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Abstract: Habanero peppers constantly face biotic and abiotic stresses such as pathogen/pest infections,
extreme temperature, drought and UV radiation. In addition, the fruit cutin lipid composition plays
an important role in post-harvest water loss rates, which in turn causes shriveling and reduced
fruit quality and storage. In this study, we integrated metabolome and transcriptome profiling
pertaining to cutin in two habanero genotypes: PI 224448 and PI 257145. The fruits were selected
by the waxy or glossy phenotype on their surfaces. Metabolomics analysis showed a significant
variation in cutin composition, with about 6-fold higher cutin in PI 257145 than PI 224448. It
also revealed that 10,16-dihydroxy hexadecanoic acid is the most abundant monomer in PI 257145.
Transcriptomic analysis of high-cutin PI 257145 and low-cutin PI 224448 resulted in the identification
of 2703 statistically significant differentially expressed genes, including 1693 genes upregulated and
1010 downregulated in high-cutin PI 257145. Genes and transcription factors such as GDSL lipase,
glycerol-3 phosphate acyltransferase 6, long-chain acyltransferase 2, cytochrome P450 86A/77A, SHN1,
ANL2 and HDG1 highly contributed to the high cutin content in PI 257145. We predicted a putative
cutin biosynthetic pathway for habanero peppers based on deep transcriptome analysis. This is the
first study of the transcriptome and metabolome pertaining to cutin in habanero peppers. These
analyses improve our knowledge of the molecular mechanisms regulating the accumulation of cutin
in habanero pepper fruits. These resources can be built on for developing cultivars with high cutin
content that show resistance to biotic and abiotic stresses with superior postharvest appearance.
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1. Introduction

Hot peppers (Capsicum chinense Jacq.), popularly known as habaneros, are domesticated from
tropical regions of Central America and have great economic significance in terms of culinary,
pharmaceutical and ornamental perspectives. Their fruits are a good source of vitamins, antioxidants
and other phytonutrients, including major important alkaloids such as phenolics, carotenoids,
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flavonoids and capsaicinoids [1,2]. Habanero pepper fruits are subjected to desiccation and postharvest
wilting because of their hollow shape and limited water-holding capacity. The abundance of cuticle in
the pericarp can resist desiccation, but pepper cuticle development is not yet well understood [3,4].
Cuticle is known to play a critical role in plant survival because its primary physiological function
is as a sealant around plant tissues to protect against drought conditions and prevent desiccation by
reducing nonstomatal water loss [5–7]. The cuticle structure is diverse among different species but
is made up of a polyester cutin that is covered with waxes (intracuticular and epicuticular). Cuticle,
a hydrophobic polymer synthesized by the epidermal cells, is a major physiological trait acquired
by plants during evolution for survival in dehydrated conditions. It also coordinates the interaction
between a plant and its environment by limiting UV radiation and mechanical damage and is a defense
against pathogen entry. In terms of chemical composition, the cuticle is a polyester matrix of cutin
embedded with waxes [8].

Cutin is the major constituent of the plant cuticle and makes up about 80% of the plant cuticle.
It is an insoluble, covalently cross-linked polymer that is synthesized by epidermal cells in higher
plants [5,6,9]. Cutin is made up of organic chemicals that include glycerol, hydroxylated fatty acids
and hydroxylated epoxy compounds with carbon atom chains of lengths 16 and 18 and phenolic
compounds [5,10–13]. Cutin composition and its genetic basis have been studied in model plants such
as Arabidopsis, tomato and rice [14–17]. In Arabidopsis, several genes including GPAT6, GDSL lipase,
LACS, CYP86A, CYP77A, ABCG32 and ABCG11 involved in cutin initiation and development have
been identified [7,18,19]. In peppers, Parsons et al. [4] reported that the cuticle of Capsicum annum fruit
show variations in composition among species and cultivars [4,7,20]. Additionally, cuticle composition
varies across pepper cultivars, which in turn affects the response to biotic and abiotic stresses [21].
However, a better understanding of the molecular basis of this monomer composition is important for
using cutin for crop improvement in pepper [4].

Recent progress in “omics” approaches is being utilized for tracking the metabolites and genes
involved in cutin biosynthesis, transport and regulation in plant tissues [4,19,22]. Owing to the widely
proposed significance of cuticle in plant physiology and metabolism, the metabolite profile of cutin has
been explored extensively in the model plant Arabidopsis and other crops such as barley, tomato, rice
and maize [15,17,23]. Different aspects of cuticle biosynthesis have been considered in Arabidopsis and
tomato fruits [5,12,13], however, there are no studies reported in habanero peppers in terms of whole
fruit transcriptome and metabolome to understand cutin accumulation and metabolism. Hence, the
current study aimed to understand cutin biosynthesis in habanero peppers by taking advantage of
integrated RNA-Seq and metabolome analysis to study cutin biosynthesis in fruit tissues of diverse C.
chinense genotypes. Here, we used gas chromatography–mass spectrometry (GC-MS) of two different
habanero peppers, PI 224448 from Costa Rica and PI 257145 from Peru, for metabolome analysis to
study cutin composition across genotypes. We also performed deep paired-end RNA-Seq of the two
samples by using the Illumina Nextseq 500 platform to identify differentially expressed genes (DEGs)
and pathways associated with cutin and other traits by comparing PI 257145 and PI 224448. This
is the first study to generate transcriptome and metabolome data pertaining to cutin in habanero
peppers. These results can be used by plant breeders for hot pepper fruit quality improvement via
biotechnological modifications and can also serve as a model for the other Solanaceae crops.

