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SUMMARY

Adaptor protein 2 (AP2) is a major constituent of cla-
thrin-coated pits (CCPs). Whether it is essential for all
forms of clathrin-mediated endocytosis (CME) in
mammalian cells is an open issue. Here, we demon-
strate, by live TIRF microscopy, the existence of a
subclass of relatively short-lived CCPs lacking AP2
under physiological, unperturbed conditions. This
subclass is retained in AP2-knockout cells and is
able to support the internalization of epidermal
growth factor receptor (EGFR) but not of transferrin
receptor (TfR). The AP2-independent internalization
mechanism relies on the endocytic adaptors eps15,
eps15L1, and epsin1. The absence of AP2 impairs
the recycling of the EGFR to the cell surface, thereby
augmenting its degradation. Accordingly, under con-
ditions of AP2 ablation, we detected dampening of
EGFR-dependent AKT signaling and cell migration,
arguing that distinct classes of CCPs could provide
specialized functions in regulating EGFR recycling
and signaling.

INTRODUCTION

Clathrin-mediated endocytosis (CME) is the best-characterized

route of internalization for plasma membrane (PM)-resident pro-

teins, thereby regulating a variety of cellular functions ranging

from metabolism to signaling and neurotransmission (Robinson,
Cel
This is an open access article under the CC BY-N
2015; Kirchhausen et al., 2014). In mammalian cells, adaptor

protein 2 (AP2) is the most abundant clathrin adaptor, involved

in the early phase of clathrin-coated pit (CCP) nucleation and

maturation (Robinson, 2015; Kirchhausen et al., 2014; McMahon

and Boucrot, 2011). As CCPs gain curvature andmature, AP2 re-

cruits cargoes. This step represents an ‘‘endocytic checkpoint,’’

as failure to recruit cargo results in short-lived, abortive CCPs

(Kadlecova et al., 2017; Kelly et al., 2014; Aguet et al., 2013; Car-

roll et al., 2012; Henry et al., 2012; Liu et al., 2010; Loerke et al.,

2009; Puthenveedu and von Zastrow, 2006; Ehrlich et al., 2004).

Fission of cargo-loaded, deeply invaginated CCPs is executed

by theGTPase dynamin, leading to the release of clathrin-coated

vesicles (CCVs) (for a review see Antonny et al., 2016). Although

clathrin, AP2, dynamin, and cargo constitute the basic compo-

nents of a CCP, a variety of accessory proteins have been impli-

cated in the assembly and in the maturation of CCPs (Kaksonen

and Roux, 2018; Kirchhausen et al., 2014; Merrifield and Kakso-

nen, 2014; Mettlen et al., 2009).

AP2 is highly conserved from yeast to human (Schledzewski

et al., 1999; Nakayama et al., 1991; Kirchhausen, 1990). Notably,

it is not essential for viability or for CME in yeast, and other adap-

tors can substitute for it (Lu et al., 2016; Brach et al., 2014; Wein-

berg and Drubin, 2012). Moreover, differently from mammalian

cells, CCP nucleation in yeast does not require AP2 binding

motifs in the cargo cytosolic tail (e.g., Yxx4), while ubiquitination

of cargo and adaptors is critical (Weinberg and Drubin, 2012,

2014). In contrast, AP2 is indispensable for embryonic develop-

ment of Drosophila, C. elegans, and mice (Gu et al., 2008; Mitsu-

nari et al., 2005; González-Gaitán and Jäckle, 1997), and it is

thought to be essential for CCP nucleation in mammalian cells

(Cocucci et al., 2012). Most studies in mammalian cells have
l Reports 27, 3049–3061, June 4, 2019 ª 2019 The Author(s). 3049
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Figure 1. Live TIRF Imaging of CCPs in SUM159 and AP2-WT MEF Cells

(A) Cumulative frequency distribution of the initial mean square displacement (MSD) of clathrin-coated structures containing or not AP2 in SUM159 cells imaged

by TIRF. Clathrin events with initial MSD larger than 0.01 mm2 (dotted line) were excluded from the plots displaying fluorescence intensity cohorts (B).

(B) Automated analysis of clathrin-coated structure formation at the plasma membrane of SUM159 cells obtained from 13 cells and �350 clathrin traces. The

analysis for traces excluding events with lifetimes < 20 s shows average fluorescence intensity plots (mean ± SD) grouped as cohorts according to their lifetimes.

The left panel corresponds to 235 events containing CLTA-TagRFP and AP2-s2-EGFP (clathrin+/AP2+), while the right panel corresponds to 112 events devoid of

AP2-s2-EGFP (clathrin+/AP2�).

(C) Cumulative frequency distribution of the initial MSD of clathrin-coated structures containing or not AP2 in MEF AP2-WT cells imaged by TIRF. Clathrin events

with initial MSD larger than 0.01 mm2 (dotted line) were excluded in the plots displaying fluorescence intensity cohorts (D).

(D) Automated analysis of clathrin-coated structure formation at the plasma membrane from 8 cells and �670 clathrin traces from MEF WT cells.

(E) Representative TIRF microscopy time series acquired every 2 s from the bottom surface of MEF cells, stably expressing clathrin light chain A tagged with

TagRFP (CLTA-TagRFP) together with s2 of AP2 tagged with EGFP (AP2s-EGFP). The TIRF snapshots (left) were recorded at 224 and 138 s, and the corre-

sponding right panels are kymographs from the complete time series. The yellow tracings display the path used to generate the kymographs. The green channels

in the kymographs were shifted upward by 5 pixels. Themajority of the endocytic clathrin structures contained clathrin together with AP2 in theWT cells (e.g., pits

1 and 4), and few contained only clathrin (e.g., pits 2 and 3).
focused on constitutive endocytosis (see, e.g., Aguet et al.,

2013; Cocucci et al., 2012; Loerke et al., 2009), mainly using

transferrin receptor (TfR) as model cargo, for which AP2 appears

to be essential (Boucrot et al., 2010; Liu et al., 2010; Mettlen

et al., 2009; Huang et al., 2004; Hinrichsen et al., 2003; Motley

et al., 2003). In contrast, ligand-induced receptor internalization

might occur in the absence of AP2, as AP2 knockdown (KD) ex-

periments have shown that the internalization of some signaling

receptors can still occur under conditions of functional AP2 abla-

tion (Johannessen et al., 2006; Maurer and Cooper, 2006; Huang

et al., 2004; Hinrichsen et al., 2003; Motley et al., 2003).

From these latter observations, it appears that AP2-indepen-

dent mechanisms of CME also exist in mammalian cells. The

issue, however, is debated and far from being settled for two

main reasons: (1) it cannot be excluded that residual levels of

AP2 in the KD experiments are indeed responsible for the resid-

ual CME, and (2) under unperturbed conditions, no conclusive

imaging-based evidence has been produced showing that a

significant fraction of clathrin-dependent internalization events

occur in the absence of AP2 in the forming pit.

The issue isofparticular relevance for those signaling receptors,

such as epidermal growth factor receptor (EGFR), which might be

internalized via AP2-dependent and AP2-independent CME
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(Huang et al., 2004; Hinrichsen et al., 2003; Motley et al., 2003),

alsoconsidering the large variety of endocytic factors and internal-

ization and sorting signals involved in EGFR endocytosis (Goh

et al., 2010). These considerations highlight a number of unre-

solved questions. (1) Do different modalities of CME exist under

physiological conditions? (2) Are they cargo selective? (3) Are

they differentially coupled to receptor fate and/or signaling? The

present studies were undertaken to address these questions.

RESULTS

A Subclass of Short-Lived CCPs Lacking AP2
To investigate whether different subclasses of clathrin-coated

structures (CCSs), characterized by the presence versus absence

of AP2, exist under physiological conditions, we used SUM159

cells that were gene-edited to express AP2s2-EGFP and CLTA-

TagRFP (see STAR Methods). We monitored CCS dynamics by

live total internal reflection fluorescence (TIRF) microscopy as

previously described (Aguet et al., 2013; Cocucci et al., 2012).

In this analysis, we adopted a rather stringent cutoff by excluding

events that were highly motile with an initial mean square

displacement (MSD) larger than 0.01 mm2 (Figure 1A). This was

done to minimize the contribution of CCVs originating from the
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Figure 2. Live TIRF Imaging of CCPs in AP2 KO MEF Cells

(A) MEFs from conditional AP2mfl/fl mice (Figure S2A) were treated in vitro with CRE recombinase, as indicated, followed by immunoblotting (IB) as shown. The

lower band in the AP2m IB is nonspecific; the specific AP2m band is indicated by an arrow. In all subsequent experiments, AP2mfl/fl MEFs were either left untreated

or treated with CRE for 14 days-two rounds (henceforth referred as AP2-WT and AP2-KO, respectively).

