

= .15 , and 
n
fam

= 16K . a r2
PGS,t0

= .50 . b 
r
2

PGS,t0
= .05 . See Fig. 1 note for 

additional details
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ŵ have much smaller SE’s than V̂LGS and V̂F . The SE’s of 
estimates from Model 2e are typically smaller than those 
from Model 2e-NP because Model 2e also uses informa-
tion on parental phenotypes. To achieve a SE(V̂LGS) and 
SE(V̂F) smaller than .05, at least nfam = 8K trio families are 
required. These models can handle incomplete trios (only 
two of three family members sampled) so long as sufficient 
numbers of each type of relative pair exist in the sample. 
Of course, when there is such missingness, larger sample 
sizes are required. Finally, the SE’s of V̂PGS and V̂F are 
slightly smaller for models that assume disequilibrium AM 
(Supplementary Fig. 5), and so slightly smaller sample 
sizes are required for disequilibrium AM models to 
achieve equivalent statistical power.

Figure 5b shows the SE’s of estimates as a function of 
r2
PGS,t0

 when nfam is held constant at 16K. As r2
PGS,t0

 increases, 
the SE(V̂PGS ) also increases slightly because the SE is pro-
portionate to the mean value of the estimate. On the other 
hand, the SE(V̂F) and SE(V̂LGS ) decrease as r2

PGS,t0
 increases. 

This effect becomes more pronounced at low levels of r2
PGS,t0

 , 
especially for Model 2e-NP. Information to estimate VF 
comes primarily from 𝜃̂

2

NT

𝜃̂2
T

 (Balbona et al. in press), and the 
variance of this ratio increases as r2

PGS,t0
 gets smaller. 

Because V̂LGS is strongly dependent on V̂F (Fig.  4), the 
SE(V̂LGS) is similarly influenced by r2

PGS,t0
 . The relationships 

between r2
PGS,t0

 and the SE’s of estimates from models that 
assume disequilibrium AM are very similar to those shown 
(Supplementary Fig. 5B).

Computational performance

Table 2 shows the convergence time in seconds for each of 
the seven models for various sample sizes. We ran the mod-
els in OpenMx using the NPSOL optimizer with feasibility 
tolerance = 1e − 7 and Standard Errors option set to Yes. For 
timing, we used a laptop with an i5 1.6GHz processor and 
16GB RAM and ran each model and sample size combina-
tion a single time; hence there is some stochastic noise (e.g., 
Model 2e-NP took longer for nfam = 4K than nfam = 8K ). As 
can be seen, despite their apparent complexity, the models 
run very fast. The slowest model (Model 2d) took only ∼ 
2.5 min with nfam = 64K . Thus, computational capacity and 
time should not be limiting factors for using these models.

Discussion

In this study, we quantified the performance of several 
causal models introduced in our companion paper that were 
inspired by Kong et al.’s approach for estimating genetic 
nurture. Using a Monte Carlo simulation approach to find 
true parameter values, generate trio datasets, and fit the 
simulated data in OpenMx, we confirmed that the estimates 
from these models are unbiased when assumptions are met. 
Indeed, when there is no AM, estimates from all models are 
unbiased even when the assumption regarding the predic-
tive ability of the PGS is violated. However, when there is 
AM, estimates are sensitive to assumptions about the process 
leading to mate similarity; estimates are biased to the degree 
these assumptions are unmet. Fortunately, these assumptions 
do not have to be guessed at as the observed covariances 
involving the haplotypic PGS’s provide information that can 
be used to differentiate various processes of AM (Balbona 
et al., in press).

Model assumptions are never met perfectly in real data, 
and so the violation of an assumption does not mean that the 
estimates from the model are worthless, but it does mean 
that it is important to interpret the estimates with the proper 
nuance. It would be impossible to present results for esti-
mates under all possible scenarios, but we cover some of 
the major ones in the figures above. In Table 3, we provide 
an overview of how violations of the principal assumptions 
influence parameter estimates, including some assumptions 
that were not covered in the present manuscript. We show 
the direction of the assumption violation that the biases refer 
to in the third column; the effect on the estimate(s) would 
be in the opposite direction for violations in the opposite 
direction. For example, VF would be underestimated rather 
than overestimated if â2 > a2 . We omit the biases on 𝛿 , ĝ , 
â , ĥ , and î because their effects are already included in V̂PGS 
and V̂LGS . Of course, biases increase as violations become 
more severe, and so it is important to have some idea of how 

Fig. 4   Scatter plots between Model 2e estimates. Estimates are from 
1K simulations where r2

PGS,t0
= .05 , r

mate
= 0.25 , and AM is at equi-

librium
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assumptions fare for any given data. When it is clear that 
assumptions are violated to a degree that makes estimates 
significantly biased, users should attempt to alter the model 
to accommodate new assumptions that better fit the data at 
hand.

Many of the influences of assumption violations covered 
in Table 3 are derivable from Figs. 1, 2, 3 above. We briefly 
discuss two here that were not covered in our simulations. 
First, for some phenotypes, VT influences are likely to be 
stronger from one parent than the other (Kong et al. 2018). 

For example, several studies using a Mendelian randomiza-
tion paradigm have found that maternal traits (e.g., height) 
influence neonatal trait values (e.g., gestational age; Law-
lor et al. 2017; Zhang et al. 2015). Although not directly 
investigated, it is unlikely that paternal traits would have 
a similar impact. When fp ≠ fm , VF = (f 2

p
+ f 2

m
)(VY + VY�) . 

Using the current models, f̂ ≈ fp+fm

2
 . Thus, VF − V̂F ≈ 

((f 2
p
+ f 2

m
) − 2f̂ 2)(VY + V2

Y
𝜇)  =

(fp−fm)
2

2
(VY + V2

Y
�) ≥ 0  . 

