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Abstract: This work reports the synthesis and successful use of novel benzoxazines as reinforcing
resins in polyisoprene rubber compounds. For this purpose, three new dibenzoxazines containing
one (4DTP-fa) or two heteroatoms of sulfur (3DPDS-fa and 4DPDS-fa) were synthesized following
a Mannich condensation reaction. The structural features of each benzoxazine precursor were
characterized by 1H and 13C nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR)
and Raman. The new precursors showed well suited reactivity as characterized by differential
scanning calorimetry (DSC) and rheology and were incorporated in rubber compounds. After the
mixing, the curing profiles, morphologies and mechanical properties of the materials were tested.
These results show that the structural feature of each isomer was significantly affecting its behavior
during the curing of the rubber compounds. Among the tested benzoxazines, 3DPDS-fa exhibited the
best ability to reinforce the rubber compound even compared to common phenolic resin. These results
prove the feasibility to reinforce rubber compounds with benzoxazine resins as a possible alternative
to replace conventional phenolic resins. This paper provides the first guide to use benzoxazines as
reinforcing resins for rubber applications, based on their curing kinetics.

Keywords: benzoxazines; rubber; reinforcing resins; polyisoprene; disulfide

1. Introduction

One of the most important fields of study in material science concerns the develop-
ment of rubber formulations [1]. These materials are very convenient due to their elasticity
and damping properties once crosslinked [2]. However, rubber compounds need to be rein-
forced to fit the specifications of mechanical properties required for many applications [3,4].
For this purpose, inorganic fillers or polymeric resins are commonly employed. Among the
polymeric resins, novolac-type phenolic resins (PR) are the most employed [5,6]. These PR
are formaldehyde pre-condensates from phenol or resorcinol [7]. In most of the cases, they
are incorporated into the rubber with an in-situ crosslinker such as hexamethylenetetramine
and react while the rubber is curing [8,9]. Even though a good performance is observed,
several shortcomings are arising from their use such as the employment of a methylene
donor to allow the resin to crosslink. The development of suitable alternatives has become
desirable [10,11].

Among the different alternatives, polybenzoxazines (polyBz) have emerged as promis-
ing substitutes for phenolic resins. Benzoxazine resins (Bz) are readily synthesized in an
one-step reaction through a Mannich-like condensation of phenolic compounds, formalde-
hyde, and primary amines [12]. Then, they are subjected to being thermally triggered,
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cationic ring-opening polymerization (ROP). This polymerization is auto-catalyzed, and it
is commonly activated in a temperature range between 180 and 250 ◦C [13]. These mono-
component resins do not release phenols, or formaldehyde during the polymerization
step [12]. Moreover, polyBz show excellent mechanical properties, enabling their use as
reinforcing resins for rubber applications [12,14].

Up to now, the combination of rubber and benzoxazines has been mainly focused on
the improvement of the toughness of polybenzoxazine matrixes. One of the most studied
strategies is the incorporation of reactive liquid rubbers into Bz to lower the curing temper-
ature while the thermal, tribological, and/or mechanical properties were improved [15–19].
Additionally, benzoxazines have been employed to functionalize rubbers. For example,
Bz moieties were anchored onto the backbone of polybutadiene rubber by click chemistry
leading to a self-curable rubber [20]. Thio-ene click reactions were also carried out to
develop a Bz-functionalized poly(styrene-butadiene) rubber that exhibits improved me-
chanical properties [21]. Another example focused on the preparation of a polysulfide
rubber chain bridged with polyBz by the ring-opening addition of a thiol-capped rubber to
obtain a material with outstanding thermal stability and excellent flexibility [22].

Regarding the application of polybenzoxazines to reinforce rubber compounds, just a
limited amount of patents can be found [23–28]. In 2007, the use of two di-benzoxazines
(diBz) commercially available was patented, one from bisphenol A (BA) and aniline, and an-
other from phenol and 4,4′-diaminodiphenylmethane (ddm) in rubber compounds [23].
The addition of the diBzs improved the elasticity and the breaking strength. Recently,
in 2020, a patent was granted concerning the use of linear polymers with benzoxazines
groups in the backbone known as main chain benzoxazines from BA and ddm, terminated
with monoamines to reinforce filled rubber compounds [28]. The literature concerning this
topic is not rich despite the potential scope of this field. Two main reasons could explain
this lack of studies. The first one is the disparities on the curing kinetics of benzoxazines
and rubber. The curing of rubber by sulfur, so-called vulcanization, is commonly carried
out at temperatures between 150 and 170 ◦C in a relatively short period of time [2] while
benzoxazine ROP requires high temperatures and comparably long reaction times to com-
plete polymerization [29]. Secondly, interactions between the rubber curing additives and
benzoxazines could occur when they are cured together. Indeed, Liu et al. reported a
new reaction between sulfur and benzoxazine to form a copolymer at temperatures above
159 ◦C known as sulfur radical transfer and coupling reaction (SRTC) [30]. Moreover,
benzoxazines containing double bonds can react with elemental sulfur to produce copoly-
mers under curing conditions. In these cases, inverse vulcanization and ring-opening
polymerization take place concomitantly to produce a wide variety of materials [31–34].
Finally, elemental sulfur has been reported to trigger the formation of in-situ initiators that
reduce the polymerization temperature of benzoxazines [35].

This work reports the synthesis and successful use of novel benzoxazines as reinforc-
ing resins in polyisoprene rubber compounds. The chemical structures of the monomers,
which are represented in Scheme 1, and their reactivity appeared to be a major parameter to
consider in the elaboration of the rubber compounds. The polymerization kinetics were in-
vestigated in detail in the absence and presence of sulfur and rubber curing additives. Once
the behavior of the monomers was understood, they were incorporated in polyisoprene
formulations and tested as reinforcing agents. This paper relates the curing behavior, mor-
phology characterization, and mechanical properties of the rubber compounds containing
benzoxazines and its potential use to replace phenolic resins.
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2. Materials and Methods 
2.1. Materials 

4,4′-thiodiphenol (99%, 4TDP), furfurylamine (≥99%, fa), bisphenol A (≥99%, BA), 
and paraformaldehyde (95%, PFA) were purchased from Sigma-Aldrich. 3,3’-
dihydroxydiphenyl disulfide (95%, 3DPDS) was purchased from abcr GmbH, and 4,4’-
dihydroxydiphenyl disulfide (98%, 4DPDS) was purchased from TCI Europe. Phenolic 
resin (>99.5%, PR), with product name DUREZ 31459 was purchased from SBHPP 
(Sumitomo Bakelite Co., Ltd.). Hexamethylenetetramine (HMT) was supplied by Ineos 
Paraform. Toluene (≥99.5%), chloroform (CHCl3), chloroform-d (CDCl3) and 
dimethylformamide (DMF) were supplied from Sigma-Aldrich. All chemicals were used 
as received without any further purification. 

2.2. Methods 
2.2.1. Nuclear Magnetic Resonance (NMR) 

Nuclear magnetic resonance (NMR) spectra were recorded using an AVANCE III HD 
Bruker spectrometer operating at 600 MHz and equipped with a 5 mm Broadband 
Observe (BBO) probe. The samples were dissolved in deuterated chloroform (CDCl3) and 
the spectra were referenced relative to tetramethylsilane (TMS). Assignments were 
performed using a combination of 1H, 13C, homonuclear correlation spectroscopy (COSY), 
heteronuclear single quantum coherence (HSQC), and heteronuclear multiple bond 
correlation (HMBC) spectra. 

2.2.2. Fourier Transform Infrared Spectroscopy (FTIR) 
Fourier transform infrared spectroscopy (FTIR) was conducted on a Bruker TENSOR 

27 (Ettlingen, Germany) in transmission mode. The background and sample spectra were 
recorded at 4 cm−1 spectral resolution across the 4000–400 cm−1 range. 

2.2.3. Elemental Analysis 
The elemental analysis measurements, which provides the determination of carbon, 

hydrogen, nitrogen and sulfur (CHNS), were performed on a Vario MACRO cube 
CHNS/O from Elementar France SARL. Samples are inserted in an oxygen enriched 
furnace at 1150 °C where a combustion process converts carbon to carbon dioxide; 
hydrogen to water; nitrogen to nitrogen gas/oxides of nitrogen and sulfur to sulfur 
dioxide. The combustion products are swept out of the combustion chamber by inert 
carrier gas (helium, 600 mL per minute) and passed over heated (850 °C) high purity 
copper. The separation of the measuring components takes place as follows: N2 is not 
adsorbed in the adsorption columns and is the first measuring component to enter directly 
in the thermal conductivity detector. The other components are adsorbed in their 
respective adsorption column. Each of these columns is then separately heated to the 
corresponding desorption temperature (Tdesorpt.) in order to release the components in the 
following order: CO2 (Tdesorpt. 240 °C), H2O (Tdesorpt. 150 °C) and SO2 (Tdesorpt. 230 °C). After 
desorption, each component is transported by the carrier gas flow into the measuring cell 
of a thermal conductivity detector (TCD). 

Scheme 1. Schematic representation of novel dibenzoxazines synthesized in this work from 4,4′-dihydroxydiphenyl
disulfide (4DPDS), 3,3’-dihydroxydiphenyl disulfide (3DPDS), 4,4′-thiodiphenol (4DTP), and furfurylamine (fa).

2. Materials and Methods
2.1. Materials

4,4′-thiodiphenol (99%, 4TDP), furfurylamine (≥99%, fa), bisphenol A (≥99%, BA),
and paraformaldehyde (95%, PFA) were purchased from Sigma-Aldrich. 3,3’-dihydroxydi-
phenyl disulfide (95%, 3DPDS) was purchased from abcr GmbH, and 4,4′-dihydroxydiphenyl
disulfide (98%, 4DPDS) was purchased from TCI Europe. Phenolic resin (>99.5%, PR), with
product name DUREZ 31459 was purchased from SBHPP (Sumitomo Bakelite Co., Ltd.).
Hexamethylenetetramine (HMT) was supplied by Ineos Paraform. Toluene (≥99.5%),
chloroform (CHCl3), chloroform-d (CDCl3) and dimethylformamide (DMF) were supplied
from Sigma-Aldrich. All chemicals were used as received without any further purification.