(B) AP2-WT and AP2-KO MEFs were analyzed for mRNA levels of Ap2m1 and Cltc using qRT-PCR. mRNA levels are reported relative to untreated controls and

normalized to the 18S gene. Error bars are calculated on technical replicates (n = 3).

(C) Cumulative frequency distribution of the initial MSD of clathrin-coated structures inMEF AP2-WT and AP2-KO cells imaged by TIRF. Clathrin events with initial

MSD larger than 0.01 mm2 (dotted line) were excluded in the plots displaying fluorescence intensity cohorts (D).

(D) Automated analysis of clathrin-coated structure formation at the plasma membrane from 12 cells and �439 clathrin traces from MEF KO cells.

(E) Representative TIRFmicroscopy time series acquired every 2 s from the bottom surface of MEF AP2-KO cells, stably expressing CLTA-TagRFP together with

AP2s-EGFP. The TIRF snapshots (left) were recorded at 224 and 138 s, and the corresponding right panels are kymographs from the complete time series. The

yellow tracings display the path used to generate the kymographs. The green channels in the kymographs were shifted upward by 5 pixels. Endocytic ‘‘clathrin-

only’’ structures are present (e.g., pits 1 and 2).
secretory pathway. Under these conditions, 30%–40% of all de-

tected events were computed. We found that 55%–70% of these

clathrin-positive events (excluding events below 20 s and above

120 s in duration) were also positive for AP2, while the rest lacked

the AP2 signal (Figure 1A). All the recorded events, presumably

membrane bound and termed here CCPs, were grouped in

cohorts with a specific range of lifetimes (Figure 1B). This revealed

that although clathrin+/AP2+ events were almost equally

distributed in the lifetime cohorts between 20 and 80 s, the cla-

thrin+/AP2� events were enriched in the cohorts with shorter life-

time (20–38 s). This argues for the existence, under physiological

conditions, of a subclass of endocytic CCPs lacking AP2, which

are generally short lived and smaller than AP2-containing CCPs,

while displaying a similar intensity-growth profile and comparable

dynamics. Of note, when the MSD threshold for inclusion was

raised to 0.0155 or to 0.02 mm2, results superimposable to those

described above were obtained (Figure S1).

Next, used mouse embryonic fibroblasts (MEFs) derived from

AP2m conditional knockout (KO) mice (AP2mfl/fl, henceforth AP2-

WT [wild-type]; Figure S2A; Soykan et al., 2016; Kononenko

et al., 2014). These cells were engineered to stably express

AP2s2-EGFP and CLTA-TagRFP as transgenes (see Figures
S2B and S2C and their legends for details). In this model, before

CRE treatment (AP2-WT cells), we confirmed the phenotypes

observed in SUM159 cells; in particular, we could detect about

one-third of the clathrin-positive events that lacked the AP2

signal (Figures 1C–1E). Importantly, these events fell mainly in

the short-lived cohort of CCPs (Figures 1C–1E; see also Figures

S2D and S2E, left and center). In contrast, fewer than 1% of all

the AP2-positive events lacked clathrin (clathrin�/AP2+).

TreatmentofAP2-WTMEFswithCRE recombinase induced the

excision of exons 2 and 3 of theAp2m1gene (henceforth AP2-KO;

Figure S2A) and the loss of AP2m protein expression (Figures 2A

and 2B). In AP2-KO MEFs, clathrin-positive events persisted,

with frequency and cohort distribution resembling those observed

for the AP2-negative CCPs in AP2-WT cells (Figures 2C–2E; see

also Figures S2D and S2E, right). These data argue that a subset

of CCPs can form also in the complete absence of AP2.

Morphological Analysis ofCCPsFormed inAP2-KOMEFs
We performed electron microscopy (EM) of PM sheets prepared

from AP2-WT and AP2-KO MEFs. This confirmed that CCSs

form in the absence of AP2 (Figure 3A). The surface density of

CCS was reduced by �80% in AP2-KO MEFs versus AP2-WT
Cell Reports 27, 3049–3061, June 4, 2019 3051
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Figure 3. Morphological Characterization

of CCPs in AP2-WT and AP2-KO Cells

(A) Plasma membrane sheets (PMSs) of AP2-WT

and AP2-KO MEFs showing examples of clathrin-

coated structures (arrowheads, flat clathrin lat-

tices; big arrows, CCPs). Bar, 100 nm.

(B) Top: CCS density in AP2-WT and AP2-KO

MEFs. Bottom: CCS number was normalized for

surface area (Figure S3A; STAR Methods) and

expressed relative to control cells. N represents

the number of random images analyzed. Data are

represented as mean ± SEM. p values were

calculated using two-tailed Student’s t test (***p <

0.001).

(C) Left: size distribution of CCSs in AP2-WT and

AP2-KO MEFs (STAR Methods; Grove et al.,

2014). Right: analysis of distribution of CCP areas

in AP2-WT and AP2-KO MEFs. Only CCPs <

0.03 mm2 were included in the analysis. N repre-

sents the number of CCSs analyzed. p values were

calculated using two-tailed Student’s t test (***p <

0.001).

(D) Transmission electron microscopy (TEM)

analysis of CCPs in AP2-WT and AP2-KO MEFs.

In AP2-KO cells, CCPs appear smaller compared

with AP2-WT cells (arrows and insets), as also

shown by the morphometric analysis in the right

panel. N represents the number of random

images analyzed. Bar, 100 nm. p values were

calculated using two-tailed Student’s t test (***p <

0.001).
(Figure 3B, top). However, the cell surface area of AP2-KO MEFs

was greatly enlarged versus AP2-WT (�2.5-fold surface increase;

FigureS3A).Whennormalized for cell surfacearea, AP2-KOMEFs

showed a �50% decrease in CCSs versus controls (Figure 3B,
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bottom). Importantly, the disappearance

of large and medium CCSs (including flat

clathrin lattices and plaques; Grove et al.,

2014; Saffarian et al., 2009) and a shift to-

ward smaller structures (%0.03 mm2)

were observed in AP2-KO MEFs (Fig-

ure 3C, left), as also previously shown in

AP2-KD HeLa cells (Miller et al., 2015;

Motley et al., 2003). Analysis of the area

distribution of the CCSs with size %

0.03 mm2 showed that AP2-KO MEFs had

lost larger CCSs, while retaining the

smaller ones, with compared to WT cells

(Figure 3C, right), as also confirmed by

transmission EM (TEM) (Figure 3D and its

legend). These data indicated that small

CCPs present in WT cells are retained

upon AP2 KO.

EGFR-CME Occurs in AP2-KO Cells
The availability of AP2-KO cells afforded

the opportunity to test the impact of the

bona fide total absence of AP2 on CME

of receptors whose internalization pro-
ceeds constitutively (exemplified by the TfR) or in a ligand-

induced fashion (exemplified by the EGFR).

The measurement of EGFR endocytosis is complicated by the

fact that the receptor can be internalized both through CME and



through non-clathrin endocytosis (NCE). CME is active already at

low doses (1–3 ng/mL) of ligand and persists at higher doses;

NCE, conversely, is activated only at higher doses (R10 ng/

mL; Caldieri et al., 2017; Sigismund et al., 2013). The issue is

further compounded by the fact that the presence of the

EGFR-NCE pathway is context dependent: some cells (e.g.,

HeLa cells) possess the pathway whereas others do not (Caldieri

et al., 2017; Sigismund et al., 2013). Experimentally this is re-

flected in a differential impact of clathrin KD on epidermal growth

factor (EGF) internalization performed at different doses of the

ligand (Sigismund et al., 2013). The MEFs under scrutiny here

seem to internalize EGFR exclusively through CME, as wit-

nessed by findings that clathrin KD equally reduced the

internalization rate by >85% at both low and high doses of ligand

(Figure S3B). Thus, in principle CME-dependent EGFR internali-

zation could be studied in our MEFs at either dose. However,

because one of our goals was to compare the AP2-KO setting

to the KD settings obtained in different cell lines (in which NCE

might be present), all the kinetics internalization experiments

with 125I-EGF were performed at low ligand (1.5 ng/mL).

Under these conditions, in AP2-KO cells 125I-EGF internaliza-

tion rate was reduced by only �50% versus the WT control and

further reduced upon clathrin-KD (Figure 4A, left; Figure S3C).

Conversely, 125I-Tf (transferrin) internalization was reduced to

background levels (defined as the amount measured in cla-

thrin-KD cells) (Figure 4A, right).

The results in KO MEFs were virtually indistinguishable from

those obtained upon AP2-KD in HeLa cells (Figure S3D; Huang

et al., 2004; Motley et al., 2003) and in a variety of normal or can-

cer cell lines of human or murine origin (Figure 4B).

