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Abstract

4-Dimensional cone-beam computed tomography (4D-CBCT) offers several key advantages over conventional 3D-
CBCT in moving target localization/delineation, structure de-blurring, target motion tracking, treatment dose
accumulation and adaptive radiation therapy. However, the use of the 4D-CBCT in current radiation therapy
practices has been limited, mostly due to its sub-optimal image quality from limited angular sampling of cone-

beam projections. In this study, we summarized the recent developments of 4D-CBCT reconstruction techniques for
image quality improvement, and introduced our developments of a new 4D-CBCT reconstruction technique which
features simultaneous motion estimation and image reconstruction (SMEIR). Based on the original SMEIR scheme,
biomechanical modeling-guided SMEIR (SMEIR-Bio) was introduced to further improve the reconstruction accuracy
of fine details in lung 4D-CBCTs. To improve the efficiency of reconstruction, we recently developed a U-net-based
deformation-vector-field (DVF) optimization technique to leverage a population-based deep learning scheme to
improve the accuracy of intra-lung DVFs (SMEIR-Unet), without explicit biomechanical modeling. Details of each of
the SMEIR, SMEIR-Bio and SMEIR-Unet techniques were included in this study, along with the corresponding results
comparing the reconstruction accuracy in terms of CBCT images and the DVFs. We also discussed the application

Deep learning

prospects of the SMEIR-type techniques in image-guided radiation therapy and adaptive radiation therapy, and
presented potential schemes on future developments to achieve faster and more accurate 4D-CBCT imaging.
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Introduction

Accurate tumor/target localization is key to safe, precise
and effective radiotherapy [1]. Cone-beam computed tom-
ography (CBCT) imaging has become a standard-of-care
in a majority of the radiotherapy clinics, with its successful
capture of volumetric anatomical information to guide ac-
curate on-board target localization and setup correction
[2, 3]. In principal, the 3-dimensional CBCT (3D-CBCT)
technique acquires 2D cone-beam projections from
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varying beam angles, usually covering an angle span of at
least 200° [4], to reconstruct 3D volumetric information.
Compared with 2D projections, the overlaying effects have
been removed by 3D-CBCT to allow better soft-tissue
contrast and more accurate structure localization in 3D
[2]. However, there are multiple remaining issues with the
current CBCT technique. One major issue is the motion-
induced imaging artifacts and blurring for motion-
involved sites such as lung and liver, which may severely
reduce the tumor localization accuracy [5, 6]. The conven-
tional 3D-CBCT technique acquires cone-beam projec-
tions and reconstructs them into a single CBCT volume
without considering the motion of anatomical structures
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across the projections. Due to the position variations of
anatomical structures, combining all projections into one
reconstruction will lead to motion blurriness and inaccur-
ate target localization. To effectively suppress the motion
blurriness, methods have been proposed to develop the
respiratory-correlated CBCT, also known as 4-
dimensional CBCT (4D-CBCT), to capture the motion in
the fourth dimension (in addition to the three spatial di-
mensions) [7-9]. The key idea of 4D-CBCT is phase-
sorting [10], which sub-groups the cone-beam projections
into different respiratory phase bins according to their
relative positioning on a nominal respiratory cycle. The
relative positioning can be determined via an external
landmark, such as the real-time position management sys-
tem or the Anzai Belt [11, 12]; or via an internal landmark,
such as the diaphragm position or the fiducial marker pos-
ition [7]. More advanced signals based on Fourier trans-
form have also been investigated to be successful [10].
Based on these positioning signals, projections were sorted
into different bins. Within each phase bin, the projections
are semi-static with minimal intra-phase motion. CBCT's
reconstructed from these phase-sorted projections will
have the motion blurriness subdued, leading to more ac-
curate delineation and localization of anatomical struc-
tures. Stacking these phase-specific CBCT images
together will also reveal the full motion trajectory of ana-
tomical structures to guide tumor targeting and organ-of-
risk sparing. Though conceptually concise and convenient
to implement, the use of 4D-CBCT in clinics is currently
limited. One major concern is that the phase-sorting
process employed by 4D-CBCT leads to insufficient pro-
jections inside each phase bin (angular under-sampling),
causing severe imaging streaking artifacts to the clinical
CBCT reconstruction technique, the Feldkamp-Davis-
Kress (FDK) algorithm [13, 14].

One straightforward solution is to acquire more
projections to achieve sufficient angular sampling
even after phase-sorting [4]. Such a strategy, however,
is not practical due to the accompanying excessive
imaging dose, which may induce secondary cancers
[15]. Acquiring more projections also prolongs the
imaging and treatment time, which may increase pa-
tient on-board position deviations [16], and add add-
itional logistic burdens to the clinics. Many groups
have tried to develop new reconstruction techniques,
mostly iterative in nature, to improve the 4D-CBCT
image quality from under-sampled acquisition. Many
of these techniques rely on regularization techniques
via metrics like total variation [17, 18], non-local
means [19, 20] or wavelet frames [21] to explore the
data sparsity and reduce the noises/artifacts of under-
sampling. Substantial image quality improvement has
been observed, and quantitatively validated via metrics
like signal-to-noise ratio, root-mean-squared-error
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(RMSE) or universal quality index (UQI) [22]. How-
ever, these techniques are susceptible to displace or
smooth out fine details and low-contrast anatomies
from the reconstructed images.