2. Results and Discussion

2.1. Metabolomic Analysis of Cutin Monomers

Raw cutin from two habanero genotypes, PI 224448 and PI 257145, were depolymerized in 3N
methanolic hydrochloride (Me-OH-HCl), and cutin composition was analyzed and quantified by using
GC-MS. The compositions of cutin monomers identified from the two habanero cultivars are given in
Table 1. The cutin monomers from these genotypes mostly consisted of long-chain aliphaticω-hydroxy
acids, especially dihydroxy hexadecanoic acids, considered the most important component of most
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plant cutin materials, especially in fruits [7,24]. Parsons et al. [4] showed 16-fold differences in cutin
monomer amounts between the most extreme accessions studied. Similar to this report, the metabolic
analysis of cutin composition between our selected genotypes revealed significant variations in both
total cutin monomer content and relative proportion of cutin. PI 257145 had the most abundant cutin
content, with about 1284 mg/g dry weight (DW), and PI 224448 had the lowest cutin content, 232.4 mg/g
DW. Total cutin composition and relative proportion of individual monomers varied between the two
cultivars, with about 6-fold higher cutin content in PI 257145 versus PI 224448. Reports by Kissinger
et al. [21] and Parsons et al. [4], showed that 10,16-dihydroxy hexadecanoic acid was the dominant
cutin monomer with portions from 50% to 82% total cutin in Capsicum annum. Of note, our study
showed a similar pattern, with PI 224448 having the lowest amount of dihydroxy hexadecanoic acid,
about 114 mg/g DW (49%), and genotype PI 257145 showing the highest amount, 1060mg/g DW (83%).
Among the octadecanoic acids, 9,10,12,13,18-pentahydroxy octadecanoic acid was dominant, with PI
257145 showing the highest amount, 35.3 mg/g DW. This compound was detected only in fruits, which
suggests that they might play a major role in cutin composition of plants. Levels of p-coumaric acid, a
phenolic compound, also showed significant variations between the two pepper genotypes. These
variations between the samples provided a good background to investigate the cutin biosynthesis
mechanisms by examining variations in expression of the some of the key players in this pathway.

Table 1. Cutin monomers identified from habanero pepper fruits quantified by GC-MS.

Cutin Monomers PI 224448 PI 257145

Mean ± SD % Mean ± SD %

Hexadecanoic acid 11.2 ± 2.6 4.8 16.1 ± 6.0 1.3

10,16-Dihydroxy hexadecanoic acid 114.1 ± 19.7 49.1 1060.1 ± 495.4 82.6

16-Hydroxy hexadecanoic acid 39.7 ± 15.8 17.1 77.3 ± 11.4 6.0

Octadecanoic acid 4.7 ± 0.8 2.0 6.3 ± 2.1 0.5

9,10,12,13,18-Pentahydroxy octadecanoic acid 18.1 ± 4.4 7.8 35.3 ± 11.5 2.8

9,10,18-Trihydroxy octadecanoic acid 2.1 ± 0.8 0.9 2.8 ± 1.8 0.2

Octadecenoic acid 0.6 ± 0.4 0.3 4.1 ± 0.3 0.3

Octadec-9-enoic acid 0.6 ± 0.3 0.2 0.7 ± 0.4 0.1

18-Hydroxy octadecenoic acid 1.4 ± 0.5 0.6 5.3 ± 1.0 0.4

Octadecadienoic acid 5.0 ± 2.3 2.2 14.8 ± 1.4 1.2

18-Hydroxy octadecadienoic acid 6.0 ± 2.6 2.6 7.1 ± 2.4 0.6

p-Coumaric acid 28.7 ± 7.6 12.3 54.0 ± 37.4 4.2

Total cutin 232.4 ± 57.8 100.0 1284.0 ± 571.0 100.0

Data are mean ± standard deviation mg/g dry weight from three independent biological replications.

2.2. Fruit Transcriptome Sequencing and Analysis

Total RNA was isolated from the green fruit tissues from the two habanero pepper genotypes, PI
257145 (high cutin) and PI 224448 (low cutin). An RNA-Seq library was prepared for each genotype
separately by using total RNA pooled from three biological replicates. The library was subjected to
paired-end sequencing (2 × 75 bp) with Illumina NextSeq 500 platform (Illumina, California, USA).
A total of 22,550,145 and 24,056,689 reads were generated for PI 257145 and PI 224448, respectively
(Table 2). The raw RNA sequencing data for the two genotypes were deposited in the Short Read
Archive (SRA) database of NCBI with the accession numbers SRX6761116 and SRX6761113 for PI
257145 and PI 224448, respectively, under the bioproject PRJNA562491. The raw reads were subjected
to stringent quality filtering, which resulted in 21,411,561 and 19,981,360 high-quality reads for PI



Int. J. Mol. Sci. 2020, 21, 1397 4 of 19

257145 and PI 224448, respectively. The Q30 percentage of reads in each library was ≥95%. The reads
from the two genotypes were aligned to the C. chinense reference genome [25] by using the STAR
universal RNA-Seq alignment tool with default parameters [26]. A total of 21,021,870 (98.18%) and
19,649,669 (98.34%) quality-filtered reads were mapped to the reference genomes for PI 257145 and PI
224448, respectively; 2% of the reads remained unmapped.

Table 2. Summary of RNA-Seq and reference genome alignment in fruit tissue of Capsicum chinense Jacq.

Particulars PI 257145 PI 224448

Total raw reads 22,550,145 24,056,689

Total valid paired-end reads 21,411,561 19,981,360

Read length 75 75

GC content (%) 41 43

Q30 (%) 95.2 95.7

Mapped reads 21,021,870(98.18%) 19,649,669 (98.34%)

Unmapped reads 389,691 (1.82%) 331,691 (1.66%)

Unique mapped reads 19,802,144 (92.48%) 17,391,436 (87.03%)

Multiple mapped reads 1,100,712 (5.14%) 1,569,061 (7.85%)

2.3. DEGs Between PI 257145 and PI 224448

The individual read count tables across genes for the two genotypes were created by genome
alignment with the HTSeq R package and RSEM [27] with RPKM normalization. DEGs were identified
by pair-wise combinations by comparing PI 257145 and PI 224448 with the use of NOISeq R/Bioc
package [28] with three simulated replicates having a variability of 0.02 and CPM value 1. The DEGs
were filtered based on the minimum Log2FC of 1 and p-value 0.9 as per the NOISeq R/Bioc package.
A total of 2703 statistically significant DEGs were identified including 1693 upregulated and 1010
downregulated genes in PI 257145 versus PI 224448 (Figure 1). The top 20 upregulated genes in PI
257145 versus PI 224448 are in Table 3. The top 50 differentially expressed genes between PI 224448
and PI 257145 based on the FPKM-normalized-Log10 transformed counts are in Figure 1.