Together these results allow a number of initial conclusions: (1)

the differential impact on Tf versus EGF uptake upon AP2

removal was formally proven in a clean genetic KO background;

(2) the KD data are reliable because they phenocopy those ob-

tained in the KO system; and (3) the effects of AP2 removal on

cargo uptake are indistinguishable under acute (KD) or chronic

(KO) conditions, thereby ruling out a number of potential caveats,

such as adaptation in the KO conditions or insufficient targeting

or off-target effects in the silencing condition.

EM Characterization of AP2-Independent CME
To characterize morphologically the EGFR-internalizing struc-

tures in AP2-KO cells, we used TEM. The endogenous levels of

expression of the EGFR in MEFs were too low to detect a suffi-

cient number of events for quantitative measurements. We

circumvented this problem with a twofold strategy: (1) we

increased the expression levels of EGFR using a doxycycline-

inducible EGFR expression system; upon doxycycline treat-

ment, we obtained EGFR surface levels in MEFs comparable

with those detectable in HeLa cells (see Figure S3E); and (2)

we stimulated the cells with high doses of EGF (30 ng/mL)

because we showed (Figure S3B) that in these cells, only the

CME pathway is active. We found, in agreement with the func-

tional data, that EGFR was still recruited to small CCPs and

CCVs in AP2-KO MEFs, as visualized either by pre-embedding

gold immunolabeling of the EGFR stimulated with unlabeled

EGF (Figure 4C) or by gold labeling with anti-Alexa 488 antibody

of cryosections from cells stimulated with Alexa 488-EGF (Fig-
ures S3F and S3G; see STAR Methods and Caldieri et al.,

2017). EGFR-positive structures were reduced by �60% versus

control cells (Figure 4D, left). Importantly, the number of gold

particles per CCP was significantly reduced (Figure 4D, right).

Thus, a consequence of reducedCCP size is a reduction in cargo

loading, under conditions of AP2 KO.

Alternative Endocytic Adaptors Required for AP2-
Independent EGFR-CME
How do EGFR-containing CCPs form in the absence of AP2?We

investigated the possibility that other AP complexes might func-

tionally substitute for AP2. This was not the case, as clathrin-

dependent internalization kinetics of 125I-EGF in AP2-KO MEFs

were unaffected by KD of the different AP complexes (AP1,

AP3, AP4, and AP5) (Figures 5A and S4A).

In search of alternative adaptors, we explored the role of

known endocytic proteins, eps15, eps15L1, and epsin1, which

we have previously shown to have a redundant role in EGFR-

CME (Savio et al., 2016; Sigismund et al., 2005). Indeed,

although eps15/eps15L1 KD or epsin1 KD in HeLa cells reduced

EGFR-CME by �25%, the triple eps15/eps15L1/epsin1 KD

(henceforth triple-KD) resulted in a �50% decrease in the

EGFR internalization rate (Figures 5B, S4B, and S4C). The addi-

tion of epsin2 KD did not worsen the phenotype of the double

eps15/eps15L1 KD or of the triple eps15/eps15L1/epsin1 KD

(see Figures S4B–S4D and their legends). When the triple-KD

was combined with AP2-KD, the EGFR internalization rate was

decreased to clathrin-KD levels (Figures 5B and S4E). Because

these data were confirmed in AP2-KO MEFs subjected to tri-

ple-KD (Figures 5C, S4D [bottom], and S4F), we propose that

eps15/eps15L1/epsin1 are responsible for the residual EGFR-

CME observed in the absence of AP2.

EM analysis of triple-KD MEFs (in the AP2-WT-EGFR back-

ground) revealed a decrease in the number of EGFR-positive

CCPs versus control cells (Figure 5D, left; Figure S3A), with no

apparent defects in CCS size and no reduction in the number

of gold particles per CCS (Figure 5D, center and right), suggest-

ing that the ablation of eps15/eps15L1/epsin1 alters CCP forma-

tion and/or stability and affects EGFR-CMEbut not CCP size and

cargo loading.

These data were confirmed by live TIRF microscopy, showing

that triple-KD cells display a reduced CCP number per square

micrometer (�60% of the events compared with WT cells), while

showing the same CCP fluorescence intensity and lifetime distri-

bution as WT cells (Figures 5E and S5).

AP2 Is Not Required for EGFR Degradation, but It Is
Essential for EGF-Dependent AKT Signaling and Cell
Migration
The previous observations suggest that AP2 is not an absolute

requirement for EGFR-CME. In its absence, the internalization

of the receptor can still proceed, albeit less efficiently, through

a mechanism based on the endocytic accessory proteins

eps15/eps15L1 and epsin1. Our data also suggest that AP2,

directly or indirectly, controls CCP size, as previously reported

(Dambournet et al., 2018; Miller et al., 2015), as supported by

the observation that CCPs lacking AP2 are smaller and also

contain less EGFRs. To test how these function(s) of AP2 might
Cell Reports 27, 3049–3061, June 4, 2019 3053
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Figure 4. EGF Internalization in AP2-KO

MEFs or upon AP2-KD in Different Cell Con-

texts

(A) 125I-EGF (left) and 125I-Tf (right) internalization in

AP2-WT and AP2-KO MEFs in the presence or

absence of clathrin KD. Internalization constants

(Ke) are the mean ± SD of two independent ex-

periments. p values were calculated using each

pair Student’s t test (***p < 0.001).

(B) Analysis of the impact of AP2m KD versus cla-

thrin KD in different cell lines as indicated. The

number of EGFRs per cell in the different cell lines

was measured using 125I-EGF saturation binding

assay. Kinetics of 125I-EGF (1.5 ng/mL) were

measured and are reported as internalization

constants (Ke). The percentage of AP2-indepen-

dent EGFR internalization was calculated from the

residual Ke in AP2-KD cells relative to the Ke in

control cells (after subtracting the residual inter-

nalization in clathrin KD cells; Sigismund et al.,

2013).

(C) TEM analysis of EGFR internalization. AP2-WT

and AP2-KO MEFs expressing EGFR under a

doxycycline-inducible promoter (AP2-EGFR) were

induced with doxycycline. Cells were then sub-

jected to in vivo immunolabeling with anti-EGFR

13A9 antibody and 10 nm protein A-gold, stimu-

lated 5 min with EGF (30 ng/mL), and fixed in the

presence of ruthenium red, to distinguish PM-

connected CCPs (ruthenium red positive) and

internalized CCVs (ruthenium red negative) struc-

tures. Bar, 100 nm.

(D) Morphometrical analysis of (C). Left: CCP

number was normalized for the difference in PM

length between AP2-KO MEFs versus control

(�1.5-fold increase; see Figure S3A and STAR

Methods) and expressed as relative to control

cells. Right: number of gold particles per CCS

(CCPs + CCVs). N represents the numbers of

random images (left) and CCSs (right) analyzed.

Data are expressed asmean ± SEM. p values were

calculated using two-tailed Student’s t test (*p <

0.05 and **p < 0.01).
affect EGF-dependent cellular phenotypes, we performed the

following experiments.

First, we investigated the fate of the EGFR after CME in control

HeLa cells or upon AP2-KD. To avoid the combined occurrence

of EGFR-CME and EGFR-NCE, we used low EGF doses. At low

EGF dose in HeLa cells, the EGF-bound receptors internalized
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via CME are either recycled (about 70%)

or targeted to degradation (30%; Sigis-

mund et al., 2008). However, at low non-

saturating EGF concentrations, only a

minor fraction of EGFRs are engaged by

the ligand; hence, the degradation of

that fraction over the total EGFR pool is

not readily detectable by immunoblotting,

but it could be easily detected by

following degradation (and recycling) of

the iodinated ligand, which provides ac-

curate quantitative measurements and
can be used as a proxy for receptor degradation (Pinilla-Macua

and Sorkin, 2015; Sigismund et al., 2008; Sorkin et al., 1991).

With this assay, we found that in AP2-depleted HeLa cells,

despite reduced EGFR-CME, the degradation of the internalized

ligand proceeded at a sustained pace and was actually higher

than inWT cells, possibly as a consequence of reduced recycling
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Figure 5. Mechanism of AP2-Independent

EGFR-CME: Role of eps15/L1 and epsin1

(A) Transient KD of the m subunit of the indicated

AP complexes was performed in AP2-KO MEFs,

and Ke of
125I-EGF internalization was calculated.

Data are mean ± SD (two replicates).

(B) Ke of 125I-EGF internalization in stable eps15/

eps15L1-KD HeLa cells transiently depleted of

epsin1, alone or in combination with AP2m, in

comparison with AP2-KD and clathrin-KD HeLa

cells. Results are mean ± SD of two to eight in-

dependent experiments. p values were calculated

using each pair Student’s t test (**p < 0.01 and

***p < 0.001).

(C) AP2-WT and AP2-KO MEFs were transiently

depleted as indicated. Ke values of 125I-EGF

internalization are shown as mean ± SD of two

independent experiments. p values were calcu-

lated using each pair Student’s t test (**p < 0.01

and ***p < 0.001).

