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Abstract: Modern life styles have made cardiovascular disease the leading cause of morbidity and mortality worldwide. 

Although current treatments substantially ameliorate patients’ prognosis after MI, they cannot restore the affected tissue 

or entirely re-establish organ function. Therefore, the main goal of modern cardiology should be to design strategies to re-

duce myocardial necrosis and optimize cardiac repair following MI. Cell-based therapy was considered a novel and poten-

tially new strategy in regenerative medicine; however, its clinical implementation has not yielded the expected results. 

Chemokines seem to increase the efficiency of cell-therapy and may represent a reliable method to be exploited in the fu-

ture. This review surveys current knowledge of cell therapy and highlights key insights into the role of chemokines in 

stem cell engraftment in infarcted myocardium and their possible clinical implications. 
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INTRODUCTION 

 Acute myocardial infarction (MI) continues to be the 

leading cause of morbidity and mortality worldwide despite 

considerable efforts and numerous advances in the diagnosis 

and management of the disease. In light of increasing stress 

levels resulting from massive expansion of information traf-

fic, we can expect the future to bring an increased incidence 

of cardiovascular disease and myocardial infarction in hu-

man populations. Therefore, developing new therapeutic 

strategies for preventing and even curing atherosclerosis and 

its complications, such as MI or stroke, must be a priority for 

the scientific community. 

 Due to the modern predominance of sedentary yet stress-

ful lifestyles, atherosclerosis, the deterioration of arterial 

walls as a result of the accumulation of cholesterol, is the 

most common disease afflicting humans worldwide. This 

accumulation of cholesterol is followed by a severe thicken-

ing and other changes in vessel morphology, including nar-

rowing of the vessel lumen [1]. In this context, the high 

shear stress that develops in the narrowing arteries can cause 

the luminal endothelium to rupture and release its lipid con-

tent into the vessels, which in turn determines the local ac-

cumulation of thrombotic material and obstruction of blood 

flow. In the case of coronary arteries, which do not develop 

collaterals, the acute reduction in blood flow cannot be prop- 

erly compensated [2]. Given the greater oxygen demands of  
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the myocardium, this means that even a short interruption to 

blood flow here can have serious consequences. Damaged 

cardiac tissue is replaced by granulation tissue that later ma-

tures into a scar [3], which in turn induces global changes in 

heart architecture with progressive dilatation and, ultimately, 

development of heart failure. Therefore, beyond acute mor-

tality, MI results in subsequent complications that reduce 

patients’ quality of life. 

 Because the molecular mechanisms are poorly under-

stood, it is difficult to develop new therapeutic strategies. 

However, it seems that the chemokines play an important 

role in initiating and controlling events at the molecular level 

during pathologic processes [4]. 

 Chemokines are a glycoprotein family with chemotactic 

activity in concert with a subfamily of G-protein coupled 

seven-transmembrane receptors [5]. Depending on the posi-

tion of the N-terminal cysteines, chemokines are classified 

into four subfamilies: CXC chemokines (containing a single 

amino acid between the first and second cysteine residues), 

CC chemokines (adjacent cysteine residues), the C 

chemokine group (called lymphotactin, which lacks one of 

the cysteines), and CX3C chemokine (called frac-

talkine/neurotactin, with three amino acid residues between 

the first two cysteines). 

 In atherosclerosis, more than 40 chemokines, signaling 

through almost 20 receptors, initiate and modulate leukocyte 

trafficking [2]. For example Platelet Factor 4 (CXCL4) or 

RANTES (CCL5), released from the activated platelets, both 

increase monocyte arrest onto inflamed endothelium [6, 7]. 

Fraktalkine (CX3CR1) and KC (CXCL1) determine firm 

monocyte adhesion via CX3CR1 [8] and CXCR2 [9], while 
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their transmigration is accomplished via the MCP-1 

(CCL2)/CCR2 pathway [10]. SDF-1 (CXCL12) and its re-

ceptors CXCR4 and CXCR7 [11] control stem cell traffick-

ing, smooth muscle cell proliferation [12] and endothelial 

cell migration and angiogenesis [13]. 

 Present therapies are limited to cause-dependent inter-

ventions such as decreasing blood pressure and cholesterol, 

treating diabetes mellitus, or balloon dilatation and stent im-

plantation. Although these treatments substantially amelio-

rate a patient’s prognosis after MI, they do not restore af-

fected tissue or entirely re-establish organ function. There-

fore, the main goal of modern cardiology should be to design 

strategies to reduce myocardial necrosis and optimize cardiac 

repair following MI. 