Table 3. Top 20 upregulated genes in PI 257145 versus PI 224448.

Name Annotation Log2FC PI 257145 (FPKM) PI 224448 (FPKM)

TC.CC.CCv1.2.scaffold1153.2 Glycine-rich protein-like 11.68 4066.11 1.24

TC.CC.CCv1.2.scaffold403.5 BURP domain protein USPL1-like 11.59 3119.46 1.01

TC.CC.CCv1.2.scaffold917.27 Uncharacterized mitochondrial
protein AtMg00810-like 11.58 141.33 0.05

TC.CC.CCv1.2.scaffold543.19 Nonspecific lipid-transfer protein
A-like 11.57 655.87 0.22

TC.CC.CCv1.2.scaffold177.64 Wound-induced protein 11.50 8286.74 2.85

TC.CC.CCv1.2.scaffold1131.20 Protein EXORDIUM-like 2 11.36 1497.42 0.57

TC.CC.CCv1.2.scaffold260.25 Probable cellulose synthase A
catalytic subunit 3] 10.41 47.52 0.04

TC.CC.CCv1.2.scaffold123.73 Proteinase inhibitor PSI-1.2-like 10.34 1359.44 1.05

TC.CC.CCv1.2.scaffold552.63 Proline-rich receptor-like protein
kinase PERK13 10.02 488.72 0.47

TC.CC.CCv1.2.scaffold327.13
Haloacid dehalogenase-like

hydrolase domain-containing
protein 3

9.99 13.39 0.01

TC.CC.CCv1.2.scaffold217.2 Patatin group D-3-like 9.87 57.32 0.06
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Table 3. Cont.

Name Annotation Log2FC PI 257145 (FPKM) PI 224448 (FPKM)

TC.CC.CCv1.2.scaffold543.15 Nonspecific lipid-transfer protein
A-like 9.79 442.52 0.00

TC.CC.CCv1.2.scaffold200.84 Proline-rich extensin-like protein
EPR1 9.73 1784.23 2.10

TC.CC.CCv1.2.scaffold726.49 Em protein H5 9.69 2630.41 3.17

TC.CC.CCv1.2.scaffold1580.5 Probable polyamine oxidase 4 9.66 26.49 0.03

TC.CC.CCv1.2.scaffold260.9 Chlorophyll a-b binding protein 3C,
chloroplastic 9.56 198.21 0.26

TC.CC.CCv1.2.scaffold223.6 GDSL esterase/lipase
At4g01130-like 9.55 168.16 0.22

TC.CC.CCv1.2.scaffold600.23 NADPH-dependent aldehyde
reductase 1, chloroplastic-like 9.41 301.84 0.44

TC.CC.CCv1.2.scaffold323.10 Neutral ceramidase-like 9.38 13.37 0.02

TC.CC.CCv1.2.scaffold161.6
Zinc finger CCCH

domain-containing protein 32-like
isoform X1

9.13 14.35 0.03

FC, fold change; FPKM, fragments per kilobase of transcripts per million.
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2.4. Functional Annotation and Classification of DEGs 

DEGs were annotated by using the BLASTx algorithm and nonredundant protein database at 
NCBI. Gene annotation and gene ontology (GO) enrichment analysis was performed with 
BLAST2GO (https://www.blast2go.com/). The DEGs were classified under the three major GO terms 
such as biological process, molecular function and cellular components. GO classification showed 
significant functions of the identified DEGs in PI 257145 versus PI 224448. A total of 1071 upregulated 
genes in PI 257145 were classified under top ten categories of biological process. The significant 
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Figure 1. (A) Summary plot of expression values for the genotypes PI 257145 and PI 224448. The red
points represent the genes with significant p-value of ≥ 0.9. (B) Volcano plot showing the Log2 fold
change (FC) of differentially expressed genes (DEGs) in PI 257145 versus PI 224448. The Log2FC is
plotted on the x-axis and the p-value is plotted on the y-axis. The red points in the scatter-plot show
the DEGs with p-value ≥ 0.9 and the black points are less significant with p-value > 0.9. (C) Top 50
differentially expressed genes between the genotypes PI 224448 and PI 257145 based on the fragments
per kilobase of transcripts per million (FPKM) normalized Log10-transformed counts. The color key
yellow represents high expression and blue represents low expression.

2.4. Functional Annotation and Classification of DEGs

DEGs were annotated by using the BLASTx algorithm and nonredundant protein database at
NCBI. Gene annotation and gene ontology (GO) enrichment analysis was performed with BLAST2GO
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(https://www.blast2go.com/). The DEGs were classified under the three major GO terms such as
biological process, molecular function and cellular components. GO classification showed significant
functions of the identified DEGs in PI 257145 versus PI 224448. A total of 1071 upregulated genes in
PI 257145 were classified under top ten categories of biological process. The significant categories
upregulated in PI 257145 included “cell wall biogenesis”, “polysaccharide biosynthetic process”,
“carbohydrate metabolic process”, “cell wall biogenesis”, “cell wall organization”, “response to
hormone” and “external encapsulating structure organization”. These categories are important for the
structural stability of the fruits. The molecular function category included 941 DEGs with enriched
terms of “oxidoreductase activity”, “transferase activity” and “transmembrane receptor protein kinase
activity”. All these enriched molecular functions are important for fruit quality and plant defense.
The major cellular components enriched in DEGs upregulated in PI 257145 included “cell periphery”,
“plasma membrane”, “cell wall”, “cell–cell junction”, “plasmodesma” and “external encapsulating
structure”. All these cellular component terms enriched in DEGs upregulated in high-cutin PI 257145
are essentially involved in maintenance of cellular structure and fruit quality. The statistically enriched
GO terms (false discovery rate (FDR) < 0.05) among the DEGs upregulated in PI 257145 versus PI
224448 are shown in Figure 2.
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2.5. Pathway Analysis of DEGs