(D) TEM analysis of CCSs in AP2-WT-EGFR

MEFs, control or triple KD for eps15, eps15L1,

and epsin1, induced with doxycycline (to allow

EGFR expression) and stimulated with EGF

(30 ng/mL). Morphometrical analysis was per-

formed on EGFR gold-positive structures. Left:

CCP number was normalized for the difference in

PM length between eps15/eps15L1/epsin1 KD

MEFs versus control (�0.8 decrease; see Fig-

ure S3A and STAR Methods) and expressed

relative to control cells. Right: mean number of

gold particle per CCS (CCPs + CCVs). N repre-

sents the numbers of random images (left panel)

and numbers of CCSs (center and right panels)

analyzed. Data are expressed as mean ± SEM.

p values were calculated using each pair Stu-

dent’s t test (*p < 0.05).

(E) Automated analysis of clathrin-coated struc-

ture formation at the plasma membrane from 196

traces containing CLTA-TagRFP and AP2s-EGFP

(clathrin+/AP2+; left panel), 200 traces devoid of

AP2s-EGFP (clathrin+/AP2�; middle panel) from

10 MEF AP2-WT/triple-KD, or 154 traces from 10

MEF AP2-KO/triple-KD cells (right panel).
to the PM (Figure 6A). The minimal interpretation of these data is

that the function of AP2 is at least in part dispensable for the

execution of one of the major tasks of endocytosis (i.e., long-

term attenuation of signaling through receptor degradation). In

fact, the opposite seems to be true, namely, AP2 might

counteract this function, possibly by augmenting EGFR recy-

cling to the PM, thereby helping modulate EGF-mediated

signaling. This possibility was tested by analyzing signaling path-

ways triggered by the EGFR upon stimulation with low EGF

doses in AP2-KOMEFs andAP2-KDHeLa cells. AP2-KO caused

a significant attenuation of the phosphorylated AKT signal (Fig-

ures 6B and S6A), a readout for reduced PI3K activity (Vanhae-

sebroeck et al., 1997). The effect appeared to be rather specific

for this signaling pathway, as the kinetics of phosphorylation
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of ERK1/2 and Shc were altered to a

much lesser extent in the same cells

(Figure 6B).
The attenuation in the magnitude of AKT phosphorylation was

confirmed also in HeLa AP2-KD cells (Figures 6C and S6B). In

contrast, triple-KD had only aminor impact, with a slight increase

in the duration of the signal in both cell systems (Figures 6C, S6B,

and S6C).

Given the established causal connection between the PI3K

signaling pathway and growth factor-induced directed cell

migration (Devreotes and Horwitz, 2015; Bear and Haugh,

2014), we tested the impact of AP2 on EGF-mediated chemo-

taxis. Importantly, AP2-KD in HeLa cells, but not triple-KD,

caused a severe impairment in EGF-induced cell migration

(Figure 6D). This defect was not observed when cells migrated

in response to serum (Figure 6D), excluding a general impair-

ment of the chemotactic response in AP2-KD cells and
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Figure 6. EGF-Dependent Signaling and

Migration in AP2-Depleted Cells

(A) HeLa cells were subjected to AP2 KD or eps15/

L1/epsin1 KD followed by 125I-EGF degradation

assay at low EGF concentration (1.5 ng/mL; see

STAR Methods). At the indicated time points, (1)

degraded EGF (top) represents the TCA soluble

fraction of 125I-EGF recovered in the medium and

intracellularly, and (2) recycled EGF (bottom) rep-

resents the TCA insoluble fraction of 125I-EGF

recovered in the medium. Results are mean ± SD

of two independent experiments. p values were

calculated using each pair Student’s t test (*p <

0.05 and **p < 0.01).

(B) Top: AP2-WT and AP2-KO MEFs were stimu-

lated with low dose EGF (1.5 ng/mL) for the indi-

cated times. Lysates were subjected to IB with

the indicated antibodies. Bottom: quantitation of

phosphoAKT signal normalized to total AKT

(pAKT/AKT) and represented as percentage of

signal in WT cells at 5 min of EGF stimulation.

Results are mean ± SD of three independent ex-

periments. p values were calculated using two-

tailed Student’s t test (*p < 0.05 versus WT at each

time point).

(C) Left: HeLa cells were subjected to AP2 KD

and/or eps15/L1/epsin1 KD in different combina-

tions, followed by stimulation with low dose EGF

(1.5 ng/mL) for the indicated times. IB was as

shown. Right: quantitation of phosphoAKT signal

normalized to total AKT (pAKT/AKT) and repre-

sented as percentage of signal in control cells at

5min of EGF stimulation. Results are mean ± SD of

three independent experiments. p values were

calculated using two-tailed Student’s t test. *p <

0.05 versus control at each time point.

(D) Transwell migration assay of AP2 KD and

eps15/L1/epsin1 KD HeLa cells under serum-

starved (SS) conditions or in the presence of low-

dose EGF (1.5 ng/mL) or 10% serum as indicated.

Right: quantitation of migrating cells per field.

Results are the mean ± SD of two to four inde-

pendent experiments. p values were calculated

using two-tailed Student’s t test (*p < 0.05 versus

control in each condition).
arguing instead for a specific effect of AP2 on EGF-dependent

migration.

Ultimately, EGFR activation results in the activation of tran-

scriptional programs involving immediate-early genes (IEGs; at

30–45 min) (i.e., the transcription factors FOS, EGR1, JUN, and

JUNB) and delayed early genes (DEGs; at 1–2 h), including

DUSP5 and AREG (Brankatschk et al., 2012; Avraham and

Yarden, 2011; Avraham et al., 2010). The kinetics of these events

are thought to define the specificity of the downstream transcrip-

tional program (Golan-Lavi et al., 2017), determining the final

cellular outcome.

In agreement with previous reports, IEGs were activated in

HeLa cells stimulated with low EGF dose (or with serum), peak-

ing at early time points (30–45min) (Figure 7A, upper rows), while

DEGswere activated at later times (1–2 h; Figure 7A, lower rows).

No major differences were noticeable between the transcrip-
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tional profiles in HeLa and HeLa-AP2-KD cells (under EGF or

serum stimulation) (Figure 7A). Some minor, statistically signifi-

cant variations were detected, but the magnitude of the effects

was minute and probably biologically inconsequential. These

data argue that the migratory defect we observed in EGF-

stimulated HeLa-AP2-KD cells is largely independent of the

EGF-induced early transcriptional program and more likely

dependent on the modification of protein activity that character-

izes the cytoplasmic component of EGFR signaling.

The kinetics of EGF-induced transcriptional regulation were

comparable between WT MEFs and HeLa cells. In contrast,

AP2-KO led to sizable differences in gene expression of a subset

of EGF-induced genes, such as (1) reduced induction (i.e., FOS),

(2) delayed peak of activation (i.e., JUN,DUSP5, andAREG), and

(3) increased and sustained activation (i.e., AREG) (Figure 7B).

Thus, AP2 KO in MEFs appeared to have a selective effect on



A B Figure 7. EGF-Dependent Transcriptional

Output in AP2-Depleted Cells

(A) Control or AP2 KD HeLa cells were serum

starved overnight followed by stimulation with low-

dose EGF (1.5 ng/mL) or with complete medium

(10% serum) for the indicated time points. Re-

ported is the mRNA level, assessed by RT-qPCR,

of the indicated genes, relative to the unstimulated

control and normalized to the levels of the RPLP0

housekeeping gene. Mean ± SD of two indepen-

dent experiments with duplicates points is shown.

(B) Control or AP2 KO MEFs were serum starved

overnight, followed by stimulation with low-dose

EGF (1.5 ng/mL) for the indicated time points. Data

are expressed as in (A). Mean ± SD of three inde-

pendent experiments with duplicate points is

shown.

p values in (A) and (B) were calculated using each

pair Student’s t test (*p < 0.05, **p < 0.01, and

***p < 0.001).
the transcription of some EGF-induced genes. In addition, given

the differences in the transcriptional impact of AP2 depletion in

HeLa versus MEFs, some of the AP2-dependent effects on

EGFR long-term signaling could be context specific.

DISCUSSION

Weherein report the identification of distinct classes of CCPs that

are molecularly distinguished by the presence or lack of AP2.

Coupling the use of AP2-KOMEFs, combinedwith theKDof other

adaptor proteins, we dissected the role of AP2-dependent and

AP2-independent mechanisms in EGFR internalization and the

consequences to the fate, signaling, and biological activities.

Our data show that AP2, although not an absolute requirement

for EGFR internalization and degradation, is crucial for the magni-

tude of certain EGFR-dependent signals and for at least one of its

associated biological functions (i.e., cell migration).