2.2. Methods
2.2.1. Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) spectra were recorded using an AVANCE III HD
Bruker spectrometer operating at 600 MHz and equipped with a 5 mm Broadband Observe
(BBO) probe. The samples were dissolved in deuterated chloroform (CDCl3) and the
spectra were referenced relative to tetramethylsilane (TMS). Assignments were performed
using a combination of 1H, 13C, homonuclear correlation spectroscopy (COSY), heteronu-
clear single quantum coherence (HSQC), and heteronuclear multiple bond correlation
(HMBC) spectra.

2.2.2. Fourier Transform Infrared Spectroscopy (FTIR)

Fourier transform infrared spectroscopy (FTIR) was conducted on a Bruker TENSOR
27 (Ettlingen, Germany) in transmission mode. The background and sample spectra were
recorded at 4 cm−1 spectral resolution across the 4000–400 cm−1 range.

2.2.3. Elemental Analysis

The elemental analysis measurements, which provides the determination of carbon,
hydrogen, nitrogen and sulfur (CHNS), were performed on a Vario MACRO cube CHNS/O
from Elementar France SARL. Samples are inserted in an oxygen enriched furnace at
1150 ◦C where a combustion process converts carbon to carbon dioxide; hydrogen to water;
nitrogen to nitrogen gas/oxides of nitrogen and sulfur to sulfur dioxide. The combustion
products are swept out of the combustion chamber by inert carrier gas (helium, 600 mL
per minute) and passed over heated (850 ◦C) high purity copper. The separation of the
measuring components takes place as follows: N2 is not adsorbed in the adsorption
columns and is the first measuring component to enter directly in the thermal conductivity
detector. The other components are adsorbed in their respective adsorption column. Each
of these columns is then separately heated to the corresponding desorption temperature
(Tdesorpt.) in order to release the components in the following order: CO2 (Tdesorpt. 240 ◦C),
H2O (Tdesorpt. 150 ◦C) and SO2 (Tdesorpt. 230 ◦C). After desorption, each component is
transported by the carrier gas flow into the measuring cell of a thermal conductivity
detector (TCD).
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2.2.4. Raman Spectroscopy

Raman spectra were recorded in a back-scattering geometry with a Renishaw inVia
ReflexRaman Microscope using the 785 nm line of High Power Near Infrared Diode Laser,
3 accumulations of 10 s were used at power 24.3 mW. An X50 long working distance
objective was used to focus the laser beam on a sample surface.

2.2.5. Differential Scanning Calorimetry (DSC)

Differential Scanning Calorimetry (DSC) thermograms were recorded using a Mettler
Toledo DSC3+ apparatus operating at inert atmosphere (nitrogen) with a linear heating
ramp from 20 to 250 ◦C at 10 ◦C·min−1 rate.

2.2.6. Thermo-Gravimetric Analysis (TGA)

Thermo-Gravimetric Analysis (TGA) measurements were performed using a Netzsch
TG 409 PC Luxx device operating under nitrogen with a heating ramp of 10 ◦C·min−1 up
to 800 ◦C.

2.2.7. Rheological Measurements

Rheo-kinetic measurements were performed using an Anton Paar Physica Modular
Compact Rheometer (MCR) 302 rheometer equipped with a CTD 450 temperature control
device with a disposable aluminum plate-plate (diameter: 25 mm, measure gap: 0.5 mm)
geometry. The polymerization measurements were recorded in the oscillation mode with
linear strain amplitude from 1 to 0.1% and a frequency of 1 Hz. The test is performed
following a heating ramp of 20 ◦C·min−1 from 50 ◦C to 150 ◦C followed by an isothermal
measurement at 150 ◦C. Rheology temperature sweep curves were performed on the same
device on cured rectangular bars in torsion mode from room temperature to 300 ◦C under
constant deformation of 0.1% and a frequency of 1 Hz.

2.2.8. Preparation of Polybenzoxazines

Benzoxazine monomers were placed in hollow Teflon® molds and dried under vac-
uum for 2 h at 100 ◦C to remove traces of solvent or water. After that, the molds were
transferred to an air-circulating oven at 170 ◦C for one hour for the first curing step. This
step was followed by a post-curing for 1 h at 190 ◦C and then 1 h at 210 ◦C.

2.2.9. Solubility Tests

Solubility was assessed in dimethylformamide (DMF). 0.1 g (±0.01g) of benzoxazine
monomers without and with 30 %wt of sulfur were cured at 150 ◦C for 1 h. After that, they
were immersed in 5 mL of DMF for 3 h.

2.2.10. Rubber Compounding

A Thermo Scientific HAAKE PolyLab QC internal mixer was used to perform the
compounding. The internal mixer having a free volume of 85 cc was operated using
two cam-type rotors and keeping a constant fill factor of 0.75. The mixing process was
performed in two steps. The initial temperature was set to 70 ◦C for the first process,
also referred to as non-productive (NP) step, and to 60 ◦C for the final one, also known
as productive step (PD). A formulation containing polyisoprene was mixed with three
different amounts of each benzoxazine as shown in Table 1. All the values are indicated in
weight percentage as well as in phr (parts per hundred rubber), which is commonly used
in the rubber industry. Additionally, the mixing procedure is detailed in the Appendix A.1
(Table A1).
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Table 1. Model formulation containing polyisoprene used in this investigation.

Compound %wt phr

Polyisoprene 86.6 83.0 76.6 68.7 100
Benzoxazine 0 4.1 11.5 20.6 0/5/15/30

Zinc oxide (ZnO) 4.3 4.1 3.8 3.4 5
Stearic acid (SA) 1.7 1.7 1.5 1.4 2

Sulfur 4.8 4.6 4.2 3.8 5.5
DCBS1 2.6 2.5 2.3 2.1 3

1 N,N′-dicyclohexyl benzothiazole-2-sulphenamide.

2.2.11. Moving Die Rheometer (MDR)

An Alpha Technologies moving die rheometer (MDR) 2000 was used to measure the
cure kinetics of rubber compounds. The MDR was preheated at 150 ◦C for approximately
30 min. After that the test was performed at 150 ◦C for 80 min with an oscillation of
amplitude of 0.5◦ (~7% strain) and a frequency of 1.667 Hz. Optimum cure times (t90) were
calculated from the curves of each material as the time required to reach 90% (S’t90) of the
change from minimum torque toward maximum that can be calculated using Equation (1).

S′t90 = 0.9 (S′max − S′min) + S′min. (1)

2.2.12. Curing of Rubber Compounds

The rubber compounds were cured by compression molding at 150 ◦C and 150 bars to
the calculated t90 values of each compounds. The curing was performed in a Labtech Engi-
neering hot press and a stainless-steel mold with a rectangular geometry (80 × 30 × 2 mm)
to which approximately 6 g of compound was added yielding a cured sheet with a thickness
in the range of 1.8–2.0 mm.

2.2.13. Tensile Test

Stress-strain tests were performed on an electro-mechanical testing machine INSTRON
5967 as per DIN 53504, using type S2 dumbbell specimens, that is, 75 mm length, and
benchmark distance of 20 mm. The rate of grip separation was 200 mm·min−1. Young
moduli were calculated from the slope at the beginning of the strain stress curves up to
1.5% of elongation.

2.2.14. Crosslinking Density

Small square samples were cut from the cured sample sheet (0.5 × 0.8 cm) and im-
mersed in toluene at room temperature to assess the degree of swelling as a function of
time. In this case, the swelling degree can be directly related to the crosslinking density. Ex-
periments were done three times. Specimens from each composition were kept completely
immersed in 20 mL of toluene throughout the test. The solvent was changed every 24 h.
At given times, the specimens were removed from the solvent, had their surface carefully
dried, weighed and were placed back into the solvent. Each specimen was kept out of the
solvent for less than 20 s. The specimens were weighed in air on a balance with accuracy
0.1 mg. Crosslinking densities were calculated using the Flory-Rehner equation (see in
Appendix A.2 for calculation details).

2.2.15. Atomic Force Microscopy

The samples were trimmed and surfaced with a LEICA EM UC6 cryo-ultramicrotome
at −120 ◦C to produce a flat surface of the cross-section for Atomic Force Microscopy
(AFM) analysis. Images of the topography and nanomechanical properties (modulus and
loss tangent) of the samples were acquired using the Amplitude Modulation-Frequency
Modulation (AM-FM) mode of the MFP-3D Infinity AFM (Asylum Research). All mea-
surements were made under ambient conditions (room temperature and relative humidity
of about 50%) and a standard cantilever holder for operation in air was used. Images of
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20 × 20 µm2 areas were taken with a resolution of 256 × 256 pixels at a scan rate of 1.5 Hz.
Cantilevers’ spring constants used in this study were about 30 N·m−1 (AC160TS-R3 model
from Olympus). The first and second resonant frequencies for AC160TS-R3 cantilevers
were about 300 kHz and 1.6 MHz, respectively. To ensure repulsive intermittent contact
mode, the amplitude setpoint was chosen as Asetpoint/A0 ~ 0.20 so that the phase is well
fixed below 90◦. A relative calibration method was applied to estimate the tip radius us-
ing a dedicated reference sample kit provided by Bruker (Model: PFQNM-SMPKIT-12m).
The deflection sensitivity and the spring constant of the cantilever were determined using
the GetReal™ Automated Probe Calibration feature. Using the polystyrene/low density
polyethylene (PS/LDPE) standard sample, the tip radius was then adjusted to obtain the
proper value of 2.7 GPa for the PS phase. The reported average and standard deviation
values of modulus and loss tangent consider at least 5 and up to 10 images in each sample
for reliable results.

2.3. Synthesis of Di-Benzoxazine Monomers
2.3.1. 4,4′-Dihydroxydiphenyl Disulfide and Furfurylamine (4DPDS-fa)

The disulfide-containing benzoxazine (4DPDS-fa) was synthesized by Mannich con-
densation. 4DPDS (6 g., 24 mmoles, 0.5 eq.), furfurylamine (4.7 g., 48 mmoles, 1eq.) and
paraformaldehyde (3 g., 96 mmoles, 2 eq.) were reacted in toluene in a round bottom
flask under mechanical stirring at 110 ◦C for 5 h. After the reaction the solvent was evap-
orated under reduced pressure. Then, the product was solubilized in CHCl3 and three
liquid–liquid extraction with 2 N NaOH and three with distilled water were carried out.
The organic layer was dried over magnesium sulphate, then filtered and the solvent evapo-
rated under reduced pressure. The final product was dried for 4 h under reduced pressure
(< 1mBar) at 100 ◦C. Yield = 90%.