Pathway analysis of DEGs involved using the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway database with KOBAS and MapMan. The DEGs upregulated (1693) and downregulated
(1010) in PI 257145 versus PI 224448 were assigned to 100 and 97 pathways, respectively. KEGG
pathway analysis shown that many of the upregulated genes are enriched in pathways relevant to
cutin biosynthesis and its regulation [11]. The pathways enriched in upregulated genes of high-cutin
PI 257145 were “phenylpropanoid biosynthesis”, “plant hormone signal transduction”, “oxidative
phosphorylation”, “biosynthesis of secondary metabolites”, “linoleic acid metabolism”, “cutin, suberine
and wax biosynthesis”, “fatty acid biosynthesis”, “sesquiterpenoid and triterpenoid biosynthesis”,
“alpha-linolenic acid metabolism” and “brassinosteroid biosynthesis. The top 20 enriched KEGG
pathways among upregulated and downregulated DEGs in PI 257145 compared to PI 224448 are shown
in Figure 3. Pathway analysis using MapMan [29] showed differences in the activity of different cellular
metabolisms between PI 257145 and PI 224448. Many of the DEGs involved in lipid metabolism and
secondary metabolism were highly upregulated in PI 257145 (Figure 4). Cutin composition and its
genetic basis have been studied in model plants such as Arabidopsis, tomato and rice [14–17,23]. Studies
have shown that cuticle composition varies across pepper cultivars and this variation in turn affects
their responses to biotic and abiotic stresses [21,30]. The genes involved in management of biotic and
abiotic stresses are highly upregulated in the high-cutin PI 257145 versus low-cutin PI 224448. The
genes regulating redox state and TFs involved in regulating defense genes were upregulated in the
high-cutin PI 257145 (Figure 5).
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257145 versus PI 224448. Rich factor is the ratio of the number of DEGs to the total gene number in a
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q-value and the number of DEGs mapped to the indicated pathways, respectively.

2.6. Functional Network Analysis of DEGs

Ten functional network clusters were obtained, including response to organic substance, signal
transduction, multicellular organism development, cell wall biogenesis, lipid metabolic process, cell
surface receptor signaling pathway, phenylpropanoid metabolic process, monocaboxylic acid metabolic
process, seed oil body biosynthesis and lipid localization (Figure 6A). Most of the functional network
groups were well connected to the enzymes and proteins involved in cutin biosynthesis and its
regulation. Figure 6B shows the network representing an interaction between cutin genes and TFs.
Bar plots are used to denote the gene expression profiles between the two genotypes and show DEGs
between high- and low-cutin habanero pepper based on FPKM.
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2.7. Analysis of DEGs for Transcription Factors (TFs)

TFs plays a major role in regulating genes for cutin biosynthesis and genes involved in biotic
and abiotic stress-related pathways. TFs enriched in the DEGs were analyzed by using the Plant
Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/). Among DEGs coding for TFs, 71
were upregulated and 43 were downregulated in PI 257145 versus PI 224448. The upregulated TFs
represented 27 families and major TFs upregulated in PI 257145 included ERF (14), GRAS (8), MYB
(4), ZF-HD (4), B3 (3), bZIP (3), C2H2 (3), C3H (3), MADS (3), NAC (3), ANL2 (3), NF-YB (2), NF-YC
(2), SHN1 (2) and HDG1. Similarly, the downregulated TFs represented 16 families and major TFs
downregulated in PI 257145 included ERF (13), C2H2 (7), NAC (3), WRKY (3), bHLH (2), bZIP (2), C3H
(2), Dof (2), GRAS (2), HD-ZIP (2) and CFL1. Among the TF families differentially expressed, many TF
families were significantly upregulated in high-cutin PI 257145. Different genes of the same TF family
showed differential expression between the two genotypes. Among the TFs, 14 ERFs, 8 GRASs, 3
NACs, 3bZIPs and 3 C3Hs, were upregulated in PI 257145 and 13 ERFs, 2 GRASs, 3 NACs, 2 bZIPs and
2 C3Hs were downregulated. Furthermore, 4 MYBs, 3 B3s, 3 MADSs, 3 ANL2s, 2 SHN1s and HDG1
are uniquely upregulated in PI 257145. Among the TFs upregulated, 3 ANL2s, 2 SHN1s and HDG1

http://planttfdb.cbi.pku.edu.cn/
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were considered important positive regulators of cutin biosynthesis [11,31,32]. These TFs playing an
important role in regulating cutin biosynthesis were highly upregulated in high-cutin genotype PI
257145 versus low-cutin genotype PI 224448.
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2.8. Genes Involved in Cutin Biosynthesis

The cutin monomers are mostly composed of long-chain aliphaticω-hydroxy acids, especially
dihydroxy hexadecanoic acids, and have been considered the most important component of most plant
cutin materials, especially in fruits [7,24]. Cutin is synthesized by epidermal cells in higher plants and
is an insoluble, covalently cross-linked polymer consisting of organic chemicals including glycerol,
hydroxylated fatty acids and hydroxylated epoxy compounds with carbon atom chains of lengths 16
and 18 [5,12,33]. Their monomers consist of C16 or C18 aliphatic fatty acids, their derivatives and
glycerol and phenolic compounds. These monomers are generated from fatty acyl-CoA by a series of
hydroxylation and epoxidation reactions that are catalyzed primarily by cytochrome-P450-dependent
enzymes [5,34]. Cutin polymers are essential for plant development and are synthesized via the cutin
biosynthetic pathway [11]. C16/C18 fatty acid precursors are initially catalyzed by long-chain acyl-CoA
synthetase (LACS) genes, and further catalysis by downstream genes yields various monomers along
the cutin pathway. Several enzymes for the biosynthesis of cutin polymer have been identified in
Arabidopsis, involving cascade of activities from long-chain acyl-CoA synthetase (LACS1/LACS2) to
cutin synthase/GDSL lipase [11,35]. Arabidopsis homologs for genes involved in cutin biosynthesis
were used to identify the corresponding homologs from C. chinense, and their differential expression
between the two genotypes in terms of fold change were calculated (Table 4).
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Table 4. Expression of genes and transcriptions factors involved in cutin biosynthesis identified from Capsicum chinense genotypes.