Another type of CBCT reconstruction technique
tries to incorporate prior information into the re-
construction process, such as the 2D-3D deform-
ation method [23-28]. Instead of directly
reconstructing CBCT images from acquired projec-
tions, the 2D-3D deformation method views the new
CBCT volume as a deformation of prior CT/CBCT
images, and translates the CBCT reconstruction into
a deformation-vector-field (DVF) optimization prob-
lem. For each to-be-deformed CT/CBCT image, the
DVFs usually compose of three matrices in 3D, each
matrix with the same dimension as the to-be-
deformed CT/CBCT image. The three matrices indi-
cate the deformation along the three Cartesian
directions, x, y and z, respectively [25]. The 2D-3D
deformation algorithm iteratively optimizes the
DVEF, such that it deforms the prior image until the
digitally-reconstructed-radiographs (DRRs) of the
deformed image match the acquired cone-beam pro-
jections. The 2D-3D deformation technique can not
only generate 4D-CBCT images, but provide DVFs
to potentially allow automatic tumor localization,
target tracking, dose accumulation and adaptive ra-
diation therapy [29-32]. The incorporation of high-
quality prior information also introduces more
accurate Hounsfield units [30], and allows further
imaging dose reduction by acquiring fewer projec-
tions for reconstruction. However, this technique
cannot reconstruct non-deformation-induced inten-
sity changes in new CBCT volumes, since the new
CBCT is simplified as a purely deformed volume of
the prior image [33].

In addition to these two types of techniques, motion-
compensated reconstruction is another reconstruction
technique to address the 4D-CBCT under-sampling
issue [34-37]. The motion-compensation technique re-
constructs a reference phase CBCT image through an
estimated inter-phase motion model [34]. The motion
model relates other phases of the 4D-CBCT to the refer-
ence phase in the form of inter-phase DVFs. Through
applying the inter-phase DVFs, motion-compensated re-
construction can combine projections from all phases to
achieve sufficient angular sampling. After the reference
phase is reconstructed, the other phases can be derived
using corresponding inverse DVFs. Unfortunately, the
motion-compensation technique is limited by the inter-
phase motion model accuracy, since a prior-
information-driven motion model can be invalidated
after motion pattern changes [25, 34, 36]. To have the
model up-to-date, studies have proposed to estimate an
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on-board motion model directly between 4D-CBCT
phase images reconstructed from under-sampled projec-
tions [35, 37]. However, the accuracy of these on-board
motion models can still be impaired by the artifacts pre-
sented in the low-quality CBCT phase images.

In response to the current challenges of high-
quality 4D-CBCT imaging, we have developed a
simultaneous motion estimation and image recon-
struction  (SMEIR) technique [38-40], which
combines total variation-based image regularization,
2D-3D deformation-driven motion model estimation,
and motion-compensated reconstruction into a com-
prehensive reconstruction scheme. In comparison to
the previous techniques, the SMEIR algorithm esti-
mates an inter-phase motion model via 2D-3D de-
formation from a motion-compensated CBCT
(mCBCT) and the phase-specific projections. The
improved motion model is subsequently fed back
into the motion-compensated reconstruction to
update the mCBCT. Total variation-regularization is
incorporated into the motion-compensated recon-
struction to further improve the CBCT image qual-
ity. The resulting mCBCT, with improved accuracy
and quality, is iteratively fed back into the 2D-3D
deformation to dynamically update the motion
model. The 2D-3D motion estimation and the
motion-compensated image reconstruction form an
iterative loop to continuously update the mCBCT
image as well as the motion model until final con-
vergence. The 4D-CBCT images at other phases are
deformed from the mCBCT via the inverse DVFs
simultaneously-optimized by the 2D-3D deformation
algorithm. In this study, we detailed the general phil-
osophy and workflow of the SMEIR algorithm, and
introduced two new developments based on the
original SMEIR algorithm: the biomechanical
modeling-guided SMEIR (SMERI-Bio) and the
SMEIR algorithm with artificial intelligence (AI)-
driven DVF fine-tuning (SMEIR-Unet) [41]. In com-
parison to the original SMEIR algorithm, the
SMEIR-Bio algorithm introduced biomechanical
modeling to improve the intra-lung DVF accuracy to
better reconstruct the fine details in lung, and better
capture their motion. Similar to SMEIR-Bio, the
SMEIR-Unet algorithm was developed to fine-tune
intra-lung DVFs, however via a deep learning-driven
approach. Compared with SMEIR-Bio, SMEIR-Unet
may allow improved efficiency with reduced com-
plexity and computational load. Corresponding re-
construction results of both digital anthropomorphic
phantoms and real lung patient data were presented
to illustrate the strengths and weaknesses of different
methods. In the end, a review was further included
to discuss the application prospects of the developed
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algorithms, specifically in terms of real-time image-
guided radiotherapy and adaptive radiotherapy.

