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Abstract

Mycobacterium chelonae is a member of the Mycobacterium chelonae-abscessus complex

and a cause of opportunistic disease in fish, reptiles, birds, and mammals including humans.

Isolates in the complex are often difficult to identify and have differing antimicrobial susceptibili-

ties. Thirty-one previously identified rapidly-growing, non-tuberculous Mycobacterium sp. iso-

lates cultured from biofilms, fish, reptiles, mammals, including humans, and three ATCC

reference strains were evaluated with nine M. chelonae-abscessus complex whole genome

sequences from GenBank by phylogenomic analysis, targeted gene comparisons, and in-vitro

antimicrobial susceptibility patterns to assess strain variation among isolates from different

sources. Results revealed minimal genetic variation among the M. chelonae strains. However,

the core genomic alignment and SNP pattern of the complete 16S rRNA sequence clearly sep-

arated the turtle type strain ATCC 35752T from the clinical isolates and human reference strain

“M. chelonae chemovar niacinogenes” ATCC 19237, providing evidence of two distinct sub-

species. Concatenation of the partial rpoB (752 bp) and complete hsp65 (1,626 bp) sequence

produced the same species/subspecies delineations as the core phylogeny. Partial rpoB and

hsp65 sequences identified all the clinical isolates to the appropriate species level when

respective cut-offs of 98% and 98.4% identity to the M. chelonae type strain ATCC 35752T

were employed. The human strain, ATCC19237, was the most representative strain for the

evaluated human, veterinary, and environmental strains. Additionally, two isolates were identi-

fied as Mycobacterium saopaulense, its first identification in a non-fish or non-human host.
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Introduction

Mycobacterium chelonae is a nontuberculous mycobacteria (NTM) within the Mycobacterium
chelonae-abscessus complex, which also includes the closely related Mycobacterium abscessus
subspecies abscessus, Mycobacterium immunogenum, Mycobacterium salmoniphilum, Myco-
bacterium franklinii, and Mycobacterium saopaulense [1–4]. Individual members cause disease

in fish, reptiles, birds, and mammals, including humans [5–7]. Due to their phenotypic, bio-

chemical, and genetic similarity, species identification can be problematic.

M. chelonae-abscessus complex members have been identified in municipal water supplies,

soil, and biofilms, and cases of mycobacteriosis have been linked to environmental sources [8–

10]. Zoonotic disease is also a significant concern [11, 12]. Although considered an opportu-

nistic pathogen, M. chelonae, is being increasingly reported in both healthy and immune defi-

cient human patients [13, 14]. M. chelonae is similarly concerning to the veterinary

community, especially in aquatic species such as fish. Susceptibility varies among families of

fish, but a link has also been made between disease and immune system compromise [15–17].

Highly dependent on correct identification, treatment regimens for M. chelonae infections

exist for human patients, while effective treatments for fish are largely non-existent.

Accurate identification of M. chelonae poses a challenge to human and veterinary diagnos-

tic laboratories. Reliability has improved as identification methods have evolved from bio-

chemical testing to molecular typing, restriction fragment length polymorphism analysis of

hsp65 (hsp65 PRA), DNA strip assays, and matrix-assisted ionization time of flight mass spec-

trometry (MALDI-TOF) [18, 19]. However, ambiguity remains due to deficiencies in public

databases, inconsistencies in restriction patterns for hsp65 PRA gel electrophoresis versus in-
silico analysis, and a lack of consensus among laboratories regarding percent identity break-

points used to differentiate closely related species [20].