SeqName Gene Name Annotation Function Arabidopsis
Ortholog

PI 257145
(FPKM)

PI 224448
(FPKM)

Fold Change
(FC) Log2FC

Biosynthesis

TC.CC.CCv1.2.scaffold339.9 LACS1 Long chain acyl-CoA synthetase 1

Attachment of CoA to free fatty acids

AT2G47240 1.21 1.532 0.78982 −0.3404

TC.CC.CCv1.2.scaffold383.59 LACS2 Long chain acyl-CoA synthetase 2 AT1G49430 19.408 2.595 7.479 2.90285

TC.CC.CCv1.2.scaffold383.57 LACS2 Long chain acyl-CoA synthetase 2 AT1G49430 14.165 0.722 19.6191 4.29419

TC.CC.CCv1.2.scaffold383.60 LACS2 Long chain acyl-CoA synthetase 2 AT1G49430 5.567 0.484 11.5021 3.52382

TC.CC.CCv1.2.scaffold449.40 CYP86A8 Cytochrome P450 86A
ω-Hydroxylase AT2G45970 61.423 1.179 52.0975 5.70314

TC.CC.CCv1.2.scaffold419.19 CYP86A8 Cytochrome P450 86A AT2G45970 12.48 0.547 22.8154 4.51193

TC.CC.CCv1.2.scaffold1130.1 CYP77A6 Cytochrome P450 77A Midchain hydroxylase AT3G10570 10.376 0.225 46.1156 5.52718

TC.CC.CCv1.2.scaffold159.143 CYP77A4 Cytochrome P450 77A Epoxidase AT5G04660 90.595 12.342 7.34038 2.87586

TC.CC.CCv1.2.scaffold419.22 GPAT4 Glycerol-3-phosphate 2-O-acyltransferase 4 Synthesis of 2-monoacylglycerols AT1G01610 50.493 18.174 2.77831 1.47421

TC.CC.CCv1.2.scaffold29.10 GPAT6 Glycerol-3-phosphate 2-O-acyltransferase 6 AT2G38110 23.967 1.422 16.8544 4.07506

TC.CC.CCv1.2.scaffold387.10 CUS1 GDSL esterase/lipase Polymerization of
2-monoacylglycerols monomers

AT3G04290 84.079 7.607 11.0528 3.46635

TC.CC.CCv1.2.scaffold120.8 CUS1 GDSL esterase/lipase AT3G04290 32.9 0.203 162.069 7.34046

Transport

TC.CC.CCv1.2.scaffold236.42 LTPG2 Lipid transfer protein Transport of lipids through the cell
wall AT3G43720 5.923 2.107 2.81111 1.49114

TC.CC.CCv1.2.scaffold810.2 ABCG11 ABC transporter G family member 11

Export of monoacylglycerols

AT1G17840 10.092 1.494 6.75502 2.75596

TC.CC.CCv1.2.scaffold791.2 ABCG11 ABC transporter G family member 11 AT1G17840 36.434 6.913 5.27036 2.3979

TC.CC.CCv1.2.scaffold814.31 ABCG11 ABC transporter G family member 11 AT1G17840 0.457 0.134 3.41045 1.76996

TC.CC.CCv1.2.scaffold877.25 ABCG32 ABC transporter G family member 32 AT2G26910 2.759 0.746 3.69839 1.8869

Regulation

TC.CC.CCv1.2.scaffold498.34 SHN1 AP2 transcription factor

Positive regulator

AT1G15360 0.275 0.001 275 8.10329

TC.CC.CCv1.2.scaffold772.31 SHN1 AP2 transcription factor AT1G15360 1.043 0.399 2.61404 1.38628

TC.CC.CCv1.2.scaffold680.25 MYB16 MYB transcription factor AT5G15310 0.191 0.108 1.76852 0.82254

TC.CC.CCv1.2.scaffold101.83 ANL2 HD-ZIP IV transcription factor AT4G00730 20.477 12.96 1.58002 0.65994

TC.CC.CCv1.2.scaffold191.43 ANL2 HD-ZIP IV transcription factor AT4G00730 1.863 0.731 2.54856 1.34968

TC.CC.CCv1.2.scaffold449.31 ANL2 HD-ZIP IV transcription factor AT4G00730 0.087 0.001 87 6.44294

TC.CC.CCv1.2.scaffold449.30 HDG1 HD-ZIP IV transcription factor AT3G61150 0.068 0.001 68 6.08746

TC.CC.CCv1.2.scaffold23.22 NFXL2 Zinc-finger transcription factor Negative regulator AT5G05660 1.998 1.094 1.82633 0.86894

TC.CC.CCv1.2.scaffold662.10 CFL1 WW domain protein AT2G33510 1.859 2.924 0.63577 -0.6534