 Cell-based therapy is a novel strategy considered to have 

great potential in regenerative medicine. The ultimate goal of 

stem cell-based cardiac repair is the regeneration of healthy, 

functionally integrated myocardial tissue. But in spite of 

encouraging results from experimental studies, cell-therapy 

has not yielded satisfying results in clinical implementation, 

probably due to the difficulties of translating knowledge 

from animal to human systems. Therefore, in order to create 

efficient therapies, we urgently need to understand how each 

of these processes is modulated and controlled.  

CELL-BASED THERAPIES: PRESENT AND FUTURE 

 Cell-therapy refers to the use of cells to treat diseases. 

Modern cell-based therapy has advanced dramatically from 

the first human-human blood transfusion, almost 200 years 

ago, to bone-marrow and organ transplantation, tissue bank-

ing and reproductive in vitro fertilization today. In recent 

decades, stem cells and adult cells derived from various 

types of tissues have been isolated, characterized and culti-

vated in vitro, and the technique has proven beneficial not 

only to animals, but also to humans in the treatment of di-

verse diseases. 

 As a potential new strategy in the treatment of cardiovas-

cular disease, cell-based therapy has seemed very promising 

from the outset. After MI, stem cells are expected to inte-

grate at the site of injury, replace damaged cardiomyocytes 

and vessels [14], and thereby restore the initial integrity of 

the myocardium and facilitate preservation of heart function 

[15]. In trying to elucidate the basic mechanisms, experimen-

tal studies have used many types of cells, including bone-

marrow derived stem cells [16-19], mesenchimal stem cells 

(MSCs) [20, 21], fetal cardiomyocytes [22, 23], and even 

angiogenic progenitors such as endothelial progenitor cells 

(EPCs) [24] or human umbilical vein endothelial cells (HU-

VECs) [25]. Intramyocardial application of these cells im-

mediately after MI in animal models seems to have the most 

pronounced effects, but systemic transplantation has shown 

benefits as well [26-29]. Unfortunately, despite extensive 

research over the past few years, clinical studies have not 

yielded the results researchers have hoped for, and an under-

standing of the cell-mediated regenerative mechanisms re-

mains elusive [30]. As a result it is still impossible to imple-

ment cell therapy in current clinical practice, and it therefore 

remains imperative to find new methods to sustain and im-

prove the effects of cell therapy.  

 Recent observations in this context have shown that 

chemokines are directly involved in the trafficking and inte-

gration not only of endogenous, but also of transplanted stem 

cells [4, 31]. It is already known that chemokines interfere 

with key events following MI: they modulate the inflamma-

tory response, the molecular and cellular composition of the 

scar, and the implicit remodeling of the ventricle and heart 

function [3].  

 The chemokines are strongly upregulated after MI and 

are responsible for the initiation of the inflammatory and 

reparatory processes, including stem cell recruitment and 

engraftment into the myocardium [3, 32]. For example, after 

MI chemokines such as CCL2 [33], CXCL12 [34] or Macro-

phage Inhibitory Factor (MIF) [35] are upregulated and exert 

their cardioprotective function. Neutrophil recruitment is 

initiated and sustained by CCL3 and CCL5 chemokines (via 

CCR1 [36] and CXCL12 [37]) followed by inflammatory 

monocyte infiltration [38] (regulated by the CCL2/CCR2 

pathway [39]), which is responsible for clearing the wound 

of cellular debris. The reparatory monocytes (using 

CX3CL1/CX3CR1 pathway [39] or CCR5 [40]) promote 

subsequent healing via myofibroblast accumulation, angio-

genesis, and deposition of collagen. SDF-1 / CXCL12 also 

interfere during this phase, where they sustain and improve 

angiogenesis with beneficial effects on myocardial remodel-

ing and cardiac function [41, 42]. However, the upregulation 

of angiogenic factors like SDF-1 /CXCL12, GRO /CXCL1 

[43], IL8/CXCL2 [44], MIF [45, 46] or MCP1 [47] after MI 

is countered by the release of angiostatic chemokines such as 

CXC chemokine interferon-  inducible protein (IP)-10 [48], 

whose role is to inhibit angiogenesis until the myocardium 

has been cleaned of cellular debris and a provisional matrix 

has formed, which in turn supports the growth of new blood 

vessels [48, 49]. Recently, CCR5-mediated regulatory T 

cells have been found to restrain post-infarction inflamma-

tion, thereby preventing excessive matrix degradation and 

attenuating adverse remodeling [50]. Finally, chemokines 

like SDF-1   [42, 51] and MCP-3 [52] control myocardial 

homing of Mesenchimal Stem Cells (MSCs) after injury, 

which in turn facilitates the replacement of dead cardiomyo-

cytes and the regeneration of heart tissue.  