Methods

The original SMEIR algorithm

The SMEIR algorithm integrates the motion estimation and
image reconstruction to solve both the 4D-CBCT images
and the corresponding inter-phase DVFs simultaneously.
Compared with the conventional sequential scheme (Fig. 1),
both the 4D-CBCT images and the DVFs are iteratively and
dynamically updated by SMEIR to maximize the sharing of
information to improve image and DVF accuracy.

The SMEIR algorithm is comprised of two major com-
ponents, the motion estimation and the motion-
compensated reconstruction. For motion estimation, the
2D-3D deformation technique is used, which is based on
optimizing objective functions as shown in Eqgs. 1 and 2:

f1(DVE™™) = ||pf-Au° (x + DVE®~) Hi + B+E(DVE"™)

(1)

f2(DVF™0) = ||p°~Au! (x + DVF™?) HZ + B+E(DVF™?)

(2)

p denotes the 2D, phase-binned cone-beam projec-
tions, with the superscript indicating the respiratory
phase they belong to; “ A ” denotes the projecting matrix
of the projections p, which generates DRRs correspond-
ing to the projections; “ 0 ” indicates the reference phase
(motion-compensated phase); “ ¢ ” denotes a general
symbol representing each of all other phases; 4 denotes
the CBCT image at the phase designated by its super-
script; x denotes the 3D coordinates of the CBCT image;
DVF denotes the deformation-vector-field; The ||*Hi
terms in Egs. 1 and 2 calculate the sum of squared er-
rors between the acquired projections p and the DRRs of
the deformed image; E(x) denotes a quadratic deform-
ation energy term defined to regularize the DVF
smoothness [25]; “ 5 7 balances the data fidelity term
and the deformation energy term [24]. In general, the
2D-3D deformation algorithm is optimizing a DVF to
deform 3D images based on matching 2D projections, as
its name “2D-3D” suggests.

The objective functions of Egs. 1 and 2 are designed as
an inverse-consistent deformable registration to solve a
pair of forward and inverse DVFs (DVF® ~‘ and DVF' ™~
%). The two objective functions are optimized sequen-
tially and the output of one function is input into the
other for cyclic iterations. The conversion between
DVF’~* and DVF* " is achieved through the following
inverse-consistent constraint:
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Fig. 1 Flow-chart comparison between (a) the conventional 4D-CBCT reconstruction and DVF-derivation scheme for image-guided radiation
therapy/adaptive radiation therapy applications, and (b) the proposed SMEIR scheme. Compared with the conventional scheme, the SMEIR
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scheme updates the 4D-CBCT images and the DVFs simultaneously and iteratively in an interleaved fashion. By SMEIR, the mCBCT is updated
towards improved quality to drive more accurate DVF solution, and the more accurate DVFs subsequently improve the accuracy of the motion-
compensated reconstruction for mCBCT. 4D-CBCT: 4-Dimensional cone-beam computed tomography; SMEIR: Simultaneous motion estimation

and image reconstruction; DVF: Deformation-vector-field; mCBCT: Motion-compensated CBCT

DVF’~*-DVF'~ = DVF*~*(x + DVF°) + DVF*™ (x) = 0
(3)
DVF'~*-DVF** = DVF"~(x + DVF*™) + DVF*™ (x) = 0
(4)

Based on the DVFs optimized by 2D-3D deformation,
the SMEIR algorithm applies motion-compensated recon-
struction through a modified simultaneous algebraic
reconstruction technique (SART) [42], as shown in Eq. 5:

J
n=1%in

Zt,nDVF]t'; 0 i

t,(k
3, DVE:0eS™ |:a- pf—zflia”‘”"()}
tn jn i in

0,(k+1 0,(k
pOD 00 4y

(5)

In Eq. 5, “j ” and “ n ” denote voxels in the mCBCT
image (reference phase) and the CBCT images at the other

«

phases, respectively; “ i ” denotes the projecting ray at pixel
location i within each projection; “ J ” denotes the total
number of voxels intercepted by ray i “ a ” denotes the
intersection length of projecting ray i across each voxel; “ A
” denotes the relaxation factor for SART; “ k ” indicates the
iteration number. Compared with the conventional SART,
the modified SART applies the voxel-wise deformation field
DW—"IT 0 to the correction term of each phase, which aligns

these correction terms to the same coordinates as those of
the reference image, to contribute them all towards the up-
date of the reference image. Using all available information,
the modified SART algorithm allows the reconstruction of
a high-quality mCBCT with under-sampling streaking arti-
facts removed. After SART, we applied total-variation
regularization on the motion-compensated image to further
reduce the image noises and artifacts to improve its quality.
The updated mCBCT, 4°, is further fed as input into the
2D-3D deformation (Eqs. 1-4) to form an iterative loop
until final convergence.
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Fig. 2 Comparison between the reconstructed images by different methods. a Non-phase-sorted FDK images using projections from all
respiratory phases; b Phase-sorted FDK images using only projections from the peak-expiration phase; ¢ Peak-expiration phase image by the
algebraic reconstruction technique with total variation-regularization; d Peak-expiration phase image by simultaneous motion estimation and
image reconstruction. The first row shows the reconstructed images of a digital NCAT phantom [43]. The second row shows the reconstructed
images of a real lung cancer patient from clinical projections. The “Ground-truth” image of the NCAT phantom was also presented as a reference.
FDK: Feldkamp-Davis-Kress; NCAT: Non-uniform rational B-spline cardiac and torso