TC.CC.CCv1.2.scaffold1560.12 BDG α/β-Hydrolase
Unknown

AT1G64670 4.569 0.17 26.8765 4.74827

TC.CC.CCv1.2.scaffold366.17 BDG BAHD acyltransferase AT1G64670 0.174 0.072 2.41667 1.27302
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The CoAs are esterified to fatty acids by long-chain acyl-CoA synthetase (LACS1 and LACS2) to
give acyl-CoA [35,36]. Mutations in LACS2 showed a reduced amount of cutin monomers and slight
reduction in amount of cuticular wax in Arabidopsis [37]. LACS2 is important for the biosynthesis of
cutin monomer, and in our study the expression of LACS2 was highly correlated with cutin content for
the two genotypes. LACS2 was expressed three-fold higher in PI 257145 than PI 224448. We located the
expression of three LACS2 genes in habanero genotypes and all three were significantly upregulated
in high-cutin PI 257145 versus low-cutin PI 224448. The Log2FC values for the three LACS2 genes
were 2.9, 4.2 and 3.5. Cytochrome-P450-dependent enzymes (particularly members of the CYP86A
family and CYP77A) catalyze a series of hydroxylation and epoxidation reactions in epidermal cells in
plants [5]. In the cutin biosynthetic pathway, CYP86A encodes aω-hydroxylase that incorporates a
hydroxyl group to give 16-hydroxy or 18-hydroxy fatty acids, whereas CYP77A carries a midchain
hydroxylase or epoxidase activity for the synthesis of dihydroxy fatty acids [11,15,38]. Both enzyme
families were upregulated in PI 257145 with fold-change range from 2.8 to 5.5 (Table 4).

Another enzyme in the pathway encodes the activity of an acyltransferase, glycerol-3-phospahate
acyl transferase 6 (GPAT6), which adds the glycerol moieties into cutin. GPAT6 enzymes are involved
in the transfer of fatty acids from acyl-CoA to glycerol-3-phosphate [11,24,39]. A gpat6-a mutant
showed a striking phenotype in tomato fruit, with greatly altered cuticle thickness, composition and
properties [40,41]. GPAT6 gene was expressed four-fold higher in high-cutin PI 257145 than low-cutin
PI 224448. The enzyme GDSL esterase or lipase/cutin deficient 1 (CD1) encodes α-hydroxylase that is
involved in the polymerization of various acyl-glycerols to give the cutin polymers. Previous reports
have clearly demonstrated the role of this enzyme in cutin biosynthesis and showed a marked reduction
of cutin content in GDSL lipase mutant tomato genotypes [12,42–44]. GDSL is considered one of the
major rate-limiting enzymes for cutin biosynthesis. We have found two genes for GDSL esterase or
lipase in C. chinense, and both were highly expressed in high-cutin PI 257145. The FC ranged from 3 to
7 in PI 257145 compared with low-cutin PI 224448. Certain ATP binding cassette (ABC) transporters,
the ABCG subfamily (ABCG11 and ABCG32), have also been associated with cutin biosynthesis and
are involved in the export of cutin precursors across the plasma membrane in plants [45–48]. These
transporter genes are important for cutin biosynthesis. All are highly expressed in PI 257145 versus PI
224448, which agreed with the cutin content.

The transcriptional regulators in the cutin biosynthesis pathway play major roles in regulating
biosynthetic genes. The WIN/SHN TFs were first identified in Arabidopsis, and there are three major
SHN genes for cuticle biosynthesis (SHN1, SHN2 and SHN3) [31]. These sets of genes belong to the
Arabidopsis APETALA 2 (AP2) family TFs and they regulate cutin and epidermal cells. WIN1/SHN1 is
an activator of the promoter region of several cutin genes, and in tomato, SISHN3 has been reported
to upregulate multiple genes involved in cutin metabolism, e.g., CYP86A gene of the cytochrome
P450 [17,18,33,38,49]. Hence, the SHN1 TF is considered a strong positive regulator of cutin biosynthesis.
Of note, SHN1 was expressed at a higher level in PI 257145 than in PI 224448, with 8-fold difference.
Another set of TFs, the homeodomain leucine zipper IV (HD-Zip IV) TFs, were identified in Arabidopsis.
They are highly expressed in epidermal cells and their functions are epidermis-related. One of these
TFs, nuclear factor X-like 2 (NFXL2), has been identified as a negative repressor for all SHN genes,
ultimately leading to negative alterations in cutin composition [18]. The expression of NFXL2 in PI
257145 was not significant, which agrees with high cutin content in this genotype. Another member of
the class IV homeodomain–leucine-zipper proteins TFs regulating cutin biosynthesis discovered in
Arabidopsis was anthocyaninless2 (ANL2). In [50], the leaf cutin composition in the ANL2 mutant was
40% less than in the Arabidopsis wild-type. Supporting this, in our study, ANL2, a positive regulator
of cutin biosynthesis was expressed at higher level in PI 257145 than PI 224448, with about 6-fold
difference. Overexpression of MYB30 in Arabidopsis was also reported to stimulate the synthesis of
long chain fatty acids and cutin [51]. In our study, MYB protein had higher expression in high-cutin
PI 257145 than low-cutin PI 224448, which further strengthens its role as a candidate regulatory
factor in cutin metabolism. The putative cutin biosynthetic pathway genes predicted for habanero
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peppers based on RNA-Seq data are shown in Figure 7A; their expression based on FPKM-normalized
Log10-transformed counts is shown in Figure 7B. Analysis of all genes for the cutin biosynthesis
pathway revealed that all the genes experimentally validated to positively regulate cutin biosynthesis
were significantly upregulated in high-cutin PI 257145 versus low-cutin PI 224448. The RNA-Seq based
gene expression data and metabolic data showed significant correlation in cutin content and gene
expression between the two habanero genotypes, which in turn identified the important genes and TFs
contributing to the increased cutin content in PI 257145.Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 12 of 18 
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2.9. RNA-Seq Gene Expression Validation by RT-qPCR

To validate the RNA-Seq data, randomly selected genes involved in the cutin biosynthetic pathway
with significant expression difference between PI 257145 and PI 222448 were chosen for RT-qPCR. The
selected genes were GDSL esterase/lipase (CUS), glycerol-3-phosphate 2-O-acyltransferase 6 (GPAT6),
long chain acyl-CoA synthetase 2 (LACS2), HD-ZIP IV transcription factor (ANL2) and cytochrome
P450 86A (CYP86A4). All the five genes were significantly upregulated in high-cutin PI 257145 versus
low-cutin PI 224448. The overall results from RT-qPCR were consistent with RNA-Seq data (Figure 8).