Distinct Subclasses of CCPs
CCPswith different lifetimes and sizes have been detected in cells

(Dambournet et al., 2018; Grove et al., 2014; Aguet et al., 2013;

Cocucci et al., 2012; Henry et al., 2012; Doyon et al., 2011; Loerke

et al., 2009; Puthenveedu and von Zastrow, 2006). We show that
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this reflects at least in part a specific mo-

lecular composition,defining theexistence

of at least two types of CCPs detected

under physiological unperturbed condi-

tions, characterized by the presence or

absence of AP2 and by distinct dynamics

and morphological features.

The dependency of the ‘‘different’’

types of pits on various endocytic pro-

teins was explored by taking advantage

of molecular genetics. In TIRF experi-

ments, we exploited the genetically

engineered deletion of AP2 (AP2-KO)

and/or the simultaneous depletion of
eps15/L1 and epsin1 adaptors (triple-KD). Our data suggest

that (1) AP2 has a role in regulating CCP number, size and life-

time, as previously suggested (Dambournet et al., 2018; Ka-

dlecova et al., 2017; Miller et al., 2015; Motley et al., 2003)

and in agreement with recent findings that AP2 levels are

finely regulated during cell differentiation with a consequent

impact on CCP dynamics (Dambournet et al., 2018), and (2)

one of the functions of eps15/L1 and epsin1 is to control, to

a certain extent, the number of CCPs without affecting their

dynamics.

One interesting observation that emerges from our study is

that when all adaptor proteins (AP2-KO + triple-KD, hence-

forth KO/KD; Figure 5E, right) were removed, some CCPs

persisted, although displaying significant reductions in num-

ber, size, and lifetime. This could be due to incomplete

ablation of eps15/eps15L1/epsin1 or to participation of other

endocytic proteins in CCP formation, as also supported

by extant literature (Kaksonen and Roux, 2018; Mettlen

et al., 2009; Merrifield et al., 2005). We favor the second

possibility, because we showed that in the KO/KD cells, the

internalization of the EGFR was reduced to background

(clathrin-KD) levels, arguing for efficient ablation of the three

adaptors.
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AP2 and EGFR Internalization
At the functional level, we provided conclusive evidence, in a

clean genetic background (i.e., KO of AP2), that the internaliza-

tion of EGFR versus TfR depends differently on AP2, confirming

previous observations (Johannessen et al., 2006; Maurer and

Cooper, 2006; Huang et al., 2004; Hinrichsen et al., 2003; Motley

et al., 2003). Although EGFR internalization was reduced but still

functional in AP2-KO cells, TfR uptake was reduced to back-

ground levels.

One important question is how EGFR-CME proceeds in the

absence of AP2. Our results point to a major role of eps15/L1

and epsin1 (by and large acting redundantly among themselves).

We do not know whether (and if so how) the ‘‘cargo adaptor’’

function of these proteins is linked to that of regulating CCP num-

ber. However, in KO/KD cells (Figure 5E, right), small short-lived

CCPs could still form, although they were incapable of support-

ing any significant internalization of EGF. Conversely, in the

presence of eps15/L1 and epsin1 (AP2-KO), structures indistin-

guishable from those present in KO/KD cells were clearly suffi-

cient to internalize a significant amount of EGF. Thus, the notion

that eps15/L1 and epsin1 function as alternative adaptors to

AP2 under physiological conditions is supported by experi-

mental evidence and, at least in the case of epsin1, it was also

previously suggested (Fortian et al., 2015; Bertelsen et al.,

2011). However, our data do not imply a scenario of ‘‘either

AP2 or eps15/L1/epsin1,’’ as they are equally compatible with

eps15/L1 and epsin1 participating in all internalization events

irrespective of the presence of AP2. Further experiments will

be needed to address this issue.

Similarly, the molecular working of eps15/L1/epsin1 in AP2-

independent CME remains to be resolved. Of note, these

proteins are endowed with a dual biochemical property: (1)

harboring ubiquitin-binding domains (UIMs), thereby binding to

ubiquitinated proteins, and (2) being monoubiquitinated upon

EGF treatment (Polo et al., 2002). One can postulate that through

UIMs, they can be recruited to ubiquitinated EGFRs or that

through monoubiquitination, they can generate protein-protein

interactions, within the endocytic machinery, required for CME.

The two functions are not mutually exclusive, and evidence

both in favor (Fortian et al., 2015; Goh et al., 2010) and

against (Sigismund et al., 2005, 2013) a critical role of EGFR

ubiquitination in CME has been produced. Furthermore, we

have previously shown that these adaptor proteins play a critical,

redundant, role in CME, dependent on their ability to be ubiquiti-

nated and deubiquitinated (Savio et al., 2016). The issue, there-

fore, remains open and will require further investigation.

AP2 and EGFR Fate, Signaling, and Biological Activity
When analyzing the fate of the internalized EGFR in the absence

of AP2, we obtained a somewhat surprising result. AP2 appears

to be dispensable (at least in part) for one of the major functions

of endocytosis in the regulation of EGFR signaling (i.e., attenua-

tion through degradation). This suggests the following interpreta-

tion. In the absence of AP2, EGFRs are internalized through

eps15/L1/epsin1-dependent CCVs destined to degradation: a

situation reminiscent of the ancestral mode based on ubiquiti-

nated adaptors present in yeast (Lu et al., 2016). When AP2 is

included, it possibly recruits other proteins responsible for
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committing the internalizing structures to recycling thereby

diverting them from the degradative pathway. The molecular

workings of the putative AP2-mediated recycling warrant further

investigations.

At the signaling level, the impact of AP2, and presumably of

CME, seems to be exerted at multiple levels. When analyzing

the effects of AP2 ablation on the more proximal EGFR-depen-

dent signaling, we detected decreased magnitude and duration

of certain downstream signaling pathways, in agreement with

previous reports showing that EGFR mutants with impaired

AP2-binding sites display defects in AKT signaling (Goh et al.,

2010). These effects were accompanied by attenuation of

EGF-dependent cell migration. This latter effect did not involve

perturbations of EGF-dependent transcriptional programs and

is therefore likely due to alterations of the initial chain of EGFR-

dependent transduction events. In this contention, we note

that clustering of signaling receptors into CCPs has been pro-

posed as a mechanism to regulate signaling magnitude at the

PM (reviewed by Barbieri et al., 2016). In particular, EGFR

recruitment into CCPs was proposed to spatially constrain

otherwise short-lived EGFR dimers and to amplify receptor acti-

vation (Rosselli-Murai et al., 2018; Ibach et al., 2015). Thus, AP2

might be instrumental in assembling PM-based signaling plat-

forms. This possibility is not mutually exclusive with that of pro-

longed signaling from an early endosomal compartment, which

would be sustained through repeated AP2-dependent cycles

of internalization and recycling.

Finally, when we analyzed the effects of AP2 depletion on the

EGFR-induced transcriptional effects, a clear context depen-

dency emerged. Although we cannot formally rule out that the

effects were due to different extents of AP2 ablation, in HeLa

AP2-KD versus MEF AP2-KO, we note that all the evidence pre-

sented in this study indicates that under our conditions, the KD

and the KO phenocopy each other. Thus, we favor the interpre-

tation that there is cell-specific variability in the impact of CME in

determining the final EGFR signaling outcome. This is in line with

recent findings showing that AP2 levels are variable in different

isogenic cellular contexts (Dambournet et al., 2018), unveiling

an unexpected level of plasticity of CME underlying the different

specifications required in various cell types.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-EGFR (epitope: aa 1172-1186,

Homo sapiens)

In house N/A

Mouse anti-eps15 (epitope: aa 2-330, Mus musculus) In house N/A

Rabbit anti-eps15L1 (epitope: aa 216-266, Mus musculus) In house N/A

Mouse anti-epsin1/2 (epitope: aa 249-401 of epsin1,

Homo sapiens)