In recent years, decreasing costs and increasing availability of molecular tools has enabled

labs to investigate M. chelonae-abscessus complex isolates by whole genome sequencing

(WGS) and target the most reliable genes for identification purposes [3, 10, 19]. While 16S

rRNA gene sequencing is useful for identifying NTM isolates [21], partial 16S rRNA sequenc-

ing fails to separate M. chelonae and M. abscessus subsp. abscessus [22–24]. Other genes pur-

ported to differentiate closely related bacterial species include regions 3 and 5 of the β-subunit

of the RNA polymerase gene (rpoB), the Telenti sequence of the 65 kDa heat shock protein

gene (hsp65), DNA gyrase subunits A (gyr A) and B (gyr B), translation elongation factor Tu
(EF-Tu), manganese dependent superoxide dismutase (Mn-SodA), Escherichia coli secretion

gene (SecA), and the 16S-23S internal transcribed spacer region (ITS) [24–27]. However, the

diagnostic utility of many of these genes has not been evaluated for the M. chelonae-abscessus
complex. At present, diagnostic laboratories employ a combination of gene targets to identify

closely related species. The Nocardia/Mycobacteria Research Laboratory (Tyler, TX) uses tar-

geted sequencing of erm(41) and rpoB, but uncertainty remains for M. chelonae isolates, as

breakpoints for rpoB have not been established [28]. Many laboratories simply identify isolates

to the M. chelonae-abscessus complex level [29]. This poses a risk to patients, as antibiotic sus-

ceptibilities vary among members of the complex [28, 30, 31].

Reports describe M. chelonae infections in individual hosts and epizootics within the same

species [32–34]. Yet, little is known regarding strain variability among different animal species

and the environment. In this study, a One Health approach investigating the genetic variation

among 31 rapidly-growing Mycobacterium sp. isolates from biofilms, humans, diseased animals,

and three ATCC reference strains were compared following WGS and core genome extraction.

Isolates were evaluated by core phylogenomic analysis, targeted gene sequence phylogenetic anal-

ysis, hsp65 PRA, in-silico dDNA-DNA hybridization, and antimicrobial minimum inhibitory
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concentration (MIC) determination. Results provide insight into strain variation between sources

and the basis for a standard method for M. chelonae identification.

Materials and methods

Sample preparation

The analysis included 31 isolates previously identified as M. chelonae or Mycobacterium sp.

from biofilms, fish, reptiles, and mammals, including humans, from the United States and

Puerto Rico supplied by the Athens Veterinary Diagnostic Laboratory and the Mycobacteria/

Nocardia Research Laboratory (MNRL), as well as three American Type Culture Collection

(ATCC) reference strains (Table 1). Genomic DNA was extracted from Middlebrook 7H11

grown cultures using the UltraClean Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc,

Carlsbad, CA) following the manufacturer’s protocol. Approximately 15–28 ng/μL of DNA

was submitted from each isolate to the Georgia Genomics Facility (The University of Georgia,

Athens, GA) for DNA library preparation using Illumina TruSeq adaptors. Paired end (PE)

300-base reads were generated on an Illumina MiSeq PE300 sequencer (Illumina Inc., San

Diego, CA).

Sequence preparation and assembly

Sequence read quality was assessed using FastQC [35]. Raw reads were trimmed using Trim-

momatic software [36] run with the following settings: ILLUMINACLIP:TruSeq3-PE.

fa:2:30:10 LEADING:20 TRAILING:10 SLIDINGWINDOW:4:20 MINLEN:50. Draft level

genomes were assembled from trimmed reads using SPAdes software (version 3.6.2) [37].

Assembly metrics were evaluated using the Quality Assessment Tool for Genome Assemblies

(QUAST) [38]. Automated genome annotation was performed using the RAST (Rapid Anno-

tations using Subsystems Technology) server [39].

Core genome alignment and phylogenomic analysis

A pair-wise genome content distance matrix was produced for the WGS assemblies of the 31

samples, three reference strains, and nine sequences in GenBank: M. chelonae ATCC 35752T

(turtle), M. abscessus subspecies abscessus ATCC 19977T (human), M. abscessus subsp. massi-
liense CCUG48898 (human), M. abscessus subsp. bolletii MC1518 (human), M. chelonae 1518
(human), M. franklinii DSM 45524T (human), M. immunogenum CCUG 47286T (drinking

water), M. salmoniphilum ATCC 13758T (chinook salmon), M. saopaulense EPM 10906T using

Progressive Mauve aligner [40]. Extraction of a core genome containing genes present in all 43

whole genomes was performed and the genes were concatenated using a custom perl script.