Figure 2 compares the reconstructed images by differ-
ent techniques. The images shown in column (a) were
reconstructed by FDK using non-phase-sorted projec-
tions from all phases. Though with minimal streaking
artifacts, these FDK images presented prominent motion
blurriness from mixed-phase reconstruction. By recon-
struction using only the phase-sorted projections, the
FDK images in column (b) display reduced motion blur-
riness, but with amplified under-sampling streaking arti-
facts and noises. With the de-noising effects from total-
variation regularization, the images reconstructed by
ART-TV substantially reduced the imaging noises and
artifacts as compared to (b), however at the cost of miss-
ing fine details (as indicated by the arrows). In contrast,
the CBCT images reconstructed by the SMEIR algorithm
[column (d)] not only removed the noises/artifacts, but
the fine details of the images were well preserved
through motion-compensated reconstruction with a
high-quality motion model.

The SMEIR-bio algorithm

Though the SMEIR algorithm has proven generally ac-
curate in reconstructing geometrical and intensity infor-
mation for 4D-CBCT images, some fine anatomical
structures, which are small in size, were found not well
reconstructed by SMEIR. The organ of lung includes
many such structures, including vessels, small bronchi-
oles, and small nodules. Though small in size, these fine
structures can serve important landmarks for diagnosis
and treatment toxicity evaluation [44]. Accurate recon-
struction and presentation of these fine details can be
critical to safe and accurate image-guided radiation ther-
apy and adaptive radiation therapy, and pivotal to

achieve the maximum therapeutic ratio. These fine de-
tails may also convey constructive information towards
Al-driven data analysis, such as Radiomics, to predict
patient-specific outcomes and treatment responses [45,
46]. It is therefore compelling to correctly reconstruct
and display these fine details in lung 4D-CBCTs. How-
ever, the 2D-3D deformation technique employed by the
original SMEIR algorithm is essentially an intensity-
driven approach. The intensity-driven deformable regis-
tration techniques may not perform well for these fine
structure regions, the deformation of which only lead to
small image intensity variations. For 2D-3D deformation,
the resulting intensity changes on the 2D cone-beam
projections from the deformation of these fine details
are even more obscure, leading to minimal changes to
the objective functions of 2D-3D deformation (Egs. 1, 2),
especially for under-sampled acquisition scenarios. To
improve the motion estimation accuracy of SMEIR of
these fine details, we further introduced biomechanical
modeling into the SMEIR algorithm (SMEIR-Bio), to
solve the DVF via a physics-driven approach [41]. Bio-
mechanical modeling-based deformable registration has
been found effective, especially at solving the deform-
ation at low-contrast regions with minimal intensity
variation signals [47-51]. By finite element analysis, bio-
mechanical modeling drives the deformation of organs/
structures of interest to meet displacement-based or
force-based boundary conditions. The elastic properties
of these organs/structures are incorporated into the fi-
nite element analysis, through a material model, to drive
physically-plausible deformation. With minimal depend-
ence on image intensity differences, biomechanical mod-
eling can potentially boost the accuracy of SMEIR in
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motion estimation and reconstruction of small modeling adopted multiple different models, including
structures. the linear elastic model [56], the Neo-Hookean model

The biomechanical modeling process has been [55], the Ogden model [57], the Marlow model [58],

incorporated seamlessly into the SMEIR workflow, as
illustrated by Fig. 3. To perform biomechanical model-
ing, we segmented the lung of the mCBCT after motion-
compensated  reconstruction, and  automatically
constructed a volumetric tetrahedral mesh using the
ISO2MESH and Tetgen packages [52, 53]. The lung was
segmented using the automatic “snake” method, which
is based on an active contour model [54]. In detail, a few
“seeds” were randomly placed within the lung based on
intensity-thresholding and grew to fill up the whole lung
region, which automatically defined the lung boundary.
On the lung boundary, we used the lung surface DVFs
solved in the following SMEIR motion estimation (2D-
3D deformation) step as displacement-based boundary
conditions for biomechanical modeling. With high in-
tensity contrast at the lung boundary, the 2D-3D algo-
rithm could accurately solve lung surface DVFs to
provide adequate boundary conditions [27]. With the
tetrahedral lung mesh and the boundary conditions, the
intra-lung DVFs were deduced via a material model on
the relationship between the strain energy and the de-
formation [55]. Previous studies on lung biomechanical