1H NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution], experimental
integration, theoretical integration). δ = 3.89 (N-CH2, [d], exp 2.02 H, th 2.00 H); 3.97 (N-
CH2-Ar, [2], exp 2.02 H, th 2.00 H); 4.88 (N-CH2-O, [1], integration reference 2.00 H); 6.24
(-CH=CH*-C-, [e], exp 1.08 H, th 1.00 H); 6.33 (-CH*=CH-C-, [f], exp 1.04 H, th 1.00 H); 6.75
(-CH-CH*=C-S-, [c], exp 1.06 H, th 1.00 H); 7.09 (-C=CH-C-S-, [a], exp 1.07 H, th 1.00 H);
7.24 (-CH*-CH=C-S-, [b], exp-H, th 1.00 H); 7.41 (-CH=CH*-O-, [g], exp 1.05 H, th 1.00 H)

13C NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution]). δ = 48.2
(N-CH2, [d]); 49.4 (N-CH2-Ar, [2]); 82.0 (N-CH2-O, [1]); 109.2 (-CH=CH*-C-, [e]); 110.3
(-CH*=CH-C-, [f]); 117.4 (-CH-CH*=C-S-, [c]); 120.3 (-CH2-C*-CH-, [i]); 128.5 (C-S, [j]); 130.2
(-C=CH*-C-S-, [a]); 130.6 (-CH*-CH=C-S-, [b]); 142.7 (-CH=CH*-O-, [g]); 151.2 (-CH=C*-O-,
[k]); 154.3 (CH=C-O, [h]).

FTIR (cm−1): 1571 (stretching of furan ring), 1227 (C-O-C oxazine asymmetric stretch-
ing), 929 (out-of-plane bending vibration of the benzene ring).

Elemental analysis: element (exp, th); N (3.2, 3.5); C (44.3, 44.8); H (42.7, 41.4); S
(3.4, 3.4); O (6.4, 6.9)

2.3.2. 3,3′-Dihydroxydiphenyl Disulfide and Furfurylamine (3DPDS-fa)

The disulfide-containing benzoxazine (3DPDS-fa) was synthesized by Mannich con-
densation. 3DPDS (6.3 g., 25 mmoles, 0.5 eq.), furfurylamine (4.8 g., 50 mmoles, 1eq.)
and paraformaldehyde (3.2 g., 100 mmoles, 2 eq.) were reacted in toluene in a round
bottom flask under mechanical stirring at 110 ◦C for 5 h. After the reaction the solvent
was evaporated under reduced pressure. Then, the product was solubilized in CHCl3 and
three liquid-liquid extraction with 2 N NaOH and three with distilled water were carried
out. The organic layer was dried over magnesium sulphate, then filtered and the solvent
evaporated under reduced pressure. The final product was dried for 4 h under reduced
pressure (<1mBar) at 100 ◦C. Yield = 91%.

1H NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution], experimental
integration, theoretical integration). δ = 3.85, 3.89, 3.91 (N-CH2, [d’, d’, d], exp 2.02 H,
th 2.00 H); 3.98, 4.07, 4.13 (N-CH2-Ar, [2, 2′, 2′], exp 2.09 H, th 2.00 H); 4.84, 4.86, 4.87
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(N-CH2-O, [1′, 1′, 1], integration reference 2.00 H); 6.25 (-CH=CH*-C-, [e], exp 1.00 H, th
1.00 H); 6.33 (-CH*=CH-C-, [f], exp 1.01 H, th 1.00 H); 6.75–7.22 (aromatic protons, [a, b, c],
exp 3.01 H, th 3.00 H); 7.41 (-CH=CH*-O-, [g], exp 1.00 H, th 1.00 H)

13C NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution]). δ = 48.3
(N-CH2, [d]); 48.2, 48.4, 49.4 (N-CH2-Ar, [2]); 81.3, 81.4, 82.0 (N-CH2-O, [1]); 109.2
(-CH=CH*-C-, [e]); 110.4 (-CH*=CH-C-, [f]); 118.9 (-CH2-C*-CH-, [i]); 115.4–128.4 (aro-
matic carbons, [a, b, c]); 136.6 (C-S, [j]); 142.8 (-CH=CH*-O-, [g]); 151.5 (-CH=C*-O-, [k]);
154.6 (CH=C-O, [h]).

FTIR (cm−1): 1569 (stretching of furan ring), 1220 (C-O-C oxazine asymmetric stretch-
ing), 936 (out-of-plane bending vibration of the benzene ring).

Elemental analysis: element (exp, th); N (3.2, 3.5); C (44.9, 44.8); H (42.0, 41.4);
S (3.9, 3.5); O (6.0, 6.9)

2.3.3. 4,4′-Thiodiphenol and Furfurylamine (4DTP-fa)

The sulfur-containing benzoxazine (4DTP-fa) was synthesized by Mannich conden-
sation. 4DTP (6 g., 27.5 mmoles, 0.5 eq.), furfurylamine (5.3 g., 55 mmoles, 1eq.) and
paraformaldehyde (3.5 g., 110 mmoles, 2 eq.) were reacted in toluene in a round bot-
tom flask under mechanical stirring at 110 ◦C for 4 h. After the reaction the solvent was
evaporated under reduced pressure. Then, the product was solubilized in CHCl3 and
three liquid–liquid extraction with 2 N NaOH and three with distilled water were carried
out. The organic layer was dried over magnesium sulphate, then filtered and the solvent
evaporated under reduced pressure. The final product was dried for 4 h under reduced
pressure (< 1mBar) at 100 ◦C. Yield = 88%.

1H NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution], experimental
integration, theoretical integration). δ = 3.91 (N-CH2, [d], exp 2.09 H, th 2.00 H); 3.97 (N-
CH2-Ar, [2], exp 2.01 H, th 2.00 H); 4.87 (N-CH2-O, [1], integration reference 2.00 H); 6.25
(-CH=CH*-C-, [e], exp 1.02 H, th 1.00 H); 6.33 (-CH*=CH-C-, [f], exp 1.03 H, th 1.00 H); 6.75
(-CH-CH*=C-S-, [c], exp 1.00 H, th 1.00 H); 6.97 (-C=CH-C-S-, [b], exp 0.99 H, th 1.00 H);
7.11 (-CH*-CH=C-S-, [a], exp 0.99 H, th 1.00 H); 7.41 (-CH=CH*-O-, [g], exp 1.00 H,
th 1.00 H)

13C NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution]). δ = 48.6
(N-CH2, [d]); 49.4 (N-CH2-Ar, [2]); 82.0 (N-CH2-O, [1]); 109.1 (-CH=CH*-C-, [e]); 110.2
(-CH*=CH-C-, [f]); 117.5 (-CH-CH*=C-S-, [a]); 120.5 (-CH2-C*-CH-, [i]); 127.3 (C-S, [j]); 130.6
(-C=CH*-C-S-, [c]); 131.1 (-CH*-CH=C-S-, [b]); 142.7 (-CH=CH*-O-, [g]); 151.4 (-CH=C*-O-,
[k]); 153.4 (CH=C-O, [h]).

FTIR (cm−1): 1573 (stretching of furan ring), 1226 (C-O-C oxazine asymmetric stretch-
ing), 930 (out-of-plane bending vibration of the benzene ring).

Elemental analysis: element (exp, th); N (3.2, 3.5); C (46.4, 45.6); H (42.2, 42.1);
S (1.8, 1.8); O (6.3, 7.0)

2.3.4. Bisphenol A and Furfurylamine (BA-fa)

The model benzoxazine from bisphenol A and furfurylamine (BA-fa) was synthesized
by Mannich condensation following a procedure already reported [36]. Bisphenol A (6 g.,
26 mmoles, 0.5 eq.), furfurylamine (5.1 g., 52 mmoles, 1eq.) and paraformaldehyde (3.1 g.,
104 mmoles, 2 eq.) were reacted in toluene in a round bottom flask under mechanical
stirring at 110 ◦C for 6 h. After the reaction the solvent was evaporated under reduced
pressure. Then, the product was solubilized in CHCl3 and three liquid–liquid extraction
with 2 N NaOH and three with distilled water were carried out. The organic layer was
dried over magnesium sulphate, then filtered and the solvent evaporated under reduced
pressure. The final product was dried for 4 h under reduced pressure (<1mBar) at 100 ◦C.
Yield = 85%.

1H NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution], experimental
integration, theoretical integration). δ = 1.59 (-CH3, [A], exp 4.18 H, th 4.00 H); 3.94 (N-CH2,
[d], exp 2.07 H, th 2.00 H); 3.99 (N-CH2-Ar, [2], exp 2.01 H, th 2.00 H); 4.85 (N-CH2-
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O, [1], integration reference 2.00 H); 6.26 (-CH=CH*-C-, [e], exp 1.00 H, th 1.00 H); 6.33
(-CH*=CH-C-, [f], exp 1.03 H, th 1.00 H); 6.71 (-O-C=CH*-CH, [c], exp 1.00 H, th 1.00 H);
6.81 (-C=CH-C-, [a], exp 0.99 H, th 1.00 H); 7.11 (-O-C=CH-CH*, [b], exp 1.01 H, th 1.00 H);
7.41 (-CH=CH*-O-, [g], exp 1.00 H, th 1.00 H)

13C NMR (CDCl3, 600 MHz, 298 K), δ (ppm) = (assignment, [attribution]). δ = 31.2
(-CH3, [A]); 41.9 (CH3-C*-C-, [l]); 48.5 (N-CH2, [d]); 50.1 (N-CH2-Ar, [2]); 81.8 (N-CH2-
O, [1]); 109.1 (-CH=CH*-C-, [e]); 110.3 (-CH*=CH-C-, [f]); 116.1 (-O-C=CH*-CH, [c]); 118.9
(-CH2-C*-CH-, [i]); 125.5 (-C=CH-C-, [a]); 126.5 (-O-C=CH-CH*, [b]); 142.7 (-CH=CH*-O-,
[g]); 143.4 (CH3-C-C*-, [j]); 151.8 (-CH=C*-O-, [k]); 151.9 (CH=C-O, [h]).