Integrating metabolomic and transcriptomic analysis revealed significant differences in cutin
biosynthesis between the habanero genotypes PI 257145 and PI 224448. Metabolomics analysis revealed
about 6-fold higher cutin content in PI 257145 versus PI 224448. Transcriptomic analysis revealed
several significant DEGs between the high- and low-cutin genotypes. Genes such as GDSL lipase,
glycerol-3 phosphate acyltransferase 6, long-chain acyltransferase 2 and cytochrome P450 86A/77A
were found to be important for cutin biosynthesis. TFs such as SHN1, ANL2 and HDG1 are found to
be the key regulators of the cutin biosynthetic pathway.
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3. Materials and Methods

3.1. Collection of Plant Material

Seeds from two different habanero pepper genotypes (PI 224448 from Costa Rica and PI 257145
from Peru) from a worldwide collection of habanero peppers were obtained from USDA GRIN. Ten
plants for each line were started in the greenhouse as surface-sterilized seeds in pots. The seeds were
sown in moderately wet soil and covered with black paper bags in the dark for about 3 to 4 days
to germinate in a temperature- and humidity-controlled incubator. After 4 days of germination in
darkness, the pots were removed from the incubator, uncovered and left to grow under controlled
conditions in the greenhouse, watered daily and finally transplanted to the Sissonville field plots. The
plants were allowed to mature, and the appearance of waxes or glossiness guided our selection for the
fruit sample collection. Mature green fruit tissues from each of the genotypes flowered at the same
time were collected, frozen in liquid nitrogen and stored at −80 ◦C.

3.2. Cutin Isolation and GC-MS Analysis

Detailed metabolite profiling involved GC-MS. Cutin composition of the fruit tissues of the
genotypes were examined with three replications according to the protocol reported by Parsons et al. [4]
with slight modifications. Cuticle was isolated from 50 mg frozen fruit tissue powder obtained from
lyophilized matured green fruits. Enzymatic digestion of the powdered samples involved using 2%
pectinase and 0.1% cellulase in 0.2 mM citrate buffer, 3.7 pH (using 0.001% phenylmercuric nitrate as an
antimicrobial agent). An incubator–shaker was set at 35 ◦C and 100 rpm for several days until the discs
had little or no debris on them. Acetone with 50 mg L−1 butylated hydroxytoluene was used to rinse the
isolated cuticles three times, followed by refluxing delipidation of the discs in chloroform:methanol (1:1,
v/v). Depolymerization in 3N methanolic hydrochloride (Me-OH-HCl) was then performed by using a
protocol by [52] with 6.5 mL of 3 N Me-OH-HCl for each depolymerization reaction and left for 16 h at
60 ◦C. The reaction vials were cooled to room temperature, and 6 mL saturated aqueous NaCl was
added to stop the depolymerization reaction. The individual cutin monomers were removed as methyl
esters in two different extractions by using distilled dichloromethane [53] Centrifugation at 3000 rpm
for 3 min was used to separate the different phases, followed by washing the organic phase with 0.9%
aqueous NaCl three times and incubation with 2,2-dimethoxy propane at 60 ◦C to remove dissolved
water in the organic phase and then drying under nitrogen gas. BSTFA was used for derivatization
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followed by GC-FID analysis as previously described [54]. An Agilent 5975C GC-MS instrument with
an HP-5 MS column (30 m, 0.25 mmID, 0.25 µm film) was used, and methyl heptadecanoate and methyl
tricosanoate were used as internal standards. Published mass spectra of methyl ester and trimethyl
silyl derivatives were used to identify the monomers ([55]; http://lipidlibrary.aocs.org/). The amount of
individual cutin monomers was expressed in milligrams/gram dry weight.

3.3. RNA Isolation, Library Preparation and Transcriptome Sequencing

Total RNA was isolated from 100 mg matured green fruit tissues of the two genotypes PI 257145
and PI 224448 with three biological replicates by using the Nucleospin RNA plant kit (Macherey
Nagel). Total RNA was treated with DNAseI (Qiagen) to remove co-isolated genomic DNA and
purified by using the RNeasy MinElute Cleanup Kit (Qiagen). The Qubit 4 Fluorometer (Invitrogen)
and Agilent 2100 Bioanalyzer were used to detect the concentration and integrity of total RNA.
Total RNA from three replicates was pooled for each genotype before RNA-Seq library preparation.
Libraries for the RNA-Seq of the two habanero genotypes were prepared by using the NEBNext Ultra
II RNA Library Prep Kit according to the manufacturer’s specification. Taking 1 µg total RNA, mRNA
enrichment for poly-A involved using magnetic beads with Oligo (dT) with NEBNext Poly (A) mRNA
Magnetic Isolation Module (NEB, E7490) followed by fragmentation into shorter fragments by using
fragmentation buffer. Oligo dT primers were used for synthesis of first-strand cDNA. Sequencing
adapters were added to the resulting cDNA followed by amplification of the library using sequencing
primers. After constructing the RNA-seq library, the Agilent 2100 Bioanalyzer (Invitrogen) was used
to analyze the library insert size, and the Qubit 4 Fluorometer (Invitrogen) was used to quantify the
library concentration. RNA-Seq for each of the samples involved using the Illumina NextSeq 500
platform with a paired-end sequencing protocol. The resulting image files in the bcl format were
converted to FASTQ with 2 × 75 bp reads with the bcl2fastq tool (Illumina).