Two outliers were identified and removed to perform core sequence analysis of the remaining

41 genomes. Phylogenomic analysis of a 3,204,105 bp core sequence, composed of 3,141 anno-

tated regions, was performed to assess phylogenomic position using RAxML, employing GTR

Gamma rapid bootstrapping and search for best scoring Maximum Likelihood model with

1000 bootstrap replications [41].

Sequence analyses and phylogenetic comparisons

All assembled and annotated genomes were imported into Geneious for in-silico targeted gene

evaluation [42]. Keyword searches identified genes of interest whose DNA sequences were

then extracted from the annotated genomes. For the partial rpoB (752 bp), partial hsp65 (441

bp), and partial ITS (245–257 bp), published primers were utilized in-silico [9, 18, 24, 43]. A

multisequence nucleotide alignment for 16S rRNA (1,526 bp), rpoB (752 bp), hsp65 (1,626 bp),
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hsp65 (441 bp), gyrA (2,118 bp), gyrB (1,935–2,013 bp), EF-Tu (1,259 bp), Mn sodA (624 bp),

recA (1,041 bp), ITS (245–257 bp), and erm(41) (673 bp) was performed and percent identity

between sequences achieved using default settings in the MUSCLE program with a maximum

of 10 iterations [44]. GenBank sequences for M. abscessus subsp. abscessus ATCC 19977T, M.

chelonae ATCC 35752T, M. abscessus subsp massiliense CCUG 48898, M. franklinii DSM

45524 or D16R27, M. saopaulense EPM 10906, M. salmoniphilum ATCC 13758, and M.

Table 1. Mycobacterium chelonae-abscessus sequenced isolates.

Isolate Host species Tissue origin Geographic location Original identification

method

Original identification WGS identification

ATCC

19977T
Homo sapiens soft tissue (knee) Missouri phenotyping/hybridization M. abscessus M. abscessus

ATCC

35752T
Chelona corticata lung Germany phenotyping M. chelonae M. chelonae

ATCC 19237 Homo sapiens gastric lavage Germany phenotyping/hybridization M. chelonae M. chelonae
seakrait Laticauda columbrina NA Texas phenotyping/hsp65 M. chelonae M. abscessus
cichlid Freshwater Cichlidae spleen Georgia 16S rRNA M. chelonae M. chelonae

pipefish Syngnathoides biaculeatus ovary South Carolina hsp65 PRA Mycobacterium sp. New species
seahorse 1 Hippocampus erectus tail Georgia hsp65 PRA Mycobacterium sp. New species
seahorse 2 Hippocampus erectus skeletal muscle Georgia hsp65 PRA M. chelonae M. chelonae
seahorse 3 Hippocampus whitei tail Georgia hsp65 PRA M. chelonae M. chelonae
seahorse 4 Hippocampus erectus ovary Georgia hsp65 PRA M. chelonae M. chelonae
seahorse 5 Hippocampus reidi ovary Georgia hsp65 PRA Mycobacrterium sp. M. chelonae

seadragon 1 Phyllopteryx taeniolatus soft tissue Georgia 16S rRNA M. chelonae M. chelonae
seadragon 2 Phycodurus eques liver/mesentery Georgia 16S rRNA M. chelonae M. chelonae
trumpetfish Aulostomus maculatus soft tissue South Carolina phenotyping/hsp65 PRA M. chelonae M. chelonae

turtle Platystemon
megacephalum

NA Maryland phenotyping/hsp65 PRA M. chelonae M. saopaulense

python Morelia boeleni NA Ohio phenotyping/hsp65 PRA M. chelonae M. chelonae
biofilm 1 Biofilm aquarium system Georgia hsp65 PRA M. chelonae M. chelonae
biofilm 2 Biofilm aquarium system Georgia hsp65 PRA M. chelonae M. chelonae
biofilm 3 Biofilm aquarium system Georgia hsp65 PRA M. chelonae M. chelonae

cow Bos taurus NA Puerto Rico phenotyping/hsp65 PRA M. chelonae M. saopaulense
H7 Homo sapiens sputum Texas hsp65 PRA M. chelonae M. chelonae
H8 Homo sapiens soft tissue (nasal) North Carolina hsp65 PRA M. chelonae M. chelonae
H9 Homo sapiens soft tissue (calf) Massachusetts hsp65 PRA M. franklinii M. franklinii