In house N/A

Mouse anti-EGFR 13A9 Genentech mAbEGFR 13A9

Anti-Alexa Fluor 488 ThermoFisher Cat# A-11094, RRID:AB_221544

Anti-clathrin heavy chain (clone 23) Transduction BD Cat#610499, RRID:AB_397865

anti-AP2m Transduction BD Cat#611350, RRID:AB_398872

Anti-AP2a Sigma-Aldrich Cat#A4325,

RRID:AB_258156

Anti-AP2b Sigma-Aldrich Cat#A4325, RRID:AB_258156

Anti-AP2s Abcam Cat#ab128950,

RRID:AB_11140842

Anti-Phosphotyrosine Antibody, clone 4G10 Millipore-Merck Cat#05-321

RRID:AB_309678

Anti-pShc Cell Signaling Cat#2434, RRID:AB_10841301

Anti-phospho-AKT (Ser473) Cell Signaling Cat#9271

RRID:AB_329825

Anti-phospho-ERK1/2 (Thr202/Tyr204) Cell Signaling Cat#9101, RRID:AB_331646

Anti-total-AKT Cell Signaling Cat#9272, RRID:AB_329827

Anti-total-ERK1/2 Sigma-Aldrich Cat# M7927, RRID:AB_260665

Anti-pEGFR (Y1173) Cell Signaling Cat# 4407, RRID:AB_331795

Anti-GAPDH Santa Cruz Biotechnology Cat# sc-32233, RRID:AB_627679

Anti-tubulin Millipore Cat# MAB1864, RRID:AB_2210391

Anti-vinculin Sigma-Aldrich Cat# V9131, RRID:AB_477629

Chemicals, Peptides, and Recombinant Proteins

Recombinant human EGF BPSBioscience Cat#90201-3
125I-EGF PerkinElmer Cat#NEX428
125I-Tf PerkinElmer Cat#NEX212

Alexa488-EGF Molecular Probes Cat#E13345

Recombinant TAT-Cre recombinase In house N/A

Protein-A Gold 10 nm Utrecht University Cat#PAG10nm

EM grade glutaraldehyde Electron Microscopy Sciences Cat#16210

Sodium cacodylate trihydrate Sigma Cat#C4945

Osmium tetroxide 4% SOL.10X10ML Electron Microscopy Sciences Cat#19190

Potassium ferricyanide Electron Microscopy Sciences Cat# 20150

Ruthenium red Sigma Cat#84071

Absolute ethanol Sigma Cat#32221-M

Epoxy embedding medium Sigma Cat#45359-1EA-F

Secondary rabbit anti-mouse IgG Sigma Cat# M7023, RRID:AB_260634

Collagen I rat tail BD Bioscience Cat#354236

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Critical Commercial Assays

RNeasy kit QIAGEN Cat#74106

QuantiTect Reverse Transcription Kit QIAGEN Cat#205313

Inventoried Taqman assay, EPN1 Applied Biosystems Hs00203391_m1

Inventoried Taqman assay, EPN2 Applied Biosystems Hs00209150_m1

Inventoried Taqman assay, EPN3 Applied Biosystems Hs00978957_m1

Inventoried Taqman assay, Epn1 Applied Biosystems Mm01328492_m1

Inventoried Taqman assay, Epn2 Applied Biosystems Mm00665982_g1

Inventoried Taqman assay, Epn3 Applied Biosystems Mm00660955_m1

Inventoried Taqman assay, Cltc Applied Biosystems Mm01303974_m1

Inventoried Taqman assay, Ap1m1 Applied Biosystems Mm00475912_m1

Inventoried Taqman assay, Ap1m2 Applied Biosystems Mm00477565_m1

Inventoried Taqman assay, Ap2m1 Applied Biosystems Mm01702796_g1

Inventoried Taqman assay, Ap3m1 Applied Biosystems Mm00785907_s1

Inventoried Taqman assay, Ap3m2 Applied Biosystems Mm00512819_m1

Inventoried Taqman assay, Ap4m1 Applied Biosystems Mm00480494_m1

Inventoried Taqman assay, Ap5m1 Applied Biosystems Mm00513794_m1

Inventoried Taqman assay, Gapdh Applied Biosystems mm99999915_g1

Inventoried Taqman assay, 18S Applied Biosystems Hs99999901_s1

miRneasy kit QIAGEN Cat#217004

SuperScript VILO cDNA Synthesis Kit Invitrogen Cat#11754050

hsa-Stat3 Quantitect QT00068754

Experimental Models: Cell Lines

HeLa cells In house (Sigismund et al.,

2013)

N/A

SUM159 cells gene edited to express AP2s2-EGFP and

CLTA-TagRFP

This paper N/A

AP2mfl/fl MEFs This paper N/A

Oligonucleotides

All Stars control siRNA QIAGEN Cat #1027280

Stealth RNAi, Clathrin Heavy Chain GAAGAACUCUUUG

CCCGGAAAUUUA

ThermoFisher N/A

RNAi, AP2a human AAGAGCAUGUGCACGCUGGCCA Dharmacon (Motley et al.,

2003)

N/A

iBONI siRNA, AP2m human UGACCCGAAAGGCAUCCACCCCC Riboxx N/A

Stealth RNAi, epsin1 human UUACAAGGCCAUGACGCUGAUGGAG ThermoFisher N/A

Stealth RNAi, epsin1 mouse GACUGGCUCUGAGGCUGUAUCACAA ThermoFisher N/A

iBONI siRNA, eps15 mouse AAUACUCUCCCUUUGAACUUCCCCC Riboxx N/A

iBONI siRNA, eps15L1 mouse UUUCAAAGAUGCCAUCAAACCCCC Riboxx N/A

Stealth RNAi, epsin 2 human AAGAAAGCCGAAGGGACACAGUUAA ThermoFisher N/A

iBONI siRNA, AP1m mouse UUCUUCCGAUACUUGAUGCCCCC Riboxx N/A

iBONI siRNA, AP3m1 mouse UAAAUGGCUUAUACUUCUCCCCC Riboxx N/A

iBONI siRNA, AP3m2 mouse UACAUCCCAAGACAGCAUCCCCC Riboxx N/A

iBONI siRNA, AP4m mouse, pool of four oligos Riboxx N/A

iBONI siRNA, AP5m mouse AUAAUCCAGACCAGUAAGCCCCC Riboxx N/A

Custom RT-qPCR primers for EGF-induced transcriptomic analysis See Table S1 See Table S1

Recombinant DNA

pMSCV- CLTA-TagRFP Cocucci et al., 2012 N/A

pMSCV-AP2s2-EGFP Cocucci et al., 2012 N/A

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

pSLIK-EGFR This paper N/A

pSLIK-neo lentiviral vector Addgene (Shin et al., 2006) Cat#25735

pSICOR-shRNA human eps15 Sigismund et al., 2005 N/A

pSICOR-shRNA human eps15L1 Sigismund et al., 2005 N/A

Software and Algorithms

cmeAnalysis software package Aguet et al., 2013 N/A
CONTACT FOR REAGENT AND RESOURSE SHARING

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Sara

Sigismund (sara.sigismund@ieo.it).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

HeLa cells (cervical cancer, female) were cultured were grown at 37�C and 5%CO2 in GlutaMAX-Minimum Essential Medium (MEM,

GIBCO Invitrogen), supplementedwith 10%FBS, 1mMsodiumpyruvate (Euroclone), 0.1mMnon-essential amino acids (Euroclone).

Human-derived mostly diploid SUM159 cells (breast cancer, female), gene edited to express AP2s2-EGFP and CLTA-TagRFP,

were grown at 37�Cand 5%CO2 in DMEM/F12 supplementedwith 5% fetal bovine serum (FBS; S11150; Atlanta Biologicals, Flowery

Branch, GA), 100 U/ml penicillin and streptomycin (45000-652; VWR International, Radnor, PA), 1 mg/ml hydrocortisone (H4001;

Sigma-Aldrich, St. Louis, MO), 5 mg/ml insulin (I9278; Sigma-Aldrich), and 10 mM 4-(2-hydroxyethyl)- 1-piperazineethanesulfonic

acid (HEPES; 25-060-CI; Mediatech, Manassas, VA), pH 7.4.

AP2mfl/fl mouse embryonic fibroblasts (MEFs) were isolated from AP2mfl/fl mice (Kononenko et al., 2014) as previously

described (Pozzi et al., 2012), and were spontaneously immortalized after a series of passages in cultures (information about

sex of these cells is not available). AP2mfl/fl MEFs were cultured at 37�C and 5% CO2 in Dulbecco’s Modified Eagle Medium

(DMEM, Lonza) supplemented with 10% FBS and glutamine 2 mM. Immortalized AP2mfl/fl MEFs were infected with pMSCV

retroviral vector expressing AP2s2-EGFP and CLTA-TagRFP (Cocucci et al., 2012) and subjected to selection with puromycin

for 7 days.

AP2-EGFR MEFs used in EM experiments (Figures 4C, 4D, and 5D) were generated by infecting AP2-WT MEFs with pSLIK-EGFR

inducible lentiviral vector. Forty-eight hours after infection, selection of infected cells was performed by adding neomycin at a

concentration of 400 mg/ml for seven days. To induce expression of the EGFR transgene, doxycycline (0.05 mg/ml) was added to

cell culture medium for 16 hours.

Human cells were authenticated at each batch freezing by STR profiling (StemElite ID System, Promega). All cell lines were tested

for mycoplasma at each batch freezing by PCR (Uphoff and Drexler, 2002) and biochemical assay (MycoAlert, Lonza).