FTIR (cm−1): 1586 (stretching of furan ring), 1230 (C-O-C oxazine asymmetric stretch-
ing), 936 (out-of-plane bending vibration of the benzene ring).

Elemental analysis: element (exp, th); N (2.6, 3.1); C (44.4, 44.6); H (47.4, 46.2); O (5.6, 6.1)

3. Results and Discussion
3.1. Synthesis and Molecular Characterization of Benzoxazines

For the purpose of this work, two new dibenzoxazine (diBz) monomers containing two
consecutive heteroatoms of sulfur were designed (Scheme 2). First, 4,4′-dihydroxydiphenyl
disulfide (4DPDS) was reacted with furfurylamine (fa) in the presence of paraformaldehyde
to form 4DPDS-fa (Scheme 2a). Secondly, 3,3’-dihydroxydiphenyl disulfide (3DPDS), which
differs from 4DPDS by the relative position of the hydroxyl group (O-H) regarding the
disulfide bond (S-S), was employed as a synthon for the design of 3DPDS-fa (Scheme 2b).
Furfurylamine was used for its bio-based origin and its known involvement in the benzox-
azine network formation, resulting in increased its glass transition temperature (Tg) [36–38].
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Scheme 2. Synthesis of dibenzoxazine monomers containing sulfur from diphenolic compounds: (a) 4DPDS, (b) 3DPDS, 
and (c) 4DTP; and furfurylamine. 
Scheme 2. Synthesis of dibenzoxazine monomers containing sulfur from diphenolic compounds: (a) 4DPDS, (b) 3DPDS,
and (c) 4DTP; and furfurylamine.

The structural features of 4DPDS-fa, and 3DPDS-fa were characterized by 1H NMR,
13C NMR, FTIR, and Raman (see in Appendix B Figures from Figures A1–A7) and the
purity was verified by the elemental analysis.

The formation of the Bz monomers is revealed by the presence of peaks at 4.8 ppm and
3.9 ppm which correspond to O-CH2-N [1] and Ar-CH2-N [2] respectively (Figure 1). The
NMR spectrum of 3DPDS-fa features more peaks than its congeners. Indeed, the reaction
of 3DPDS with fa led to a mixture of three isomers as depicted in Scheme 2 (b1, b2, and b3).
This is proven by the appearance of additional peaks next to the common peaks at 4.86
and 4.84 ppm, at 4.13 and 4.07, and at 3.88 and 3.85 ppm (marked with * in Figure 1b).
Moreover, one singlet and two doublets are observed in the aromatic region for 4DPDS-fa
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as expected. Nevertheless, in the case of 3DPDS-fa, new aromatic peaks appear attesting of
the formation of more than one diBz structure.

Polymers 2021, 13, x FOR PEER REVIEW 9 of 38 
 

 

The structural features of 4DPDS-fa, and 3DPDS-fa were characterized by 1H NMR, 
13C NMR, FTIR, and Raman (see in Appendix B Figures from A1–A7) and the purity was 
verified by the elemental analysis.  

The formation of the Bz monomers is revealed by the presence of peaks at 4.8 ppm 
and 3.9 ppm which correspond to O‒CH2‒N [1] and Ar‒CH2‒N [2] respectively (Figure 
1). The NMR spectrum of 3DPDS-fa features more peaks than its congeners. Indeed, the 
reaction of 3DPDS with fa led to a mixture of three isomers as depicted in Scheme 2 (b1, 
b2, and b3). This is proven by the appearance of additional peaks next to the common peaks 
at 4.86 and 4.84 ppm, at 4.13 and 4.07, and at 3.88 and 3.85 ppm (marked with * in Figure 
1b). Moreover, one singlet and two doublets are observed in the aromatic region for 
4DPDS-fa as expected. Nevertheless, in the case of 3DPDS-fa, new aromatic peaks appear 
attesting of the formation of more than one diBz structure. 

 
Figure 1. 1H nuclear magnetic resonance (NMR) spectra in CDCl3 of (a) 4DPDS-fa, and (b) 3DPDS-fa. 

Additionally, the success of the synthesis was confirmed by FTIR with the 
appearance of new peaks around 1225 cm−1 and 930 cm−1 which corresponds to C‒O‒C 
oxazine asymmetric stretching and out-of-plane bending vibration of the benzene ring 
respectively (see in Appendix B Figures A5 and A6).  

Furthermore, the presence of the disulfide in 3DPDS-fa and 4DPDS-fa was confirmed 
by Raman spectroscopy (see in Appendix B Figure A7). It is worth indicating that around 
2% of the S‒S bonds of 4DPDS-fa cleaved, as shown by the small peak located between 
2550 and 2600 cm−1, which is attributed to thiol (S‒H) bonds. The reduction of the disulfide 
bonds into thiols would presumably be due to the primary amine group of furfurylamine. 
As recently put into the spotlight, a benzoxazine containing disulfide bonds might cleave 
and rearrange upon heating [39]. The presence of these thiols indicates the disulfide bond 
of 4DPDS-fa is also able to cleave in relatively mild conditions. This could be considered 
as an asset since they could accelerate the ROP of the benzoxazine precursor due to their 
known catalytic effect [40,41]. On the contrary, no S‒H contributions were observed for 
3DPDS-fa. The apparent higher stability of 3DPDS-fa compared to 4DPDS-fa is difficult 
to justify without resorting to molecular dynamics. Nevertheless, the bond dissociation 
energy (BDE) of disulfide bonds is known to be strongly influenced by the chemical and 
electronic environments. Significant variations of the BDE of 4,4’ and 2,2′-
dihydroxydiphenyl disulfide have already been reported [42]. To the best of our 
knowledge, the BDE of 3,3′-dihydroxydiphenyl disulfide has never been reported, but it 
is reasonable to expect it would differ from the other isomers. This, together with 
additional facts given all along this manuscript, tends to converge to the conclusion that 
the disulfide bond of 3DPDS-fa is more stable than in 4DPDS-fa. 

Figure 1. 1H nuclear magnetic resonance (NMR) spectra in CDCl3 of (a) 4DPDS-fa, and (b) 3DPDS-fa.

Additionally, the success of the synthesis was confirmed by FTIR with the appearance
of new peaks around 1225 cm−1 and 930 cm−1 which corresponds to C-O-C oxazine
asymmetric stretching and out-of-plane bending vibration of the benzene ring respectively
(see in Appendix B Figures A5 and A6).

Furthermore, the presence of the disulfide in 3DPDS-fa and 4DPDS-fa was confirmed
by Raman spectroscopy (see in Appendix B Figure A7). It is worth indicating that around
2% of the S-S bonds of 4DPDS-fa cleaved, as shown by the small peak located between 2550
and 2600 cm−1, which is attributed to thiol (S-H) bonds. The reduction of the disulfide
bonds into thiols would presumably be due to the primary amine group of furfurylamine.
As recently put into the spotlight, a benzoxazine containing disulfide bonds might cleave
and rearrange upon heating [39]. The presence of these thiols indicates the disulfide
bond of 4DPDS-fa is also able to cleave in relatively mild conditions. This could be
considered as an asset since they could accelerate the ROP of the benzoxazine precursor
due to their known catalytic effect [40,41]. On the contrary, no S-H contributions were
observed for 3DPDS-fa. The apparent higher stability of 3DPDS-fa compared to 4DPDS-fa
is difficult to justify without resorting to molecular dynamics. Nevertheless, the bond
dissociation energy (BDE) of disulfide bonds is known to be strongly influenced by the
chemical and electronic environments. Significant variations of the BDE of 4,4′ and 2,2′-
dihydroxydiphenyl disulfide have already been reported [42]. To the best of our knowledge,
the BDE of 3,3′-dihydroxydiphenyl disulfide has never been reported, but it is reasonable
to expect it would differ from the other isomers. This, together with additional facts given
all along this manuscript, tends to converge to the conclusion that the disulfide bond of
3DPDS-fa is more stable than in 4DPDS-fa.

3.2. Thermal Properties and Curing Behavior of Benzoxazine Monomers

The thermal properties of the novel synthesized dibenzoxazines were studied by DSC
(Figure 2). An endothermic peak corresponding to the melting temperature is observed
for each precursor. For 4DPDS-fa, this peak is centered at 74 ◦C. In the case of 3DPDS-fa,
the endothermic peak presents two main contributions, with a first peak at 90 ◦C and a
second at 115 ◦C. As 3DPDS-fa is a mixture of isomers, it makes sense that more than one
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melting peak is observed by DSC. An exothermic peak is observed for each Bz, correspond-
ing to the thermally activated ring opening polymerization (ROP). 3DPDS-fa has a single
exothermic peak centered at 214 ◦C (Figure 2b), while 4DPDS-fa exhibits two exothermic
peaks (Figure 2a). The exothermic peak located at the lowest temperature (i.e., 215 ◦C) is
attributable to the benzoxazine ring opening. The peak at higher temperatures, centered
at 240 ◦C is attributed to the post-polymerization reaction of furan rings, as previously
reported [36–38].
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Figure 2. Differential scanning calorimetry (DSC) thermograms of dibenzoxazines containing disul-
fide: (a) 4DPDS-fa, and (b) 3DPDS-fa.

The involvement of the furan ring in the polymerization was double-checked by FTIR
(see in Appendix C Figure A8) showing a widening around 1570–1580 cm−1, indicating
that electrophilic substitutions occurred on the furfuryl groups of 4DPDS-fa. Even though
the DSC profile of 3DPDS-fa just reveals one exothermic peak, the furan rings were also
involved in the polymerization process as attested by FTIR. An increase of the absorption
peak located at 1570 cm−1 gives the evidence the reaction occurred (see in Appendix C
Figure A9). Interestingly, it seems the involvement of the furan ring during the benzoxazine
curing process occurs at lower temperatures. Finally, the enthalpies of polymerization for
4DPDS-fa and 3DPDS-fa are similar, slightly lower for 4DPDS-fa (Table 2, columns 4 and 5).

Table 2. Thermal and thermo-mechanical properties of 4DPDS-fa, 3DPDS-fa, and 4DTP-fa, and their corresponding polyBzs.