and the Mooney-Rivlin model [27]. Up until now there
is no consensus over the most appropriate model, as
different models may yield similarly accurate results by
using customized material elastic parameters. In our
study, we used the Mooney-Rivlin hyper-elastic mater-
ial, a model usually used to describe soft tissues with
relatively large deformation. Detailed information of
the model can be found in previous publications [27,
32, 55]. In this study, we modeled the lung as a homo-
geneous organ with the same elastic parameters
throughout the whole volume. Such a strategy has
proved effective and efficient by previous studies [27,
47, 55, 56, 58, 59]. After finite element analysis [60], we
combined the biomechanical modeling-corrected intra-
lung DVFs with outside-lung DVFs, and fed the result-
ing DVFs into a new motion-compensated reconstruc-
tion step before assessing the convergence. If not
converged, the mCBCT as well as the inter-phase DVFs
would be fed back to initiate a new round of lung seg-
mentation, 2D-3D deformation, biomechanical model-
ing and motion-compensated reconstruction, until the
final convergence was reached.
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Fig. 3 The general flow of the biomechanical modeling-guided SMEIR scheme. 4D-CBCT: 4-Dimensional cone-beam computed tomography; DVF:
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The SMEIR algorithm with deep learning-driven DVF fine-
tuning (SMEIR-Unet)

The success of SMEIR-Bio requires careful implementa-
tion of biomechanical modeling, which involves organ
segmentation, tetrahedral mesh generation, material
model/parameter assignment and finite element analysis.
The additional computational workload and the com-
plexity may reduce the efficiency of 4D-CBCT recon-
struction. Recent developments of Al have found many
applications in medicine, to potentially improve the ac-
curacy and efficiency over conventional methods [61].
Multiple Al-based studies have been reported in the field
of medical image registration [62-65]. Deep convolu-
tional neural networks have been trained to learn DVFs
between fixed and moving image pairs to improve de-
formable registration efficiency. Inspired by the poten-
tials of deep learning, we developed a convolution neural
network featuring the U-net structure (SMEIR-Unet)
[66], to simplify the SMEIR-Bio workflow and accelerate
the computational speed. Instead of applying biomech-
anical modeling to fine-tune the intra-lung DVFs, we
trained a supervised network to establish a direct con-
version scheme between the 2D-3D DVFs and the high-
quality DVFs. The high-quality DVFs for neural network
training were obtained via direct Demons registration
between 4D-CT images. In detail, we simulated limited-
view phase-binned cone-beam projections from the 4D-
CT images and reconstructed 4D-CBCT images and the
inter-phase DVFs from the projections using the original
SMEIR algorithm. And we used the Demons registration
algorithm to register the other phase images of 4D-CT
to the reference phase image (motion-compensated
phase), to derive the corresponding high-quality Demons
DVFs. We paired the 2D-3D DVFs solved by the original
SMEIR algorithm with the Demons DVFs, and fed them
to train a population-based neural network. To focus the
neural network on fine-tuning the intra-lung regions, we
cropped both the 2D-3D DVFs and the Demons DVFs
using the segmented lung contours at the reference
phase. As shown in Fig. 4, the U-net-based convolutional
neural network was constructed with two paths: the con-
traction path and the expansion path. The contraction
path contained five blocks, with two convolution layers
and a max pooling layer in each block. The expansion
path similarly contained six blocks, featuring one decon-
volution layer and two convolution layers per block.

For training, validation and testing, we used a 5-fold
cross-validation strategy. We grouped the 11 patient-
specific 4D-CT sets into 5 groups. And each time we se-
lected 3 groups for training, 1 group for validation and 1
group for testing. The stochastic Adam optimizer is
employed to minimizing a cost function defined as the
mean squared error between the predicted DVFs and the
true Demons DVFs [67]. A parameter-sweeping strategy
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was employed for learning rate optimization and finalized
a learning rate of 5e-5. The batch size was set to 4. The
trained U-net could be applied to convert DVFs solved by
the SMEIR algorithm, voxel-by-voxel, to improve their ac-
curacy and quality. Note that the SMEIR-Unet algorithm
only fine-tunes the DVFs through the trained U-net for
once before the final output, in contrast to SMEIR-Bio,
which updates the DVFs using biomechanical modeling
during every iteration (Figs. 3 and 4).

Evaluation

For evaluation, we simulated cone-beam projections from
high-quality lung 4D-CT images for 4D-CBCT recon-
struction, and used the original 4D-CT images as the
“Ground-truth” for reference. In this study, we used a
dataset including 11 lung patient 4D-CTs acquired on a
16-slice Philips Brilliance CT scanner (Philips Medical
Systems, Cleveland, Ohio), which were collected in an aca-
demic medical center and not publicly assessable. All the
CTs were of the same slice thickness (1.5 mm), while the
intra-slice pixel resolutions ranged from 0.78 mm to 0.98
mm, and were uniformly re-sampled to 1.5mm in our
study. Thus all the CTs were of resolution 1.5 mm x 1.5
mm x 1.5mm. The CTs were of slice dimension 512 x
512, with the slice number ranging from 190 to 270. We
simulated 40 projections for each 4D-CT phase, with pro-
jection angles evenly distributed across a 360° scan angle,
using the Siddon’s ray-tracing technique [68]. We recon-
structed 4D-CBCT images from these projections via
methods including FDK, algebraic reconstruction tech-
nique with total-variation regularization (ART-TV) [69],
SMEIR, SMEIR-Bio and SMEIR-Unet for comparison.