METHOD DETAILS

EGF concentrations, constructs and antibodies
Throughout the manuscript, we have used a low EGF concentration (1.5 ng/ml), unless otherwise indicated.

Constructs

pMSCV retroviral vectors expressing AP2s2-EGFP and CLTA-TagRFP were previously described (Cocucci et al., 2012); the pSLIK-

EGFR vector was generated by subcloning the cDNA coding for human EGFR from a pBABE-based vector (Sigismund et al., 2005) to

the pSLIK-neo lentiviral vector [for inducible expression in mammalian cells (Shin et al., 2006)].

Antibodies

rabbit polyclonal anti-EGFR (epitope: aa 1172-1186, Homo sapiens), mouse anti-eps15 (epitope: aa 2-330, Mus musculus), rabbit

anti-eps15L1 (epitope: aa 216-266, Mus musculus), mouse anti-epsin1/2 (epitope: aa 249-401 of epsin1, Homo sapiens) were

produced in-house and used in IB experiments. Mouse anti-EGFR 13A9 (Genentech) was used to follow endocytosis in in vivo

EM analyses. Anti-Alexa Fluor 488 (ThermoFisher) was used for cryosection immunolabeling for EM analysis. Other antibodies

used in IB are listed in the Key Resources Table.

CRE treatment of AP2mfl/fl MEFs
In order to induce the excision of the AP2 gene and the complete loss of AP2 protein expression, immortalized AP2mfl/fl MEFs were

treated with TAT-CRE recombinase produced in-house to obtain AP2-KOMEFs. Briefly, cells at 50%–60% confluency were washed

twice in PBS and treated with 100 mg/mL of TAT-CRE in mediumwithout serum at 37�C. After 1 h incubation, 50 mMchloroquine was
e3 Cell Reports 27, 3049–3061.e1–e6, June 4, 2019
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added to the medium for an additional hour at 37�C. Cells were then washed twice in PBS and supplemented with normal

culture medium. The TAT-CRE treatment was repeated after 3 days; this second round of treatment is recommended to increase

the efficiency of recombination. Experiments were performed after 14 days from the first TAT-CRE treatment. The experiments of

endocytosis with 125I-EGF and 125I-Tf were confirmed also in AP2mfl/fl primary MEFs treated or not with CRE, obtaining the same

results as with immortalized MEFs.

Genome editing of SUM159 cells using the TALEN-based approach
Human-derived mostly diploid SUM159 cells were homozygously gene edited to express endogenous CLTA-TagRFP together with

AP2s2-EGFP using the TALENprotocol (Sanjana et al., 2012). The TALEN target sequenceswere located as follow (the AP2s2 down-

stream sequence overlaps with the stop codon underlined):
50 - > 30 targeting sequences position relative to stop codon

CLTA TCTCCCTCAAGCAGGCCCCG �9

GTGGGACACCTTTGTGATGT +5

AP2s2 TGGGGCTCGCCTGCCCTCAC �14

TGCTGAAACAGCTGCTGATG 0*
The cells were generated as described (He et al., 2017; Aguet et al., 2016). Briefly, SUM159 cells were co-transfected with the up-

stream and downstream TALEN targeting sequences and the donor construct coding for the fluorescent protein using TransIT-2020

Transfection Reagent (Mirus Bio LLC,Madison,WI). Cells expressing endogenous clathrin light chain A (CLTA gene) fused to TagRFP

at its C terminus and endogenous s2 of AP-2 (AP2S1 gene) fused at its C terminus with EGFP were sorted by flow cytometry single

cell sorting. The insertion of the sequence coding for the fluorescent protein on both alleles was verified by PCR amplification from

purified genomic DNA using GoTaq Polymerase (Promega, Madison, WI) using:

for the CLTA gene, forward 50-TTGTTGTTGCTTCCAGGGCA-30 and reverse 50-GCCAGGGAGAACACAGTTGA-30 primers

for the AP2S1 gene, forward 50-TGAGGTCTGTGTCCCAGCTC-30 and reverse 50-GGTTACTCGGGACACACACG-30 primers.

TIRF based live-cell microscopy imaging and analysis
The TIRF microscopy including cell plating was carried as described (Aguet et al., 2016; Cocucci et al., 2014; Cocucci et al., 2012)

using conditions that would allow detection of the fluorescence intensity from a single molecule of EGFP within a diffraction

limited spot.

SUM159 cells were plated onto glass coverslips for 3-4 hwhereasMEF cells were plated onto the fibronectin-coated coverslips for

2-3 h, after which they were washed with sterile PBS, transferred onto an Attofluor Cell Chamber (Invitrogen) containing 800 mL of

prewarmed MEMa without phenol red (GIBCO) supplemented with 5% FBS and then placed onto a temperature controlled sample

holder (20/20 Technology, Wilmington) enclosed placed inside the environmentally controlled chamber of the microscope and time

series acquired as described (Aguet et al., 2016; Cocucci et al., 2014; Cocucci et al., 2012).

Time series obtained using TIRF microscopy were analyzed using the cmeAnalysis software package (Aguet et al., 2013) to trace

clathrin-coated structures labeled with CLTA-TagRFP (master channel) and classified as those either containing AP2-s2-EGFP for at

least 40% of their lifetimes (AP2+) or those lacking AP2-s2-EGFP (AP2-). A range of initial mean squared displacement (MSD) cutoffs

(0.010, 0.0155 or 0.02 mm2), calculated from the sum of the squares of displacement in x and y between the first and second time

points, were used to differentiate relatively immobile clathrin structures initiating at the plasma membrane from those potentially

originating at the trans-Golgi network or endosomes. The relatively immobile clathrin traces were then grouped according to their

content of AP2 grouped by lifetimes.

RNAi experiments
For eps15/eps15L1 double KD, HeLa cells stably depleted using pSICOR-shRNA sequences directed against human eps15 and

eps15 L1 were previously described (Sigismund et al., 2005). These cells were subjected to transient RNAi-mediated knockdown

for epsin1, epsin2, clathrin or AP2 in different combinations, as indicated.

RNAi transfections were performed using LipofectAMINE RNAi MAX reagent from Invitrogen, according to manufacturer’s instruc-

tions. Cells were subjected to double transfection (in both suspension and adhesion), treated with 10 nM RNAi oligo (except for

clathrin KD: 24 nM RNAi oligo). Cells were analyzed 4-5 days after transfection.

RNAi oligos

The negative control siRNA used in our assays was All Stars from QIAGEN. Other oligos were indicated in the Key Resources

Table.
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Quantitative real-time PCR analysis
Total RNA was extracted from HeLa and MEF cells (control, KD or KO, as indicated) using the RNeasy kit from QIAGEN, according

to the manufacturer’s protocol. Single stranded cDNA synthesis was performed using the QuantiTect Reverse Transcription Kit

(QIAGEN) following manufacturer’s instructions.

For the analysis of KD levels by RT-qPCR, the Taqman chemistry (Thermo Fisher Scientific) was used; qPCR instrument was from

Applied Biosystems. For the different genes, inventoried Taqman assays (Applied Biosystems) were employed, indicated in the Key

Resources Table.

For the transcriptomics analysis of EGF-induced genes (Figures 7A and 7B), total RNA was reverse-transcribed with SuperScript�
VILO cDNA Synthesis Kit (Life Technologies cat.no. 11754050) and measured with Quantifast SYBR green master mix (QIAGEN) in

Biorad Cfx384 RT-qPCR detection system. The complete list of primers used in this study is shown in Table S1.

Cell lysis and immunoblot (IB)
Cells were lysed in RIPA buffer (50mMTris–HCl, 150mMNaCl, 1 mMEDTA, 1%Triton X-100, 1% sodium deoxycholate, 0.1%SDS);

protease inhibitor cocktail (CALBIOCHEM) and phosphatase inhibitors (20 mM sodium pyrophosphate pH 7.5, 50 mM NaF, 2 mM

PMSF, 10 mM Na3VO4 pH 7.5) were freshly added.

For EGF stimulation, HeLa or MEF cells were plated on five 10 cm dishes at 50% confluence. The day after, cells were serum

starved for 16 h and then stimulated at the indicated time points with 1.5 ng/ml EGF. Total cell lysates (20-30 mg) were loaded

onto 4%–20% gradient precast SDS polyacrylamide gels (BIORAD). IB and IP were performed as described (Conte and Sigismund,

2017; Penengo et al., 2006).

Radioactive assays
Surface EGFRs were measured by 125I-EGF saturation binding as described (Sigismund et al., 2013). Radioactive internalization as-

says were performed as described (Caldieri et al., 2017) with 1.5 ng/ml of 125I-EGF or 1 mg/ml of 125I-Tf. Results are expressed as the

internalization rate constant [Ke, (Caldieri et al., 2017)] or as a%of Ke in control cells, as indicated, and are themean ±SD, calculated

on duplicate points of at least two independent experiments.