Benzoxazine Tp,onset
a

(◦C)
Tp,max

b

(◦C)
∆Hp

c

(J/g)
∆Hp

d

(kJ/mol)
T5%

e

(◦C)
tgel

(min)
Tg

f

(◦C)

4DPDS-fa 170 215/240 348 172 250 17 >265
3DPDS-fa 180 214 359 178 264 41 >270
4DTP-fa 175 224/250 319 148 262 34 265

a Onset temperature of the exotherm by DSC. b Maximum temperature of the exothermic peak by DSC. c, d Enthalpy of the exothermic peak
by DSC. e Temperature of 5% of weight loss by TGA. f Glass transition temperature by rheological measurements from polyBz taken at the
maximum of loss factor, tanδ.

It is worth indicating that each monomer does not release volatile species at least up
to 220 ◦C as attested by TGA measurements. It is not below 264 ◦C that 3DPDS-fa releases
5% degradation products when heated. For 4DPDS-fa, the temperature of 5% of weight
loss (T5%) is found to be 250 ◦C. (Table 2, column 6; Figure A10 in Appendix C).
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The evolution of the complex viscosity (η*) of each Bz heated under isothermal condi-
tions at 150 ◦C is displayed in Figure 3. In the molten state, the monomers exhibit very low
values of η*, between 6·102 and 8·102 mPa·s. After a few minutes, η* noticeably increases,
indicating the curing of the monomers. The gelation times (tgel), defined as the crossover
point of G’ and G”, are observed at 17 and 41 min, for 4DPDS-fa and 3DPDS-fa, respectively
(see in Appendix C Figure A11). Surprisingly, 3DPDS-fa takes more than twice the time
to cure in comparison to 4DPDS-fa. One of the possible explanations for this significant
difference in the curing behaviors of 3DPDS-fa and 4DPDS-fa may be attributed to the
small amount of thiol groups present in the 4DPDS-fa compound identified by Raman
spectroscopy. Indeed, thiols are known to catalyze the ring opening polymerization of
benzoxazine [40,41].
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To further investigate the curing behavior of 4DPDS-fa, a third benzoxazine monomer
was synthesized from 4,4′-thiodiphenol and furfurylamine (4DTP-fa). In this molecule
the disulfide bond was replaced by a single sulfur heteroatom (Scheme 2c). 4DTP-fa is
not able to form thiols while it keeps the same chemical environment than 4DPDS-fa
(Scheme 3a,c). All the molecular and thermal characterizations of 4DTP-fa are reported in
the Appendix C.1) (Figures from Figures A12–A18), and the detail of its thermal behavior
is reported in Table 2, row 4. The curing behavior of 4DTP-fa is reported in Figure 3
to be compared to the profile of 3DPDS-fa and 4DPDS-fa. 4DPT-fa behaves similarly to
3DPDS-fa, reaching the gelation time after 34 min. This result supports the assumption of a
catalytic effect triggered by the presence of thiols in 4DPDS-fa.

Thereafter, each benzoxazine precursor was cured following the procedure described
in the experimental part and shaped to analyze their glass transition temperature (Tg) (see
the Appendix C.2 Figures from Figures A19–A21). In all cases, the Tg was measured to be
above 250 ◦C (Table 2, column 8) showing the potential of these diBz to act as reinforcing
resins. Indeed, they exhibit higher Tg than currently used phenolic resins (i.e., ~170 ◦C) [14].
These values together with the reactivity of the monomers make them suitable candidates
as reinforcing resins for rubber applications.
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Scheme 3. Schematic representation of disulfide cleavage for 4DPDS-fa: (a) in the absence of sulfur, and (b) in presence of
sulfur in comparison to (c) 4DTP-fa.

3.3. Investigation of Benzoxazine Curing in the Presence of Sulfur

Ishida et al. demonstrated that elemental sulfur is an efficient catalyst to decrease the
polymerization temperature of benzoxazine due to the formation of in-situ initiators [35].
This triggering effect was reported to happen at temperatures below the thermally induced
homolytic cleavage of sulfur (Scheme 4a). Additionally, Liu et al. reported a reaction
occurring between sulfur and benzoxazine to form a copolymer at temperatures above
159 ◦C (Scheme 4b) [30]. This reaction is initiated by sulfur radicals formed after the
cleavage of sulfur ring and it is known as sulfur radical transfer and coupling reaction
(SRTC). In the following paragraphs, the effect of sulfur on the polymerization of 4DPDS-fa,
3DPDS-fa, and 4DTP-fa is discussed.
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Scheme 4. Schematic representation of the effect of sulfur on benzoxazine monomers previously
reported [30,35] (a) Triggering effect of sulfur on the ROP of benzoxazines; (b) Reaction between
sulfur and benzoxazines to form copolymers

For this purpose, each benzoxazine was mixed with sulfur at different amounts, and their
thermograms were recorded by DSC (see in Appendix C.3 Figures from Figures A22–A24).
For all the tested benzoxazines, when sulfur is added, the maximum temperature of the
exothermic peak (Tp,max) is reduced (Figure 4a). In the case of 3DPDS-fa the maximum
of the exotherm is greatly shifted from 214 to 177 ◦C. On the other hand, the exothermic
peak of 4DPDS-fa was converted from a double wide peak located around 215 ◦C to a
single narrow peak centered at 187 ◦C. Similar results were observed for 4DTP-fa with
a decrease of Tp,max of about 36 ◦C. However, for this monomer, the double wide peak
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around 224 ◦C was slowly converted to a single peak with the increase of the amount
of sulfur (Figure A24 in Appendix C.3). A single narrow peak centered at 188 ◦C was
obtained after the addition of 20 wt % of sulfur. Furthermore, the dependency between
the amount of sulfur and the Tp,max is displayed in Figure 4b. The differences observed
for 4DTP-fa in the tendency are explained by the gradual catalytic effect of sulfur on the
double exothermic peak. Nevertheless, the higher the amount of sulfur, the lower the
polymerization temperature for all benzoxazines precursors. These results are in agreement
with previously reported work [34,35].
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Rheo-kinetic analyses were also carried out to detail the catalytic effect of sulfur on the
monomers from a viscoelastic perspective. For this purpose, each benzoxazine precursor
was mixed with different amounts of sulfur and was analyzed under isothermal conditions
at 150 ◦C (see Figures from Figures A25–A27 in Appendix C.3). The curves obtained
for 3DPDS-fa, 4DPDS-fa, and 4DTP-fa without and with 5 wt % of sulfur are displayed
in Figure 5a. Figure 5b depicts the evolution of the gelation times of each benzoxazine
precursor as a function of the amount of sulfur added.
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Figure 5. (a) Curing behavior of 3DPDS-fa, 4DPDS-fa, and 4DTP-fa without and with 5 %wt of sulfur by rheo-kinetics
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a function of sulfur content. Dash lines are drawn to guide the eye.
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As expected, the polymerization of 3DPDS-fa is strongly catalyzed by sulfur, even if
it is added in small amounts. When 1 or 5 wt % of sulfur is employed, the gelation time
is shifted from 41 min to 17 or 9 min, respectively. On the contrary, the polymerization
of 4DPDS-fa is almost not affected by the presence of sulfur. As previously mentioned,
this might be due to the small amount of thiolated forms of cleaved 4DPDS-fa, which
already catalyze its polymerization. This assumption is also confirmed by the curing
behavior of 4DTP-fa in the presence of sulfur as a high catalytic effect is also observed. This
mono-sulfide benzoxazine precursor exhibits a shift of the tgel from 34 min to 15 min with
5 wt % of sulfur.

Finally, each precursor was polymerized in the absence and presence of sulfur fol-
lowing the procedure described in the experimental part and their solubility was tested
in dimethylformamide (DMF). For the sake of clarity, cured benzoxazine precursors will
be annotated as poly (“precursor acronym”). When cured in the presence of sulfur, they
will be annotated poly (“precursor acronym”)/S8. Poly(3DPDS-fa), poly(4DPDS-fa), and
poly(4DTP-fa) were insoluble, as expected from polybenzoxazine networks. On the con-
trary, poly(4DPDS-fa)/S8 was fully soluble in DMF even when it was cured in the same
conditions. A partial solubility was also observed for poly(3DPDS-fa)/S8 and poly(4DTP-
fa)/S8, for which a solid fraction of about 60% of the initial mass was recovered after the
test. The partial solubility of poly(3DPDS-fa)/S8 and poly(4DTP-fa)/S8 could be explained
by a co-reaction occurring between sulfur and the oxazine rings in these specific conditions
(Scheme 4b) [30]. The full solubility of poly(4DPDS-fa) in DMF indicates an additional
reaction is occurring between S8 and 4DPDS-fa otherwise its solubility should remain the
same than poly(4DTP-fa)/S8. The only structural difference between these molecules is
the disulfide bond. Therefore, the other side-reaction taking place could be through this
bond as reported in other works and described in Scheme 3b, with the formation of a
polysulfide [2,43,44].

Interestingly, the disulfide bond in 3DPDS-fa does not undergo a similar side-reaction.
Indeed, poly(3DPDS-fa)/S8 shows a similar solubility than poly(4DTP-fa)/S8, meaning
their curing in the presence of sulfur are also similar. The two different curing behaviors be-
tween poly(3DPDS-fa)/S8 and poly(4DPDS-fa)/S8 may be explained by the lower stability
of the disulfide bond of 4DPDS-fa, as above-mentioned.

In conclusion, three novel benzoxazines containing sulfur have been synthesized.
Due to their curing kinetic in the presence or absence of sulfur and their high Tg above
250 ◦C, 4DPDS-fa, 3DPDS-fa, and 4DTP-fa are three suitable candidates to be used for
the reinforcement of rubber compounds. The performance of each precursor as well as
the impact of the disulfide stability on the curing behavior and the final properties of the
compounds will be reported in the following section.

3.4. Application in Rubber Compounds

The potential of each benzoxazine to act as a reinforcing resin in rubber compounds has
been tested in a typical recipe composed of polyisoprene and a curing system constituted
of sulfur, N,N′-dicyclohexyl benzothiazole-2-sulphenamide (DCBS) as accelerator, zinc
oxide (ZnO) and stearic acid (SA). For the sake of clarity, the term “compound” will be
employed in the rest of the manuscript to designate mixture of polyisoprene and curing
system with or without benzoxazine precursors.