To quantitatively assess the accuracy of the motion
model (DVFs) solved by different methods, ~ 80 lung
landmarks were manually identified by expert radiation
oncologists on each phase of the 4D-CT images used in
our study. The 3D location changes of the same land-
mark between different phases were used as the “gold-
standard” DVF to calculate the DVF errors of different
methods. We evaluated the DVF errors along each of
the three Cartesian directions (X, Y, Z), and also in
terms of the error vector length.

Results

Figure 5 compares the small lung details reconstructed
by different methods at the reference phase. It can be
observed that the FDK image contained structures non-
existent on the “Ground-truth” image. These structures
were from the under-sampling artifacts and noises. For
the ART-TV images, the fine details were over-
smoothed and barely recognizable. The original SMEIR
algorithm was similarly susceptible to the mis-match of
the fine-detail regions from those of the “Ground-truth”,
indicating incorrect inter-phase DVFs. In contrast, the
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as the other 4D-CBCT phase images via the inverse DVFs. SMEIR-Unet: Simultaneous motion estimation and image reconstruction with U-net
based DVF fine-tuning; DVF: Deformation-vector-field; 4D-CBCT: 4-Dimensional cone-beam computed tomography; mCBCT: Motion-compensated

SMEIR-Bio algorithm reconstructed small lung details to
best match the “Ground-truth”, due to the efficacy of
biomechanical modeling in correcting DVFs at these
fine-detail regions.

To further evaluate the accuracy of the solved inter-
phase DVFs, we used the Demons algorithm to register
between the reference phase and the other phases of 4D-
CT to generate Demons DVFs for comparison [70]. Since
the Demons algorithm was applied directly between high-
quality 4D-CT images, the resulting DVFs were of high

fidelity to serve as references. Figure 6 shows a compari-
son between the SMEIR DVEF, the SMEIR-Bio DVF and
the Demons DVF of three different views. It can be ob-
served that the SMEIR DVF only displayed substantial de-
formation around the high contrast lung surface. Due to
the lack of sufficient intensity variations inside the lung,
the intra-lung DVF was not correctly derived by the ori-
ginal SMEIR algorithm. After incorporating biomechanical
modeling, SMEIR-Bio substantially improved the DVF ac-
curacy to match with the Demons DVF. In our study, the
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Fig. 5 Comparison between the fine details in the CBCT images reconstructed by the FDK, ART-TV, SMEIR and SMEIR-Bio techniques, by using the
"Ground-truth” 4D-CT reference phase image for evaluation. All CBCT reconstructions used 40 projections per phase, which were simulated from
the “Ground-truth” images. FDK: Feldkamp-Davis-Kress; ART-TV: Algebraic reconstruction technique with total variation-regularization; SMEIR:
Simultaneous motion estimation and image reconstruction; CBCT: Cone-beam computed tomography; SMEIR-Bio: Biomechanical
modeling-guided SMEIR

SMEIR-Bio DVF appeared smoother than the Demons As demonstrated in Fig. 7a, the SMEIR-Bio DVFs
DVF, since we modeled the lung as a homogeneous organ.  closely matched the SMEIR-Unet DVFs, and both were
Introducing heterogeneity during the construction of the  substantially improved compared to the original SMEIR
biomechanical model may help to further improve the DVFs (Fig. 6) in terms of the resemblance to the high-
SMEIR-Bio DVF accuracy [51, 71], to potentially better  quality Demons DVFs. Due to the homogeneous material
match with the Demons DVF. modeling, the SMEIR-Bio DVFs were smooth with more

SMEIR SMEIR-Bio Demons

oo ffoo)
= )
A

Fig. 6 Comparison of DVFs solved by SMEIR, SMEIR-Bio and the Demons registration. The Demons registration was directly performed between
the "Ground-truth” high-quality 4D-CT images. SMEIR: Simultaneous motion estimation and image reconstruction; SMEIR-Bio: Biomechanical
modeling-guided SMEIR; DVF: Deformation-vector-field
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gradual spatial variations. In contrast, the SMEIR-Unet
DVFs were more heterogeneous, since they were directly
learned from the heterogeneous Demons DVFs and inher-
ited similar features. However, a comparison between the
reconstructed CBCT images (Fig. 7b) shows the similarity
between the reconstructed CBCT images by SMEIR-Bio
and SMEIR-Unet, demonstrating that both methods were
capable of reconstructing accurate and high-quality CBCT
images. We also computed two image quality metrics, the
RMSE [39] and the UQI [33], to compare SMEIR-Bio and
SMEIR-Unet to the original SMEIR algorithm, based on
10 lung region-of-interests (ROIs) focusing on fine details.
For SMEIR-Bio, the average RMSE of the 10 evaluated
ROIs was 0.0033 and the average UQI was 0.87. The cor-
responding results were 0.0035 and 0.93 for SMEIR-Unet,
and 0.0039 and 0.67 for the original SMEIR method. Both
the SMEIR-Bio and SMEIR-Unet methods improved the
accuracy of fine detail reconstruction in lung.