3.4. Transcriptome Analysis

The quality of raw reads was ascertained by checking the adapter, GC distribution, average base
content and quality score of the distribution by using fastqc (https://www.bioinformatics.babraham.
ac.uk/projects/fastqc/). The adapter sequences and low-quality reads (Phred score QV < 30) were
removed and the clean reads were filtered from the raw data by using the software cutadapt
(https://cutadapt.readthedocs.io/en/stable/guide.html) and sickle (https://github.com/najoshi/sickle),
respectively. The quality-filtered reads were mapped to the C. chinense reference genome v1.2
(http://peppergenome.snu.ac.kr/) by using the STAR universal RNA-Seq alignment tool with default
parameters [26] to generate BAM alignment. The read count tables for the genes across all the samples
were created by using BAM alignment and the general feature format (GFF) of genome annotation with
the HTSeq R package [27] and RSEM (https://deweylab.github.io/RSEM/). The counts were normalized
by using reads per kilobase of transcripts per million (RPKM). The gene expression based on the read
counts were studied using fragments per kilobase of transcripts per million (FPKM). The FPKM values
for each of the genes were calculated based on the read count table, the total number of reads per
sample and gene length in kb.

The DEGs resulting from the comparison of PI 257145 and PI 224448 were identified using the
NOISeq R/Bioc package [28] with three simulated replicates having variability of 0.02 and counts per
million (CPM) of 1. The DEGs were filtered based on the minimum Log2FC of 1 and p-value of 0.9 as per
the NOISeq R/Bioc package. Gene annotation, gene ontology (GO) enrichment analysis was performed
with BLAST2GO (https://www.blast2go.com/). Transcription factor (TF) prediction, and TF enrichment
analysis was involved using the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/).
Heatmaps were generated by using mev (http://mev.tm4.org/). Gene network analysis involved using
Cytoscape (https://cytoscape.org/) and the STRING database (https://string-db.org/) with Arabidopsis as
the reference to retrieve protein–protein interactions. Functional networks for DEGs were derived by
using the ClueGO plugin [56] available in Cytoscape. Pathway mapping involved using KOBAS [57]
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and MapMan (https://mapman.gabipd.org/). Sequences of genes involved in cutin biosynthesis were
identified by using the Arabidopsis homolog and C. chinense mRNA sequences [11].

3.5. RT-Quantitative PCR (RT-qPCR)

Total RNA was isolated from frozen matured green fruit tissues of habanero pepper by using the
Plant RNA mini spin kit (Macherey-Nagel). The NanoDrop 2000 Spectrophotometer (Thermo Fisher
Scientific, MA, USA) was used to measure RNA concentrations. The Super Script First-Strand Synthesis
system (Invitrogen) was used for first-strand cDNA synthesis with 6 µg total RNA per sample. An
amount of 1 µL cDNA diluted 1:6 was used for RT-qPCR analysis. In a final volume of 20 µL, diluted
cDNA was mixed with 10 µL SYBR Green PCR master mix (Applied Biosystems, Foster City, CA, USA)
and 10 pmol each of forward and reverse primers and completed with nuclease free water. Primer3Plus
software (http://www.primer3plus.com/) was used to design gene-specific primers for the randomly
selected genes involved in cutin biosynthesis. Details of the genes with primer sequences are available
in Supplementary Table S1. Semiquantitative RT-PCR amplification to test primers was performed in
a total reaction volume of 20 µL containing 1 µL cDNA, 10 µL colorless GoTaq and 10 pmol each of
forward and reverse primers and completed with nuclease free water. Thermocycling conditions were
an initial denaturing step of 95 ◦C for 1 min, followed by 25 cycles of 95 ◦C for 15 s, corresponding
annealing temperature 60 ◦C for 70 s and 72 ◦C for 30 s, with a final extension step of 72 ◦C for 25 min.
An amount of 1% agarose gel pre-stained with ethidium bromide was used to confirm the amplified
fragments by visualization under UV light. Transcript-level expression was detected by RT-qPCR
with SYBR Green PCR Master mix (ROX) (Roche, Shanghai) on a StepOnePlus Real-Time PCR System
(Applied Biosystems, Foster City, USA). PCR involved a total reaction volume of 20 µL containing 1
µL cDNA, 1 µL of the forward and reverse primers (10 µM), 10 µL of SYBR Green PCR Master mix
(ROX) (Roche, Shanghai, China) and 8 µL sterile distilled water. Amplification conditions were 95 ◦C
for 10 min, followed by 40 cycles of 95 ◦C for 15 s, and 60 ◦C for 1 min. The reactions were performed
in three technical replications and three biological replicates to compute the average Ct values. The
gene expression for each gene was normalized against beta-tubulin expression and data analysis for
the relative gene expression was computed with the 2-∆∆CT method. The results are expressed as
Log2foldchange (Log2FC) ±mean standard error (SEM).

4. Conclusions

Integrating metabolomic and transcriptomic analysis revealed significant differences in cutin
biosynthesis between the habanero genotypes PI 257145 and PI 224448. Metabolomics analysis revealed
significant variations in cutin composition between the two genotypes, with about 6-fold higher
cutin content in PI 257145 versus PI 224448. Cutin monomer 10,16-dihydroxy hexadecanoic acid was
present at the highest percentage (82.6%) in PI 257145. Transcriptomic analysis with RNA-Seq revealed
significant gene expression differences between the high- and low-cutin genotypes. In this study, we
report transcriptome and metabolome data pertaining to cutin in habanero peppers along with the
predicted putative cutin biosynthetic pathway for habanero peppers. Genes such as GDSL lipase,
glycerol-3 phosphate acyltransferase 6, long-chain acyltransferase 2 and cytochrome P450 86A/77A
and TFs such as SHN1, ANL2 and HDG1 are found to be the key genes highly contributing to the high
cutin content in PI 257145. These genes previously showed a similar pattern of regulation in tomato
and Arabidopsis. These analyses advance our knowledge on the molecular mechanisms regulating
the accumulation of cutin in habanero pepper fruits. These resources can be built on for developing
habanero fruit cultivars with high cutin content that show resistance to biotic and abiotic stresses.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/21/4/1397/
s1.
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