It is worth noting that the curing kinetics of benzoxazine precursors have also been
assessed in the presence of the ingredients of the curing package used to crosslink polyiso-
prene. These thermal characterizations can be found in Appendix D (Figure A28). They
reveal that stearic acid also affects the curing of the benzoxazine monomers, but to a
significantly lower extent compared to sulfur.

Rubber compounds were mixed in an internal mixer in a two-step process, described
in detail in the experimental part. It should be noted that the benzoxazines mixed with the
rubber are introduced as precursors. Their curing is occurring simultaneously with the curing
of the rubber. All the experiments described in the section above demonstrated that each
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benzoxazine precursor would be able to crosslink in the same time than the rubber during
the curing step. The benzoxazine precursors were added to the polyisoprene formulations at
different loading. For the sake of clarity and to avoid any confusion, polyisoprene compounds
containing a benzoxazine are annotated as PI(benzoxazine)phr. For instance, a polyisoprene
compound containing 10 phr of 4DPDS-fa is called PI(4DPDS-fa)10.

3.4.1. Curing of Rubber Compounds Containing Benzoxazine Precursors

The curing process of the rubber compounds containing the benzoxazine precursors
was followed by using a moving die rheometer (MDR). In this method, the curing of the
rubber is followed thanks to the evolution of the torque. The torque increases as the material
is crosslinking, being more resistant to the torsional strength applied. The optimum cure
time (t90) is then determined following Equation (1). It is worth indicating that this time is
a reference parameter in the rubber industry. The t90 values and the maximum achieved
torques (S’max) obtained for each compound are gathered in Table 3, columns 2 and 3,
respectively. The curing profiles of the rubber compounds are depicted in Figure A29 in
the Appendix D.

Table 3. Summary of the curing properties and crosslinking densities of the rubber compounds
containing benzoxazines.

Compounds with and without Bz t90
a (min) S’max

b (dN·m) νc ·10−4 c (mol·cm−3)

PI 27 11 2.01
PI(4DTP-fa)5 29 12 2.14
PI(4DTP-fa)15 33 10 1.98
PI(4DTP-fa)30 30 10 1.38
PI(4DPDS-fa)5 21 10 1.93
PI(4DPDS-fa)15 16 6 0.87
PI(4DPDS-fa)30 18 3 0.31
PI(3DPDS-fa)5 26 12 2.34
PI(3DPDS-fa)15 27 11 2.10
PI(3DPDS-fa)30 29 11 1.75

a Optimum cure time calculated following Equation (1). b Maximum achieved torque. c Crosslinking density
calculated from Flory-Rehner equation (see Appendix A.2 for additional information).

In the case of raw polyisoprene compound (PI), so-called reference, t90 was reached
after 27 min at 150 ◦C. PI(3DPDS-fa) cured in a comparable duration than the reference rang-
ing between 26 and 29 min, depending on the amount of resin. In the case of PI(4DPDS-fa),
the curing time was strongly affected, t90 being reached after only 16 min when 15 phr of the
resin were employed. In this case, the t90 decrease was also accompanied by a significant
drop of the maximum achievable torque, up to 73% (Table 3, rows from 6 to 8). It is worth
indicating that the crosslinking density of these rubber compounds were also drastically
decreased in comparison to the reference (Table 3, column 4). Indeed, the values of crosslink-
ing density (νc) decreased to 0.3·10−4 mol·cm−3, compared to ~2.0·10−4 mol·cm−3 for the
reference and PI(3DPDS-fa).

The decrease of the maximum achievable torque together with the drop of the
crosslinking density when 4DPDS-fa is used can be explained by the lower stability of the
disulfide bond, as previously discussed. When a disulfide bond breaks, sulfur radicals are
formed. One of the possibilities is that these radicals form thiols as observed by Raman
(Scheme 3a). Another option is that they could trap other sulfur radicals coming from the
opening of the elemental sulfur ring (S8). Therefore, polysulfide chains will be formed in
between the phenolic moieties as previously reported (Scheme 3b) [2,43,44]. If such com-
petitive reactions occur during the curing of PI(4DPDS-fa), less sulfur would be accessible
for the curing of polyisoprene and thus, the properties of the compounds would be affected.
This hypothesis is supported by the maximum torque reduction observed by MDR as well
as the drop of the crosslinking density for PI(4DPDS-fa). Additionally, the solubility test
of poly(4DPDS-fa) with and without sulfur described above revealed that a fully soluble
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network was formed in the presence of sulfur. These results are a further proof that a
reaction is occurring between 4DPDS-fa and sulfur. On the contrary, when 3DPDS-fa was
employed, the values of S’max and νc remained similar to the reference, emphasizing the
absence of a similar reaction between the benzoxazine precursor and S8.

It is also worthy to mention that S’max and νc of polyisoprene compounds containing
4DTP-fa are in the same range than the reference. It indicates that the curing of this mono-
heteroatom benzoxazine precursor, simultaneously to polyisoprene, does not consume
sulfur and, if it happens, it does not affect the curing of the rubber network. This provides
additional evidence that the low stability of the S-S bond in 4DPDS-fa is the reason for the
low curing extent of its compound with polyisoprene and the low crosslinking density.

3.4.2. Morphological Characterization and Nanomechanical Properties of Cured Rubber
Compounds by AFM

The morphology of the compounds containing 15 phr of benzoxazine was explored
by AFM. The mapping of the mechanical properties of cured polyisoprene compounds
with and without benzoxazine precursors in areas of 20 × 20 µm2 are depicted in Figure 6a.
The morphologies of the compounds are revealed by the contrast in nanomechanical
properties. In the reference compound, small stiff irregular particles were observed (white
contrast), probably related to zinc oxide particles present in the composition. In the
compounds containing benzoxazine, round shape domains with high modulus can be seen
well dispersed in the matrix. Despite a high dispersity of nodules sizes, there is a clear trend
where 4DPDS-fa nodules are almost undetectable as shown in Figure 6a. This morphology
is aligned with the previous observations. Indeed, 4DPDS-fa is cleaving through the S-
S bond, with a polysulfide chain growing between the phenolic moieties, as illustrated
on Scheme 3b. This cleavage leads to a dilution of the resin within the polyisoprene
matrix. In these conditions, the scattered benzoxazine groups from 4DPDS-fa have a lower
probability to meet with each other and thus, to form a network, in comparison to 3DPDS-fa
and 4DTP-fa. This hypothesis is supported by the small size of polyBz domains found in
PI(4DPDS-fa)15.

The evaluation of the quantitative nanomechanical measurements acquired with the
images follows the same conclusions. The average modulus for the rubber and polybenzox-
azine phases in each sample are plotted in Figure 6b. The modulus of the rubber matrix in
the reference sample was measured as 1.17 ± 0.16 GPa. It is noteworthy that the apparent
high modulus of the rubber matrix is related to the high frequency used in the analy-
sis (~1.6 MHz), since the viscoelastic properties of the rubber are frequency dependent.
Nevertheless, a clear trend can be observed when considering the compounds containing
benzoxazines as the modulus of the polyisoprene phase (EPI) is decreasing as follows:
4DTP-fa > 3DPDS-fa > 4DPDS-fa. In PI(4DTP-fa)15 and PI(3DPDS-fa)15, EPIs are similar
than the EPI values for neat crosslinked polyisoprene, in agreement with the crosslinking
density measurements reported in the section above. The quantitative nanomechanical
measurements are also in line with the drastic reduction of the crosslinking density for
PI(4DPDS-fa)15, since EPI significantly decreased by 43%. AM-FM also allows the simulta-
neous measurement of the loss tangent of each phase, complementarily to the modulus
measurements. Results showed equivalent trends and are in accordance with the modulus
measurements (see Figure A30 in Appendix D.1). These measurements, together with the
lower crosslinking density, are well aligned with the hypothesis of a consumption of sulfur
as stated previously due to a reaction with the 4DPDS-fa disulfide bond.
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Finally, the moduli of the polybenzoxazine nodules (EPI
polyBz) within the compounds

were measured and compared to the moduli of neat polyBz (EpolyBz) (see Figure A31 in Ap-
pendix D.1). In PI(3DPDS-fa)15 and PI(4DTP-fa)15, EPI

polyBz are slightly lower than EpolyBz,
but they remain in the same range (around 2.1 GPa instead of 3 GPa). These values prove
the successful crosslinking of the benzoxazine precursors simultaneously with the rubber
curing. On the contrary, for PI(4DPDS-fa)15, moduli of both rubber and polybenzoxazine
phases are lower than their corresponding references (0.67 and 1.4 GPa for EPI and EPI

polyBz
respectively, compared to 1.17 and 3 GPa for neat rubber and polyBz references). This also
agrees with the assumption that sulfur is consumed by this benzoxazine, this last one being
diluted and unable to efficiently crosslink and preventing at the same time a proper curing
of polyisoprene.

3.4.3. Tensile Test of Cured Rubber Compounds

Tensile tests were performed to assess the mechanical properties of the vulcanized
compounds of polyisoprene and benzoxazine precursor (see Figure A32 in Appendix D.2).
A summary of these properties is gathered in Table 4.
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Table 4. Summary of the mechanical properties of the rubber compounds containing benzoxazines.

Compounds with
and without Bz

Young Modulus
(MPa)

σ200% of strain
a

(MPa)
σ600% of strain

b

(MPa)
σbreak

c (MPa) εbreak
d (%)

PI 2.6 ± 0.1 2.28 ± 0.02 10.9 ± 1.1 11.3 ± 1.4 551 ± 67
PI(4DTP-fa)5 2.7 ± 0.2 2.54 ± 0.01 - 5.8 ± 1.0 391 ± 42
PI(4DTP-fa)15 2.9 ± 0.1 2.50 ± 0.03 - 4.7 ± 0.6 346 ± 35
PI(4DTP-fa)30 2.8 ± 0.2 2.21 ± 0.09 9.3 ± 0.4 11.6 ± 3.2 650 ± 80
PI(4DPDS-fa)5 1.7 ± 0.3 2.22 ± 0.03 - 7.8 ± 1.4 499 ± 46
PI(4DPDS-fa)15 1.8 ± 0.1 1.12 ± 0.02 3.71 ± 0.04 19.0 ± 0.8 1032 ± 9
PI(4DPDS-fa)30 1.8 ± 0.1 0.87 ± 0.01 3.00 ± 0.06 13.9 ± 0.8 1060 ± 20
PI(3DPDS-fa)5 2.7 ± 0.7 2.86 ± 0.04 - 4.3 ± 0.8 284 ± 42
PI(3DPDS-fa)15 2.8 ± 0.2 2.57 ± 0.04 12.8 ± 0.3 18.3 ± 0.6 691 ± 3
PI(3DPDS-fa)30 3.1 ± 0.1 2.39 ± 0.04 9.84 ± 0.14 13.7 ± 3.3 710 ± 70

a Stress at 200% of strain. b Stress at 600% of strain. c Stress at break. d Elongation at break.