Table 1 shows the quantitative DVF errors for the
SMEIR, SMEIR-Bio and SMEIR-Unet methods. Without

DVF fine-tuning from biomechanical modeling or con-
volutional neural network-based conversion, the SMEIR
algorithm suffered from the largest DVF error, with the
mean vector DVF error around 5 mm. The SMEIR-Bio
and SMEIR-Unet techniques achieved appreciable re-
ductions of the DVF errors, with the mean vector DVF
error<3.5mm for both methods. Compared with

Table 1 Comparison of DVF errors between SMEIR, SMEIR-Bio
and SMEIR-Unet techniques

(Mean = SD) DVF Error (mm) ~ SMEIR SMEIR-Bio SMEIR-Unet
X 079+089 057+078 100+ 098
Y 155+077 086+062 061 +082
VA 431+£107 253+100 277 £099
Vector 498+ 111 311+£103 330+£108

X, Y, and Z indicate the DVF errors along the three Cartesian directions in
space, respectively. The fifth row shows the vector length of the DVF error.
SMEIR Simultaneous motion estimation and image reconstruction; DVF
Deformation-vector-field; SMEIR-Bio Biomechanical modeling-guided SMEIR;
SMEIR-Unet SMEIR with U-net based DVF fine-tuning.
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SMEIR-Bio, which took >5min in building and solving
the biomechanical model (including mesh generation,
boundary condition assignment, finite element analysis,
etc.), SMEIR-Unet only took ~10s to update and fine-
tune the DVF for each phase.

Discussion

4D-CBCT imaging has many potential applications and
benefits in radiation therapy. One major application is in
image-guided radiation therapy to allow precise cancer
treatment. Studies have found that the free-breathing
3D-CBCT imaging may underestimate the motion range
of tumors, which can potentially affect the tumor target-
ing accuracy [72]. The capture of on-board 4D tumor
motion by 4D-CBCT will enable better alignment be-
tween 4D-CTs and 4D-CBCTs to achieve more accurate
and robust patient setup and tumor targeting [73]. The
reconstruction accuracy offered by SMEIR-type algo-
rithms fulfills the clinical needs of accurate 4D tumor
localization. The ability of SMEIR to reconstruct high-
quality images from few projections also renders 4D-
CBCT more time-efficient and safe. In comparison to
the original SMEIR algorithm, our newly-developed
SMEIR-Bio algorithm substantially improved the accur-
acy of intra-lung DVFs solved using limited-view projec-
tions. The derivation of a physically-plausible DVF, from
displacement-based boundary conditions, allows us to
capture the motion of small, intricate structures within
the lung. The biomechanical modeling step requires the
input of a lung contour, which was automatically-
segmented using the “snake” method in this study. An
investigation comparing different lung segmentation
methods towards the SMEIR-Bio accuracy was not in-
cluded in this article. However, since the lung is of high
contrast at its boundaries, auto-segmentation is relatively
easy and straightforward, and variations among different
methods will be small. Furthermore, since DVFs are
mostly piecewise constant and smooth, small variations
between the lung boundaries segmented by different
methods will bear minimal impacts on the extracted
boundary condition and the corresponding biomechan-
ical modeling results. In comparison to SMEIR-Bio,
which involved the complex biomechanical modeling
process, SMEIR-Unet provided similar 4D-CBCT recon-
struction and DVF accuracy while with reduced compu-
tational workload and improved efficiency.

Currently, CBCT imaging is mostly applied at the be-
ginning of each radiation therapy fraction, prior to radi-
ation starts. Acquiring more intra-treatment 4D-CBCT
images, either between consecutive radiation beams or
within each beam [74], will enable continuous updates
of tumor motion information to allow treatment adjust-
ments on-the-fly. The ability to closely monitor the mo-
tion of moving targets can also promote safety margin
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reduction to spare more normal structures from being
damaged by radiation beams [75]. Our recent develop-
ments towards SMEIR acceleration make it feasible to
acquire and reconstruct the 4D-CBCT images for treat-
ment guidance in a clinically-acceptable time frame [40],
to allow multiple acquisitions and reconstructions dur-
ing the treatment for continuous target monitoring. The
evaluation of the SMEIR algorithm finds it could recon-
struct high-quality 4D-CBCT images using as few as 20
projections per phase [38, 39]. Further imaging time re-
duction by acquiring fewer projections will help ap-
proach the goal of real-time volumetric, 4D imaging.
Introducing prior information into the reconstruction,
like the previously-acquired CT/CBCT images, or a prior
motion model, may help to further lower sampling re-
quirements for even faster imaging [25, 28]. On the
other hand, high frame-rate non-ionizing imaging sig-
nals, such as the surface-guided optical imaging, have
also found their potential in helping to achieve real-time
volumetric imaging [76]. We envision the next evolution
of real-time 4D-CBCT imaging will maneuver the poten-
tial of combining the prior information, on-board x-ray
imaging, and on-board non-ionizing imaging sources.
Through feeding them into a system comprised of ad-
vanced reconstruction techniques like SMEIR, biomech-
anical modeling and AI, a high-quality real-time
volumetric image can potentially be reconstructed to
maximize the accuracy of radiotherapy (Fig. 8).