 Therefore, the use of chemokines to increase the effi-

ciency of cell-therapy seems a promising and potentially 

reliable method that ought to be exploited. This review sur-

veys current knowledge about the contribution of chemoki-

nes in processes of stem cell engraftment into infracted myo-

cardium and highlights its possible clinical implications.  

CXC CHEMOKINES AND CELL TRANSPLANTA-

TION 

 One of the most important effects of cell-therapy is con-

sidered to be increased angiogenesis. Since an appropriate 

level of blood perfusion is able to assure and sustain endoge-

nous processes of regeneration, many efforts have concen-

trated on studying the complex mechanisms of angiogenesis 

involving progenitor cells and angiogenic factors. Endothe-

lial progenitor cells (EPCs) are responsible for optimal for-

mation of new vessels and vascularization in the infarcted 

areas [53], and are mostly recruited and controlled by vascu-

lar endothelial growth factor (VEGF) and stromal derived 
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factor (SDF)-1 /CXCL12 [54, 55]. Whereas VEGF was 

unable to add to improved heart function after transplanta-

tion of fetal cardiomyocytes [22] in a rat model of MI, SDF-

1 / CXCL12 has been used widely in different experimental 

settings both in vivo and in vitro and found to amplify the 

effect of cell-transplantation [24, 41]. As we know, angio-

genesis takes place over the entire proliferation and healing 

phase; SDF-1 /CXCL12 synthesis, however, shows a peak 

shortly after the hypoxic insult induction in animal models 

[56]. Therefore, an external therapeutic transplantation of 

EPCs in a human model at this juncture would probably have 

maximally beneficial effects as compared to a later, systemic 

transplantation of EPCs after MI.  

 SDF-1 /CXCL12 plays the key role in hemato-, vasculo- 

and cardiogenesis [57-59]. However, it became the most 

studied chemokine in the cardiovascular field due to its ca-

pacity to promote the migration not only of stem cells [54], 

endothelial progenitor cells (EPCs) [37], and smooth muscle 

cells [12], but also of mesenchimal stem cells (MSCs) [60]. 

The mechanisms of myocardial protection or regeneration 

conferred by the CXCL12/Cxcr4 axis may involve both re-

cruitment of circulating cells and effects on resident cardio-

myocytes. Cardioprotective SDF-1 /CXCL12 activates the 

cell-survival factor protein kinase B (PKB/Akt) via Cxcr4 

and protects ischemic myocardium. This decreases scar size 

and mediates neovascularization in mice and rats [24, 34]. 

The interaction between SDF-1 /CXCL12 and Cxcr4 has 

been increasingly exploited in an effort to enhance the effi-

cacy of stem cell therapy after MI [42, 51]. Exogenous ap-

plication of SDF-1 /CXCL12 locally after MI in a mouse 

model has been found by itself to improve remodeling and 

heart function [61] by inducing angiogenic/progenitor cell 

homing and increasing capillary density. Moreover, overex-

pressing SDF-1 /CXCL12 in EPCs before transplantation 

has resulted in a significant improvement over a normal EPC 

group, in both LV function and angiogenesis, following in-

tramyocardial application in rats [29, 62].  

 Mesenchymal stem cells (MSCs) have also been de-

scribed as cardiac precursors [20, 63, 64]. They are found 

mostly in bone marrow [65, 66], but MSC-like cells have 

also been described in adipose tissue [67], dental pulp [68], 

fetal liver [69], fetal lung [70] and in the umbilical cord [71]. 

These cells seem to play an important role in cardiac regen-

eration after injury in animal models [72, 73], and, due to 

their capacity to differentiate into a variety of cell types de-

pending on environmental conditions, they have been widely 

used as a source of stem cells for therapy after myocardial 

infarction [20, 21]. 

 Mesenchymal stem cells (MSCs) also secrete SDF-

1 /CXCL12, which, reacting with its receptor CXCR4, in-

creases their survival. Intravenous administration of SDF-

1 /CXCL12-overexpressing MSCs one day after MI induc-

tion in a rat model has shown increased cardiac myocyte 

survival and vascular density within the infarct zone as com-

pared to transplantation of normal MSCs [42]. In the same 

model, over-expression of SDF-1 /CXCL12-ligand CXCR4 

in MSCs enhanced mobilization and engraftment of MSCs 

into ischemic areas in vivo, in turn promoting neoangiogene-

sis and left ventricular remodeling [51].  