Therefore, VF will be underestimated. In future study, we 
will extend the models to allow VT influences to differ by 

Fig. 5   The standard errors (SE’s) of standardized estimates from Models 2e and 2e-NP a as a function of n
fam

 when r2
PGS,t0

= .05 and b as a func-
tion of r2

PGS,t0
 when n

fam
= 16K . Estimates are from 1K simulations where r

mate
= 0.25 and AM is at equilibrium

Table 2   Seconds until 
convergence across models

nfam Model

0 1e 1d 2e 2d 2e-NP 2d-NP

1K 5.4 13.7 13.2 76.3 86.8 23.9 41.5
2K 5.2 13.6 15.7 90.9 96.8 25.2 40.3
4K 6.1 16.1 17.1 105.3 106.3 28.8 50.8
8K 6.6 17.4 24.8 90.6 130.6 35.9 46.5
16K 10.0 21.8 17.5 91.7 145.3 48.0 64.2
32K 10.0 20.5 23.2 123.0 121.7 29.6 47.8
64K 11.8 28.9 32.8 141.2 147.4 36.2 54.4
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parental origin ( fp and fm ; see also Evans et al. 2019; Tubbs 
et al. 2020; Warrington et al. 2018). Second, we discussed in 
our companion paper how different genetic effects in parents 
vs. offspring ( �∗ ≠ �o ) can be modeled. When this is unmod-
eled, �o = �T − �NT  , as expected, and thus V̂PGS is unaf-
fected (or minimally so when there is AM). However, �NT 
is a function of �∗ rather than �o , meaning that the observed 
�NT (=cov(NTm + NTp, Yo) ) will be smaller than that implied 
by the model, leading to underestimates of VF and genetic 
nurture. Third, our models assume simple additive genetic 
effects with no dominance or epistasis. Because dominance 
does not inflate cov(Yo, Y∗) , we expect that dominance influ-
ences would go only into the residual variance, V̂𝜖 . However, 
additive-by-additive (and higher order) epistasis would lead 
to unmodeled parent-offspring resemblance. For Model 2, 
this residual cov(Y∗, Yo) should upwardly bias V̂LGS and have 
second-order effects on V̂F and v̂.

The primary limitation to the current paper is that we 
made some of the same assumptions in our simulations as 
we did in our models, meaning that the influences of several 
factors on parameter estimates have yet to be investigated. 
We discuss a few of these in turn. First, both our simulations 
and our models assume no shared environmental influences, 
although we believe that there is sufficient information to 
estimate them. So long as there is no gene-environment 
covariance due to factors other than genetic nurture (e.g., 
stratification has been controlled for properly in the GWAS 
and in the structural equation models), �NT should only be 
influenced by genetic nurture and AM. Any residual dif-
ferences between the mean phenotypic values of families 

after accounting for differences due to VT, genetic nurture, 
and genetics could be used to estimate shared environmental 
influences. Nevertheless, we have yet to build or test mod-
els that do this. Second, our models define the LGS as the 
genetic component that is statistically orthogonal to the PGS 
in the base population, and thus all covariance between the 
LGS and PGS (i) arises only from AM. Our simulations 
were based on this same assumption. We did not simulate 
physical linkage disequilibrium nor the process of building 
PGS’s based on estimated effects from GWAS. We do not 
anticipate any changes to our conclusions had we done this, 
but it is an issue that awaits confirmation. Finally, we have 
yet to simulate several scenarios (especially stratification, 
gene-by-age interactions, epistasis, social homogamy, and 
genetic homogamy) in Table 3, and so the reported influ-
ences on parameter estimates for these in Table 3 should 
be considered provisional until there is a more formal 
treatment.

The use of PGS’s to understand genetic nurture, as well 
as the direct genetic effect purged of their covariance with 
familial environmental effects, is an important advance made 
by Kong et al. We formalized this approach in a series of 
models introduced in our companion paper, and showed how 
this approach can also be used to estimate the total influence 
of parental traits on offspring traits. In the current paper, we 
have demonstrated that the models developed in our com-
panion paper work as intended. These models are only the 
beginning, and they suggest many novel and exciting ways 
in which measured genetics data can be incorporated into 
family models to better understand the nature of nurture.

Table 3   Effects of violating 
assumptions on parameter 
estimates

Assumption Models Violation Typical biases if assumption violated

Overestimated Underestimated

No residual stratification 0, 1, 2 Residual strat VF , w, v
No G × Age ( �o = �∗) 0, 1, 2 𝛿o > 𝛿∗ VPGS∗ , VLGS∗ VF

fp = fm 0, 1, 2 fp ≠ fm VF

No dominance effects 0, 1, 2 Dominance effects V�

No epistasis 0, 1, 2 Epistasis V�(0,1), VLGS(2) VF(2), v(2)
r2
PGS,t0

= h2
t0

0, 1 r2
PGS,t0

< h2
t0

VF , w (when AM)
â2 = a2 2-NP â2 < a2 VF , v VLGS

g

�
=

h

a
2 g

𝛿
>

h

a
VLGS VF , v

w

�
=

v

a
2 w

𝛿
<

v

a
VF , v VLGS

� = 0 0 𝜇 > 0 VF , VPGS , w
Eq. AM 1e, 2e Diseq. AM VLGS(2e), VF(1e), w(1e) VF(2e), VPGS

(2e), w(2e), 
v(2e)

Diseq. AM 1d, 2d Eq. AM VF , VPGS(2d) VPGS(1d)
No social homogamy 1, 2 Social homog. VLGS , VPGS (2) VF , w, v
No genetic homogamy 1, 2 Genetic homog. VF , w, v VLGS , VPGS
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