H10 Homo sapiens soft tissue (foot) Minnesota hsp65 PRA M. chelonae M. chelonae
H11 Homo sapiens sputum Texas rpoB M. chelonae M. chelonae
H12 Homo sapiens soft tissue (axilla) Kansas rpoB M. chelonae M. chelonae
H13 Homo sapiens eye Massachusetts rpoB M. chelonae M. chelonae
H14 Homo sapiens synovial fluid

(knee)

North Carolina rpoB M. chelonae M. chelonae

H15 Homo sapiens soft issue (finger) North Carolina rpoB M. chelonae M. chelonae
H16 Homo sapiens sputum California rpoB M. chelonae M. chelonae
H17 Homo sapiens soft tissue (leg) California hsp65 PRA M. chelonae M. chelonae
H18 Homo sapiens soft tissue (skin) Massachusetts hsp65 PRA M. chelonae M. chelonae
H19 Homo sapiens soft tissue (leg) Ohio hsp65 PRA M. chelonae M. chelonae
H20 Homo sapiens NA Maryland hsp65 PRA M. chelonae M. chelonae

NA, Not Available; hsp65PRA, hsp65 PCR-restriction enzyme analysis; WGS, whole genome sequencing

https://doi.org/10.1371/journal.pone.0214274.t001
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immunogenum CCUG 47286 were included for partial rpoB, partial hsp65, and ITS alignments

when available.

The rpoB, hsp65 (441 bp), and 16S rRNA (1,526 bp) loci were further evaluated by multise-

quence alignment with 22 Mycobacterium sp. clinical isolates from Nogueira et al. [19]. Fur-

thermore, 170 human sequences contributed by the MNRL were included in evaluation of the

sequences for potential sequevars by evaluation of single nucleotide polymorphisms (SNPs) in

the 752 bp sequence. The M. chelonae ATCC 35752T reference strain was designated as seque-

var 1 and subsequent sequevars were identified by SNPs in relation to it. These sequences were

then translated for evaluation of amino acid discrepancies at loci of nucleotide difference.

RAxML (version 7.2.8) was used to estimate phylogenies and produce phylogenetic com-

parison matrices [41]. Phylogenetic trees were obtained from DNA sequences by GTR

Gamma rapid bootstrapping and search for best scoring Maximum Likelihood model with

1000 bootstrap replications. In addition, concatenated sequences, partial hsp65 (441 bp) and

rpoB, as well as the concatenated complete hsp65 (1,626 bp) and rpoB (752 bp) were evaluated

as described above and compared to the core genomic phylogeny for evaluation of potential

for diagnostic use.

Erm (41). All isolates were evaluated for presence of erm(41) by generating a custom

BLAST database for each individual assembly followed by BLASTn using the 673 bp erm(41)

GenBank M. abscessus subsp. abscessus ATCC 19977T NC 010397 as a query sequence [45].

hsp65 and PCR-restriction fragment length polymorphism analysis of hsp65 (hsp65
PRA). Extraction of the partial hsp65 (441 bp) from the annotated genome assemblies was

performed in-silico. Primers Tb11 and Tb12 [18] were used to identify and extract a 441 bp

region of interest including flanking sequence. Primer sequences were included in the analysis

as minor variation in primer binding areas of sequences did occur.