The cured compound PI(4DPDS-fa) exhibits poor mechanical properties, below the
reference for all the compositions tested (Figure 7). This result was expected because of the
low curing extent of the compound, shown by the low crosslinking density and low EPI
and EPI

polyBz measured by AFM. For PI(3DPDS-fa) and PI(4DTP-fa), a reinforcement of the
mechanical properties was observed as attested by the highest values of Young modulus
(up to 3.1 and 2.9 MPa respectively) compared to the reference (2.6 MPa). Furthermore,
the stresses measured at 200% of strain also increased for these two compounds (Figure 7).
It is important to highlight that the ultimate mechanical properties of PI(3DPDS-fa) were
also improved compared to the reference, with a higher elongation and stress at break up
to ~700% and 15.1 MPa respectively, compared to ~500% and 11.3 MPa for the reference.
From an overall perspective, PI(3DPDS-fa)15 is the compound with the most significant
improvement of the stress at low (σ200% of strain) and high (σ600% of strain) elongation as well
as enhancing the tensile strength of the compound.
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For the sake of comparison, a model benzoxazine from bisphenol A and furfurylamine
(BA-fa) was synthesized following a procedure previously reported [36]. The synthesis and
characterization of this model molecule is given in the experimental part and the molecular
characterization can be found in the Appendix D.3 (Figures from Figures A33–A35). BA-fa
was then tested in the rubber formulation (PI(BA-fa)). Stress-strain curves are displayed in
Figure A36 in Appendix D.3 and the mechanical properties are gathered in Table A2. This
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compound exhibits higher values of Young modulus than the reference demonstrating a
reinforcement with this molecule is also feasible. However, the reinforcement observed
in PI(BA-fa) is lower than for PI(3DPDS-fa) and PI(4DTP-fa), whatever the content of
benzoxazine precursor.

Finally, in order to evaluate the reinforcement effect of polybenzoxazine in comparison
to phenolic resins, the mechanical properties of a compound containing phenolic resin (PR)
were assessed. For that purpose, a phenolic system composed of a pre-condensed novolac
resin and hexamethylenetetramine, as in-situ crosslinker, was mixed with the polyisoprene
formulation (see more details about the formulation in Appendix D.4). Mechanical proper-
ties of phenolic resin compounds (PI(PR)15) were compared to the compound containing
3DPDS-fa (PI(3DPDS-fa)15) and the results are displayed in Figure 8 (see stress-strain curve
in Appendix D.4, Figure A37).
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Comparable results were obtained regarding Young’s modulus and stress at low strain
(σ200% of strain). However, PI(3DPDS-fa)15 exhibited better stress at high strain (σ600% of strain).
The ultimate tensile properties were also improved with the use of 3DPDS-fa showing
higher elongation and stress at break than PI(PR)15 and PI reference. These results prove
the feasibility to employ benzoxazines precursors to replace phenolic resins as reinforcing
agents for rubber applications.

4. Conclusions

Three new dibenzoxazines containing one (4DTP-fa) or two heteroatoms of sulfur
(3DPDS-fa and 4DPDS-fa) were synthesized following a Mannich condensation reaction.
The structural features of each benzoxazine precursor were characterized by 1H and 13C
NMR, FTIR, and Raman. They revealed that about 2% of the disulfide bonds of 4DPDS-fa
were cleaved to form thiol groups at the end of the synthesis, while in the case of 3DPDS-fa
the disulfide bond remained intact. The structural differences between the two isomers
appeared to support the stability of the disulfide bridge. As 4DTP-fa is composed of one
atom of sulfur, it does not form thiols.

As shown by DSC and rheological measurements, the presence of thiols in 4DPDS-
fa resulted in a significant catalytic effect of the curing when compared to 4DTP-fa and
3DPDS-fa. Indeed, isothermal curing at 150 ◦C revealed that the gelation point of 4DPDS-fa
was reached only after 17 min, while it took 37 and 41 min for 4DTP-fa and 3DPDS-fa
respectively. When the curing of each benzoxazine precursor was monitored in the presence
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of sulfur, a well-known catalyst for the ROP of benzoxazines, a strong catalytic effect was
observed for 3DPDS-fa and 4DTP-fa, the gelation points being reached after 9 and 15 min
respectively. On the contrary, the curing of 4DPDS-fa remained the same, confirming the
catalysis by thiols.

Thanks to their short gelation times at a relatively low temperature (150 ◦C), the cur-
ing of the three benzoxazine precursors fit the specifications for the curing of rubber
compounds, and their suitability to be used as potential reinforcing resins in polyisoprene
compound (PI) was tested. Freshly synthesized benzoxazine precursors were compounded
with polyisoprene and curing additives containing sulfur. The curing of the compounds,
so called PI (benzoxazine), brought substantial clues about the concomitant curing of PI and
the benzoxazine monomers. On the one hand, 3DPDS-fa and 4DTP-fa did not interfere with
the curing of polyisoprene. Indeed, similar t90 and crosslinking densities were measured
for the compounds cured in the presence or absence of these benzoxazines. On the contrary,
the compounds prepared with 4DPDS-fa, so-called PI(4DPDS-fa) did not reach the same
extent of curing compared to the PI reference as shown by the lower values of t90 and
crosslinking density together with the decrease of the maximum achieved torque. It was
assumed that the low stability of the disulfide bond in 4DPDS-fa yielded a side-reaction
when heated in the presence of sulfur, driving the consumption of this essential element
for the crosslinking of polyisoprene.

The morphology and nanomechanical properties of the compounds were explored by
AFM and were in agreement with the previous results. In PI(3DPDS-fa) and PI(4DTP-fa)
benzoxazine nodules of about 550 nm were observed and the moduli of each phase was
similar to their respective reference. Conversely, AFM images of PI(4DPDS-fa) exhibited
nodules of smaller sizes (around 440 nm). The moduli of both benzoxazine and rubber
phases were also significantly lower than their corresponding references (0.67 and 1.4 GPa
for EPI and EPI

polyBz respectively, compared to 1.17 and 3 GPa for net rubber and polyBz
references). This supports the assumption that sulfur is consumed by 4DPDS-fa, pre-
venting an efficient curing of polyisoprene and leading to a detrimental impact on the
polybenzoxazine network.

Finally, results from the tensile tests of the cured compounds confirmed the previous
observations. PI(3DPDS-fa)15 was the compound where the most significant improve-
ment of the mechanical properties was observed. Furthermore, the reinforcement of the
mechanical properties of the compound when using 3DPDS-fa was shown to be more
significant than compounds prepared with a model benzoxazine or a commonly employed
phenolic resin. These results confirmed the feasibility to employ benzoxazines precursors
to reinforce rubber compounds and likewise replace phenolic resins for rubber applications.
These investigations also provide a first guide to reinforce rubber compounds with benzox-
azines. They highlight the importance of considering the curing kinetics of the benzoxazine
precursors in the presence of the rubber curing additives, in particular sulfur.
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Appendix A. Methodology

Appendix A.1. Rubber Compounding Procedure

Table A1. Procedure carried out for the rubber compounding.

Step Procedure

NP

Initial temperature: 70 ◦C
20 rpm–add the polymer

60 rpm–masticate for 1 min
2 rpm–ZnO and stearic acid

60 rpm–mix for 4 min
2 rpm–add benzoxazine, phenolic resin or nothing (reference)

60 rpm–mix for 8 min (or drop at 150 ◦C)

PD

Initial temperature: 60 ◦C
20 rpm–add compound

60 rpm–masticate for 30 s.
2 rpm–add sulfur and DCBS

60 rpm–mix for 2 min (or drop at 110 ◦C)
Roll mill Six times at 1 mm

Appendix A.2. Crosslinking Density Calculations

Crosslinking densities were calculated using Flory-Rehner equation Equation (A1),
at room temperature.

νc =
−
[
ln(1− νr) + νr + χ

(
νr

2)][
V0

(
νr

1
3 − νr

2

)] (A1)

wherein νc is the crosslinking density; νr is the volume fraction of rubber in equilibrium
swollen vulcanizate sample; V0 is the molar volume of the solvent (105.91 mL·mol−1); χ is
the interaction parameter between the solvent and polyisoprene.

The volume fraction of rubber in equilibrium swollen gel (νr) was calculated according
to Equation (A2). Crosslinking density was calculated assuming benzoxazines act as filler
considering a model density with a value of 1.2 g·ml−1.

νr =

M1− f f M1
ρc

M1− f f M1
ρc

+ M2−M3
ρs

(A2)

wherein, M1 is the initial sample mass; f f is the filler fraction volume; ρc is the calculated
composition density; M2 is the swollen sample mass; M3 to ρs is the solvent density
(0.79 g·mL−1). The interaction parameter (χ) has been taken as the mean of upper and lower
values, 0.44 and 0.35 respectively, provided in the Handbook of Polymer-Liquid Interaction
Parameters and Solubility Parameters [45]. The interaction parameter considered is 0.39.
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Appendix D.1. Morphological Characterization by AFM and Nanomechanical Properties of Cured
Rubber Compounds

Loss tangent imaging was performed in AM-FM mode, under repulsive operation
with the calculation based on the phase angle, according to the Equation (A3) [46]:

tan δ =

Asetpoint
A f ree

− sin φ1

cos φ1
(A3)

where Asetpoint is the amplitude during operation, Afree is the amplitude of ‘free’ oscillation
where the cantilever is not in contact with the surface and φ1 is the phase angle referenced
to excitation of the cantilever base. The loss tangent measurements were obtained at the
fundamental resonance frequency of the cantilevers (~300 kHz) while the modulus mea-
surements are obtained using the second resonance frequency of the cantilevers (~1.6 MHz).
Under this condition, an increase in loss tangent is equivalent to a decrease in modulus.
Measurements consider at least 5 images in each sample.