In addition to providing anatomical and geometrical
information towards more precise radiotherapy target-
ing, another potential benefit of 4D-CBCT is to calculate
delivered radiation doses, and accumulate the delivered
doses throughout the treatment course to dynamically
assess the need of adaptive radiation therapy, and to pro-
vide dosimetric data for dose outcome analysis to fine-
tune the treatment prescription [30, 31, 77]. With
highly-accurate inter-phase DVFs, the 4D-CBCT solved
by SMEIR-type algorithms allows direct and accurate 4D
dose accumulation to determine the dose delivered to
the gross tumor volumes as well as the normal tissues to
evaluate the true dose coverage and the normal tissue
toxicity (Fig. 9). By linking 4D-CBCT's acquired at differ-
ent sessions through inter-session DVFs, we can also ac-
cumulate the overall doses delivered during the
treatment course for comprehensive treatment evalu-
ation. Currently, one major limitation of applying the
CBCTs for direct dose calculation is the inaccurate HU
values of the CBCT images, mostly due to the amplified
scatter from the cone-beam geometry, as well as the lim-
ited field-of-view [78, 79]. Some studies proposed to cir-
cumvent the issue through direct CT-CBCT registration
to calculate treatment doses on the deformed CT image
instead [80, 81]. However, such methods are susceptible
to the registration errors between the planning CT and
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Fig. 8 The envisioned future developments towards real-time 4D-CBCT imaging, by combining real-time on-board information provided by non-ionizing
imaging signals including the optical surface imaging, and prior information (prior CT/CBCT, prior motion model), and real-time on-board x-ray imaging.
Through combining all these information sources, a reconstruction system comprising SMEIR, biomechanical modeling, and Al could potentially achieve
real-time imaging to guide the most accurate treatment delivery, and allow on-the-fly plan adjustment to fit the patients’ daily variations. 4D-CBCT: 4-
Dimensional cone-beam computed tomography; SMEIR: Simultaneous motion estimation and image reconstruction; Al: Artificial intelligence
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Fig. 9 Proposed SMEIR-driven 4D dose accumulation and evaluation workflow for radiation oncology. After applying the rigid registration to align
the 4D-CBCT to the 4D-CT coordinates, the 4D-CBCT uses the DVFs solved by SMEIR to deform 4D doses to a single reference phase, in a similar
way as the dose accumulation process of 4D-CT. The 4D-CT uses a direct deformable registration algorithm to derive inter-phase DVFs, since the
high-quality CT images allow direct inter-phase DVF solution. 4D-CBCT: 4-Dimensional cone-beam computed tomography; SMEIR: Simultaneous
motion estimation and image reconstruction; DVF: Deformation-vector-field
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on-board CBCT images. It would be ideal to directly im-
prove the CBCT HU accuracy to allow direct dose calcu-
lation on CBCT. Multiple methods have been developed
to reduce and correct the scatter signal, including ex-
perimental measurements, hardware-based corrections
and Monte-Carlo simulations [79, 82, 83]. Introducing
such methods into the clinic will allow substantial im-
provements of the CBCT HU accuracy. On the other
hand, the issue of limited field-of-view can be potentially
addressed through incorporating prior information into
the CBCT reconstruction, which also enjoys the benefit
of introducing more accurate HUs [30]. Recent develop-
ments of Al-based techniques were found effective to
convert the CBCT images directly to improve their qual-
ity to match that of planning CT images for accurate
dose calculation [84]. Such techniques could be grafted
with SMEIR-type algorithms to yield the final 4D-CBCT
directly applicable for accurate dose calculation. Based
on the DVF-accumulated doses on each treatment frac-
tion and throughout all fractions, and based on the
DVE-propagated tumor and normal tissue contours [32,
85], decisions can be rendered in regards to the necessity
of adaptive radiation therapy. Based on high-quality
CBCTs, radiotherapy plans can be adapted and opti-
mized to meet the patient’s clinical needs to maximize
the radiotherapy benefits.

Conclusions

The fast development of medical imaging has allowed
more precise radiation therapy treatments and is con-
tinuously pushing the boundary of technology towards
safer beam delivery and more effective normal tissue
sparing. 4D-CBCT plays a key role in managing sites
involving moving targets such as lungs and livers.
Through combining motion estimation and motion-
compensated reconstruction, the SMEIR algorithm al-
lows low-dose and faster 4D-CBCT imaging to better
meet the clinical demands. The introduction of bio-
mechanical modeling and U-net based DVF fine-
tuning further develops the original SMEIR algorithm
to better reconstruct small, fine details in addition to
bulky structures. Through introducing more informa-
tion, including the prior information and the high
frame-rate, non-ionizing imaging technique, we could
potentially accelerate the 4D-CBCT acquisition to
allow near real-time imaging to achieve the most pre-
cise tumor targeting with a minimal safety margin. In
addition to image-guidance, the 4D-CBCT and the
inter-phase DVFs solved by SMEIR-type algorithms
also allow dose calculation and accumulation to guide
intra-course adaptive radiation therapy to tailor the
plan to better deliver patient-specific cancer care, and
provides abundant information to assess the dose-
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treatment outcomes, on both tumor control and nor-
mal tissue toxicity.
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