Degradation of 125I-EGF at low dose was measured as described (Sigismund et al., 2008). In brief, HeLa cells, subjected to KD as

indicated, were serum-starved for 2 hours and then incubated with 1.5 ng/ml 125I-EGF for 8 min at 37�C, followed by mild acid/salt

treatment (0.2 M Na Acetate buffer pH 4.5, 0.5 M NaCl) for 5 min at 4�C to remove bound EGF. 125I-EGF-loaded cells were then

chased in medium without serum at 37�C for the indicated time points. At the end of each chase time, the medium was collected,

the surface-bound 125I-EGF was extracted by acid treatment (0.2 M acetic acid pH 2.8, 0.5 M NaCl), and the cells were lysed in

1 mM NaOH. The medium and intracellular lysate fractions were then TCA-precipitated to separate intact from degraded
125I-EGF. Non-specific counts weremeasured for each time point in the presence of a 300-fold excess of cold ligand, and were never

> 3%–10% of the total counts.

Cell migration assay
Cell migration assays were performed using a BD Boyden Chamber (BD Biosciences) with 8 mm pores, coated with Collagen I rat tail

(10 mg/ml, BD Biosciences). Both chambers were filled with medium. The lower chamber contained serum-starved medium, EGF

(1.5 ng/ml) or complete medium. Serum-starved cells (4x104 cells/well) were seeded into the upper chamber of the transwell and

allowed tomigrate overnight at 37�C. Three replicates for each condition were performed. After the incubation period, cells remaining

in the upper chamber were washed away with PBS and removed by a cotton swab. Fixed cells were then stained with DAPI. Cells

were counted in three randomly chosen fields using an inverted fluorescence microscope (10X magnification).

Plasma membrane sheets (PMS)
PMS were prepared as previously described (Sanan and Anderson, 1991). Briefly, formvar/carbon coated nickel grids coated with

1 mg/ml poly-Lysine-D were placed on a pre-wet filter of cellulose acetate on ice. Cells were washed with KSHM buffer (100 mM

potassium acetate, 85 mM sucrose, 20 mM HEPES-KOH, pH 7.4, and 1 mM magnesium acetate) and the coverslips were placed

cells face down on the EM grids. The excess of buffer was aspirated with a pasture pipette attached to a vacuum pump and a rubber

cork was pressed on the coverslip for 10 s. The coverslips were flipped over and the grids were fixed on ice for 30 min in 4% glutar-

aldehyde in KSHM buffer. PMS were then post-fixed in 1% OsO4 10 s on ice, 1% tannic acid, 1% uranyl acetate and finally rinsed in

distilled water and air-dried.

Grids were observed with a LEO 912AB Zeiss Transmission Electron Microscope (Carl Zeiss). Digital micrographs were taken with

a 2k3 2k bottom-mounted slow-scan Proscan camera (ProScan) controlled by the EsivisionPro 3.2 software (Soft Imaging System)

and analyzed using ImageJ as previously reported (Grove et al., 2014).

Transmission Electron Microscopy (TEM)
For TEM analysis, cells treated as indicated were fixed for 1 h at room temperature in 2,5% glutaraldehyde in 100 mMNaCacodylate

buffer pH 7.2 and then post-fixed in 1%osmium tetroxide, 1,5%potassium ferricyanide in 100mMNaCacodylate buffer for 1 hour on
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ice. Alternatively, in order to discriminate plasma membrane connected pits, cells were fixed with 1.25% glutaraldehyde in 66 mM

NaCacodylate buffer containing 0.5mg/ml ruthenium red. After several washes in 150 mMNaCacodylate buffer cells were post fixed

in 1.3% osmium tetroxide in a 66 mMNaCacodylate buffer (pH 7.2) containing 0.5 mg/ml ruthenium red for 2 h at room temperature.

Both samples were then rinsed in NaCacodylate buffer, washed with distilled water and enbloc stained with 0.5% uranyl acetate in

dH20 overnight at 4�C in the dark. Finally, samples were rinsed in dH2O, dehydrated with increasing concentrations of ethanol,

embedded in Epon and cured in an oven at 60�C for 48 h. Ultrathin sections (70 – 90 nm) were obtained using an ultramicrotome

(UC7, Leica microsystem, Vienna, Austria), collected, stained with uranyl acetate and Sato’s lead solutions, and observed in a Trans-

mission Electron Microscope (Leo 912AB, Carl Zeiss, Oberkochen, Germany). Digital micrographs were taken with a 2Kx2K bottom

mounted slow-scan camera (ProScan, Lagerlechfeld, Germany) controlled by the EsivisionPro 3.2 software (Soft Imaging System,

M€unster, Germany). For Morphometrical analysis images of the random selected cellular profiles were analyzed using ImageJ

software. CCP density was calculated by dividing the number of CCP for PM length, and further normalized for the variation in

cell size observed.

Pre-embedding immunolabeling
Serum-starved cells were incubated with anti-EGFR 13A9 antibody, followed by incubation with rabbit anti-mouse, and, finally,

with Protein A-gold 10 nm (Utrecht University), 30 min incubation on ice/each step. Cells were then incubated at 37�C for 5 min

with 30 ng/ml EGF. A control sample incubated with all reagents except anti-EGFR 13A9 antibody was included in the experiment

to control that no internalization was induced by the secondary antibody and Protein A-gold 10 nm (Figure S3F). Cells were then

washed in PBS and fixed for 1 h at room temperature in 1.2% glutaraldehyde in 66 mM sodium cacodylate buffer pH 7.2 containing

0.5mg/ml of ruthenium red. After quickwasheswith 150mMsodium cacodylate buffer, the samples were post-fixed in 1.3%osmium

tetroxide in a 66 mM sodium cacodylate buffer (pH 7.2) containing 0.5 mg/ml ruthenium red for 2 h at room temperature. Cells were

then rinsedwith 150mMNaCacodylate, washedwith distilledwater and enbloc stainedwith 0.5%uranyl acetate in dH20 overnight at

4�C in the dark. Finally, samples were rinsed in dH2O, dehydrated with increasing concentrations of ethanol, embedded in Epon

and cured in an oven at 60�C for 48 h.

Anti-EGF immunolabeling of cryosections
As an independent procedure to visualize EGFR internalizing clathrin-coated pits (CCPs), we performed cryosection experiments

(Figures S3F and S3G). Briefly, cells were stimulated with Alexa 488 EGF (30 ng/ml) for 5 min, fixed for 1 h at room temperature

(0.2% glutaraldehyde/ 2% paraformaldehyde in PHEM Buffer 0.1 M) and processed as described previously (Slot and Geuze,

2007). Briefly, samples were embedded in 12% gelatin, infiltrated in 2.3 M sucrose and frozen in liquid nitrogen. Cryosections

were obtained using a Leica EM FC7 ultramicrotome (Leica microsystem, Vienna, Austria) and collected on 150 mesh formvar

carbon-coated copper grids. The labeling procedure was carried out using a rabbit anti-Alexa Fluor 488 antibody (5 mg/ml) in 1%

BSA in PBS that was afterward visualized with proteinA conjugated to 10 nm colloidal gold particles (Protein A-gold 10 nm, Utrecht

University). Grids were contrasted in a solution of uranyl acetate andmethyl-cellulose, air-dried and observed in a Talos L120C trans-

mission electron microscope (Thermo Fisher Scientific).

Analysis of cell surface area and perimeter
Cells grown on coverslips were fixed and stained with phalloidin-FITC. Nuclei were counterstained with DAPI. Fluorescence imaging

was performed with a Confocal Leica TCS SP5 using a 40X 1.40 NA oil objective and LAS software. Z stacks of different cells were

collected. Images were analyzed using ImageJ software. Single cells were selected with ROIs (region of interest) and geometrical

properties of each cell (perimeter, basal area, thickness as well as major and minor axis of the best fitting ellipse) were determined.

Selected cells were approximated to elliptic cones shape and the total surface area calculated. Per each sample 50 cells were

analyzed.

QUANTIFICATION AND STATISTICAL ANALYSIS

For radioactive assays, statistical analysis was performed using two-tailed Student’s t test with Excel when we compared two

conditions. When more conditions were compared, Each Pair Student’s t test with JMP 10.0 statistical software (SAS Institute,

Inc) was performed, which exploits the Fishers LSD test as a follow up to ANOVA.

Quantitation of the blots was performed with Photoshop. Statistical analysis was performed using two-tailed Student’s t test with

Excel.

For migration assay, statistical analysis was performed using two-tailed Student’s t test with Excel.

For PMS and TEM, images were analyzed with ImageJ and statistical analysis was performed using GraphPad Prism. Two tailed

paired Student’s t test was used to calculate statistical significance among different samples.
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