In-silico restriction length polymorphism analysis of the partial hsp65 sequence was per-

formed targeting restriction sites for enzymes BstEII and HaeIII. A virtual gel was used to eval-

uate fragments larger than 35 bp. Using an algorithm similar to Taylor et al. [46], additional

reference Mycobacterium species (M. abscessus subsp. bolletii MC 1518, M. abscessus subsp.

massiliense CCUG 48898, M. franklinii DSM 45524, M. fortuitum CT6, M. immunogenum
CCUG 47286, M. septicum DSM 44393, M. farcinogenes DSM 43637, M. salmoniphilum ATCC

13758, and M. saopaulense EPM 10906) were selected for comparison to other closely related

species. Fragments were also compared to sequences in the database contained by http://app.

chuv.ch/prasite.

dDNA-DNA Hybridization. Whole genome assemblies of 31 samples, three reference

strains, and seven GenBank sequences were submitted to the Genome to Genome distance cal-

culator [47] using M. chelonae ATCC 35752T and M. chelonae ATCC 19237 as reference iso-

lates. Formula 2 (identities/HSP length) was used to calculate a digital DNA-DNA

hybridization (dDDH) estimate using a GLM-based method.

Minimum inhibitory concentrations (MIC) and colony morphology. Antimicrobial

susceptibility testing was performed for 30 isolates harvested from Middlebrook 7H11 plates

using a Sensititre RAPMYCO panel (Thermofisher Thermo Scientific, Oakwood Village, OH),

following Clinical and Laboratory Standards Institute recommendations [48]. Clarithromycin

was evaluated on days 3 and 14 of incubation. Sensititre RAPMYCO uses a standard-ordered

broth microdilution panel for susceptibility testing and previously established breakpoints for

rapidly growing mycobacteria (RGM) [49, 50]. In addition, colony morphologies were

recorded.

GenBank accessions. Accessions used: NC_010397 M. abscessus subsp. abscesssus ATCC

19977T, CP010946 M. chelonae ATCC 35752T, CP007220 M. chelonae CCUG 47445T,

GCA_000523895.1 M. chelonae MC 1518, NZ_HG964481 M. farcinogenes DSM 43637,
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NZ_CP011269 Mycobacterium fortuitum CT6, GCA_002013895.1 M. franklinii CV002 DSM

45524T, AY550238 M. fuerthensis DSM 44567 (hsp65 partial), NZ_CP011530 M. immunogenum
CCUG 47286T, NZ_AP014547.1 M. abscessus subsp. massiliense CCUG 48898 T, CP009613.1

M. abscessus subsp. bolletii MC1518, NZ_HG322951 Mycobacterium septicum DSM 44393,

GCA_002086715.1 M. saopaulense EPM10906 T, GCA_002013645.1 M. salmoniphilum ATCC

13758T. Sequences from Noguiera et al. [19]: (hsp65) KT779818, KT779821-KT779824,

KT779826-KT779827, KT779844, (rpoB) KT779876, KT779879-KT779882, and KT 779884-KT

779885, KT 779887-KT779902, (16S rRNA) MAEQ00000000 M. chelonae 96–1705,

MAER00000000 M. chelonae 96–1717, MAES00000000 M. chelonae 96–1720, MAET00000000

M. chelonae 96–1724, MAEU00000000 M. chelonae 96–1728, MAEV00000000 M. sp. D16R24,

MAEP00000000 M. franklinii D16R27, MAEW00000000 M. sp. D16Q13, MAEX00000000

M. sp. D16Q14, MAEY00000000 M. sp. D16Q16, MAFS00000000 M. franklinii D16Q19,

MAEZ00000000 M. sp. D16Q20, MAFA00000000 M. chelonae D16Q24, MAFB00000000 M. sp.

D17A2, MAFC00000000 M. sp. D16R12, MAFD00000000 M. sp. D16R18, MAFE00000000 M.

salmoniphilum D16Q15, MAFF00000000 M. chelonae D16R2, MAFG00000000 M. chelonae
D16R3, MAFH00000000 M. chelonae D16R7, MAFI00000000 M. chelonae D16R9,

MAFJ00000000 M. chelonae D16R10, MAFK00000000 M. chelonae D16R14, MAFL00000000

M. chelonae D16R19, MAFM00000000 M. chelonae D16R20, MAFN00000000 M. sp. 96–892.

Thirty-four whole genome sequences from this study have been deposited in GenBank under

Bioproject: PRJNA347845, Biosamples: SAMN05897971-SAMN05898003.