Polymers 2021, 13, x FOR PEER REVIEW 33 of 38 
 

 

tan 𝛿 =  𝐴 𝐴 − sin 𝜙cos 𝜙  (4)

where Asetpoint is the amplitude during operation, Afree is the amplitude of ‘free’ oscillation 
where the cantilever is not in contact with the surface and ϕ1 is the phase angle referenced 
to excitation of the cantilever base. The loss tangent measurements were obtained at the 
fundamental resonance frequency of the cantilevers (~300 kHz) while the modulus 
measurements are obtained using the second resonance frequency of the cantilevers (~1.6 
MHz). Under this condition, an increase in loss tangent is equivalent to a decrease in 
modulus. Measurements consider at least 5 images in each sample. 

 
Figure A30. AFM-AM-FM loss tangent images and measurements of the property in each of the phases in the material. 
Images depict an area of 20 × 20μm2. 

 
Figure A31. AFM-AM-FM modulus images and respective histograms of (a) poly(4DTP-fa), (b) poly(4DPDS-fa), and (c) 
poly(3DPDS-fa). Images depict an area of 5 × 5μm2. 

Appendix D.2. Tensile Test of Cured Rubber Compounds 

Figure A30. AFM-AM-FM loss tangent images and measurements of the property in each of the phases in the material.
Images depict an area of 20 × 20µm2.



Polymers 2021, 13, 1262 36 of 40

Polymers 2021, 13, x FOR PEER REVIEW 33 of 38 
 

 

tan 𝛿 =  𝐴 𝐴 − sin 𝜙cos 𝜙  (4)

where Asetpoint is the amplitude during operation, Afree is the amplitude of ‘free’ oscillation 
where the cantilever is not in contact with the surface and ϕ1 is the phase angle referenced 
to excitation of the cantilever base. The loss tangent measurements were obtained at the 
fundamental resonance frequency of the cantilevers (~300 kHz) while the modulus 
measurements are obtained using the second resonance frequency of the cantilevers (~1.6 
MHz). Under this condition, an increase in loss tangent is equivalent to a decrease in 
modulus. Measurements consider at least 5 images in each sample. 

 
Figure A30. AFM-AM-FM loss tangent images and measurements of the property in each of the phases in the material. 
Images depict an area of 20 × 20μm2. 

 
Figure A31. AFM-AM-FM modulus images and respective histograms of (a) poly(4DTP-fa), (b) poly(4DPDS-fa), and (c) 
poly(3DPDS-fa). Images depict an area of 5 × 5μm2. 

Appendix D.2. Tensile Test of Cured Rubber Compounds 

Figure A31. AFM-AM-FM modulus images and respective histograms of (a) poly(4DTP-fa), (b) poly(4DPDS-fa), and (c)
poly(3DPDS-fa). Images depict an area of 5 × 5µm2.

Appendix D.2. Tensile Test of Cured Rubber CompoundsPolymers 2021, 13, x FOR PEER REVIEW 34 of 38 
 

 

 
Figure A32. (a) Stress-strain curves of the rubber compounds with 5 phr of Bz and the reference; (b) Stress-strain curves 
of the rubber compounds with 15 phr of Bz and the reference; (c) Stress-strain curves of the rubber compounds with 30 
phr of Bz and the reference. 

Appendix D.3. Molecular Characterization and Tensile Test of BA-fa 

 
Figure A33. 1H NMR spectrum in CDCl3 of BA-fa. 

 

Figure A32. (a) Stress-strain curves of the rubber compounds with 5 phr of Bz and the reference; (b) Stress-strain curves of
the rubber compounds with 15 phr of Bz and the reference; (c) Stress-strain curves of the rubber compounds with 30 phr of
Bz and the reference.

Appendix D.3. Molecular Characterization and Tensile Test of BA-fa

Polymers 2021, 13, x FOR PEER REVIEW 34 of 38 
 

 

 
Figure A32. (a) Stress-strain curves of the rubber compounds with 5 phr of Bz and the reference; (b) Stress-strain curves 
of the rubber compounds with 15 phr of Bz and the reference; (c) Stress-strain curves of the rubber compounds with 30 
phr of Bz and the reference. 

Appendix D.3. Molecular Characterization and Tensile Test of BA-fa 

 
Figure A33. 1H NMR spectrum in CDCl3 of BA-fa. 

 

Figure A33. 1H NMR spectrum in CDCl3 of BA-fa.



Polymers 2021, 13, 1262 37 of 40

Polymers 2021, 13, x FOR PEER REVIEW 34 of 38 
 

 

 
Figure A32. (a) Stress-strain curves of the rubber compounds with 5 phr of Bz and the reference; (b) Stress-strain curves 
of the rubber compounds with 15 phr of Bz and the reference; (c) Stress-strain curves of the rubber compounds with 30 
phr of Bz and the reference. 

Appendix D.3. Molecular Characterization and Tensile Test of BA-fa 

 
Figure A33. 1H NMR spectrum in CDCl3 of BA-fa. 

 
Figure A34. 13C NMR spectrum in CDCl3 of BA-fa.

Polymers 2021, 13, x FOR PEER REVIEW 35 of 38 
 

 

Figure A34. 13C NMR spectrum in CDCl3 of BA-fa. 

 
Figure A35. FTIR spectrum of BA-fa. 

 
Figure A36. Stress-strain curves of the rubber compounds with 5, 15 and 30 phr of BA-fa and the 
reference. 

Table A2. Summary of the mechanical properties of the rubber compounds containing BA-fa. 

Compounds with 
and without Bz 

Young 
Modulus  

(MPa) 

σ200% of strain a 
(MPa) 

σ600% of strain b 

(MPa) 
σbreak c  
(MPa) 

εbreak d (%) 

PI 2.6 ± 0.1 2.28 ± 0.02 10.9 ± 1.1 11.3 ± 1.4 551 ± 67 
PI(BA-fa5) 2.8 ± 0.1 2.49 ± 0.04 - 7.7 ± 2.5 450 ± 90 
PI(BA-fa15) 2.6 ± 0.1 2.1 ± 0.1 - 7.1 ± 4.2  568 ± 135 
PI(BA-fa30) 2.8 ± 0.2 1.13 ± 0.09 3.4 ± 0.2 13.9 ± 1.1 1058 ± 24  

a Stress at 200% of strain. b Stress at 600% of strain. c Stress at break. d Elongation at break. 

Appendix D.4. Formulation and Tensile Test of Phenolic Resin 
Phenolic resin and hexamethylenetetramine were mixed with the formulation 

containing polyisoprene as shown in Table A3. All the values are indicated in phr (parts 
per hundred rubber). Additionally, the mixing procedure is detailed above (Table A1). 

Figure A35. FTIR spectrum of BA-fa.

Polymers 2021, 13, x FOR PEER REVIEW 35 of 38 
 

 

Figure A34. 13C NMR spectrum in CDCl3 of BA-fa. 

 
Figure A35. FTIR spectrum of BA-fa. 

 
Figure A36. Stress-strain curves of the rubber compounds with 5, 15 and 30 phr of BA-fa and the 
reference. 

Table A2. Summary of the mechanical properties of the rubber compounds containing BA-fa. 

Compounds with 
and without Bz 

Young 
Modulus  

(MPa) 

σ200% of strain a 
(MPa) 

σ600% of strain b 

(MPa) 
σbreak c  
(MPa) 

εbreak d (%) 

PI 2.6 ± 0.1 2.28 ± 0.02 10.9 ± 1.1 11.3 ± 1.4 551 ± 67 
PI(BA-fa5) 2.8 ± 0.1 2.49 ± 0.04 - 7.7 ± 2.5 450 ± 90 
PI(BA-fa15) 2.6 ± 0.1 2.1 ± 0.1 - 7.1 ± 4.2  568 ± 135 
PI(BA-fa30) 2.8 ± 0.2 1.13 ± 0.09 3.4 ± 0.2 13.9 ± 1.1 1058 ± 24  

a Stress at 200% of strain. b Stress at 600% of strain. c Stress at break. d Elongation at break. 

Appendix D.4. Formulation and Tensile Test of Phenolic Resin 
Phenolic resin and hexamethylenetetramine were mixed with the formulation 

containing polyisoprene as shown in Table A3. All the values are indicated in phr (parts 
per hundred rubber). Additionally, the mixing procedure is detailed above (Table A1). 

Figure A36. Stress-strain curves of the rubber compounds with 5, 15 and 30 phr of BA-fa and
the reference.



Polymers 2021, 13, 1262 38 of 40

Table A2. Summary of the mechanical properties of the rubber compounds containing BA-fa.

Compounds with
and without Bz

Young Modulus
(MPa) σ200% of strain

a (MPa) σ600% of strain
b (MPa) σbreak

c (MPa) εbreak
d (%)

PI 2.6 ± 0.1 2.28 ± 0.02 10.9 ± 1.1 11.3 ± 1.4 551 ± 67
PI(BA-fa5) 2.8 ± 0.1 2.49 ± 0.04 - 7.7 ± 2.5 450 ± 90
PI(BA-fa15) 2.6 ± 0.1 2.1 ± 0.1 - 7.1 ± 4.2 568 ± 135
PI(BA-fa30) 2.8 ± 0.2 1.13 ± 0.09 3.4 ± 0.2 13.9 ± 1.1 1058 ± 24

a Stress at 200% of strain. b Stress at 600% of strain. c Stress at break. d Elongation at break.

Appendix D.4. Formulation and Tensile Test of Phenolic Resin

Phenolic resin and hexamethylenetetramine were mixed with the formulation con-
taining polyisoprene as shown in Table A3. All the values are indicated in phr (parts per
hundred rubber). Additionally, the mixing procedure is detailed above (Table A1).

Table A3. Formulation containing polyisoprene and phenolic system.

Compound phr

Polyisoprene 100
Phenolic resin (PR) 15

Hexamethylenetetramine (HMT) 3
Zinc oxide (ZnO) 5
Stearic acid (SA) 2

Sulfur 5.5
DCBS 1 3

1 N,N′-dicyclohexyl benzothiazole-2-sulphenamide.
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