 The mechanisms responsible for angiogenesis are very 

complex and involve many more chemokines than SDF-

1 /CXCL12. Among these are GRO /CXCL1 [43], 

IL8/CXCL2 [44], macrophage inhibitory factor (MIF) [45, 

46] and even MCP1 [47]. In addition to their role in angio-

genesis, these factors seem to influence the course of cell-

based therapy in an important way. GRO /CXCL1 plays an 

important role in preventing damage to viable myocardium 

and in preserving heart function after transplantation of 

autologous bone marrow-derived mononuclear cells follow-

ing MI in a rat model [74]. IL8/CXCL2 [75] can prolong the 

residence time of MSCs injected into rat myocardium follo-

wing MI. Macrophage migration inhibitory factor (MIF) is a 

pleiotropic inflammatory cytokine with chemokine-like 

functions. It has recently been shown to bind CXCR2 and 

CXCR4 in vitro [76]. Beyond its role in angiogenesis, MIF is 

a very important factor in the recruitment and chemotaxis of 

EPCs both in vitro [45] and in vivo [53]. It acts mostly upon 

hypoxic conditions in a CXCR4-dependent manner. How-

ever, its role in cell-transplantation is far for being under-

stood. 

 Many other CXC chemokine receptors are expressed on 

bone-marrow derived MSCs, for instance CXCR3 or 

CXCR6; but their role in cell-based therapy is so far un-

known [77].  

CX3C CHEMOKINES AND CELL TRANSPLANTA-

TION 

 Other chemokines such as CCL25 or CX3CL1 have been 

shown to modulate MSC chemotaxis, not only in vitro [78] 

but also in vivo, in a rat model of brain ischemia [79]. In 

myocardial infarction, CX3CR1 is responsible for the traf-

ficking of reparatory monocytes and regeneration [39]. 

However, its precise role following cell therapy is not 

known. 

CC CHEMOKINES AND THE CELL-TRANSPLAN-
TATION 

 Beside CXC chemokines, CC chemokines have also 

proved important in cell engraftment and remodeling after 

cell-therapy. CCL2, known as monocyte chemotactic protein 

1, is up-regulated after MI in animal models [80], and is im-

portant in angiogenesis and collateralization both in vivo and 

in vitro [81, 82]. However, some data have established that 

CCL2 plays a role in collateralization and in the homing of 

MSCs to the ischemic myocardium in both animal models 

and in patients [81, 82]. Recently, CCL7, also known as 

monocyte chemotactic protein 3, has been found to be cru-

cially involved both in MSCs homing to the ischemic myo-

cardium as well as in their intramyocardial migration and 

survival [52]. Moreover, overexpression of CCL7 induced 

homing of repeatedly administrated MSCs as long as one 

month after MI in a rat model, which in turn improved heart 

remodeling and preserved heart function [52]. Beside CCR2, 

CCR1 has been found to bind CCL7 [83], thereby increasing 

the recruitment of MSCs and protecting them from apoptosis 

after transplantation at the infarction site in a murine model 

[83]. 

 Unfortunately, in spite of evidence that the chemokine 

and chemokine receptor are expressed on progenitor cells 
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and are important in their trafficking, there is only limited 

data on their role and potential for use in the cell therapy. 

CONCLUSION 

 In conclusion, there is a great deal of evidence indicating 

that chemokines are crucial in myocardial migration, en-

graftment and survival of various types of stem cells after 

transplantation. Tasks including specific recruitment at the 

injury site, establishment of connections with surrounding 

cells, and other specific functions of transplanted stem cells 

can only take place under close monitoring by the chemoki-

nes.  

 However, despite extensive research in recent years, the 

cell-mediated regenerative mechanisms remain elusive, ren-

dering it impossible to implement cell therapy in current 

clinical practice. In light of this, new therapeutic strategies 

must be found in order to improve heart regeneration and 

remodeling following MI. Though little studied, chemokines 

may be the key molecules in modulation, control and im-

proved survival and integration of transplanted cells at the 

site of myocardial infarction. Extensive research is still nec-

essary to establish the exact role of each chemokine and any 

ways one or more of them may be used to improve the cell-

based therapy. 
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