Results

Core genomic analysis

Phylogenetic comparison of isolates using core genes observed in all genomes separated and

identified species within the M. chelonae-abscessus complex, as well as two outliers, seahorse1

and pipefish. The outliers were 99.4% identical to each other, but the closest reference strain,

M. chelonae ATCC 35752T, shared only 75.1% identity. BLASTn searches of the NCBI database

placed the two closest to NZ_CP011269.1 Mycobacterium fortuitum strain CT6 and

CP009914.1 Mycobacterium sp. VKM Ac-1817D, with only 88% identity and were removed

from further analysis. The core genomes of the remaining 41 strains produced a 3,204,105 bp

in length sequence with 3,141 coding sequences (CDS). Of the CDS, 2,367 were confirmed by

RAST as genes, 683 were hypothetical protein CDS, and the remaining 91 were probable CDS.

Within the core CDS, 16S rRNA, rpoB, hsp65 partial, hsp65 whole, gyrA, EF-Tu, Mn-sodA, and

recA were present. The sequenced reference strain, M. chelonae ATCC 35752T, was100% iden-

tical to the GenBank strains M. chelonae ATCC 35752T. There was 100% identity between the

reference strain M. abscessus subsp. abscessus ATCC 19977T, GenBank sequences M. abscessus
subsp. abscessus ATCC 19977T, M. abscessus subsp. bolletii MC 1518, and M. chelonae 1518,

demonstrating the presence of improper sequence designations in GenBank. Since the Gen-

Bank M. chelonae ATCC 35752T and M. abscessus subsp. abscessus ATCC 19977T downloaded

sequences were identical to the sequenced isolates, hereafter, M. chelonae ATCC 35752T and

M. abscessus subsp. abscessus ATCC 19977T will represent the sequenced and downloaded

sequences for each strain.

Twenty-nine strains grouped closely with M. chelonae ATCC 35752T using the core geno-

mic comparison. However, four isolates were determined to be members of the M. chelonae-
abscessus complex, but not M. chelonae. These isolates included seakrait, cow, turtle, and H9

(Fig 1).

Twenty-five of the 31 clinical isolates clustered with the sequenced M. chelonae ATCC

19237 with 98.4–99.6% identity (Fig 1). A mixture of human, fish, reptile, and biofilm isolates
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Fig 1. Phylogenomic comparison of Mycobacterium chelonae-abscessus isolates. Phylogenomic comparison of 32

Mycobacterium chelonae-abscessus. sequences relative to nine GenBank genome sequences using a core genome from all 41

sequences. Phylogeny was produced using the best scoring Maximum Likelihood model with 1000 bootstrap replications. Dotted

box delineates M. chelonae clinical isolates clustered with “M. chelonae chemovar niacinogenes” ATCC 19237 and breakdown into
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clustered in this large group, all with greater than 98.1% identity to each other. The current

type strain M. chelonae ATCC 35752T branched separately, with no greater than 96.5% identity

to the 25 M. chelonae isolates. Minimal genetic variation was present within the isolates,

although four distinct subclusters were present.

Targeted gene analysis

Gene targets evaluated by multisequence alignment produced an identity matrix for compari-

son of sequences. Alignments of 16S rRNA, gyrA, gyrB, EF-Tu, recA, and Mn-sodA produced

erroneous clustering or separation of the isolates and/or reference strains evidenced by inaccu-

rate phylogenetic placement of the human isolates (EF-Tu, Mn-sodA, gyrA, gyrB) or lack of

species separation (16S rRNA, recA) when compared to the core genomic results. Evaluation

based on these alignments was not pursued further. However, the sequences for the clinical

isolates and ATCC 19237 had at least three single nucleotide polymorphisms in the complete

16S rRNA sequence that distinctly separated them from the type strain ATCC 35752T (S1 Fig

and S1 Table). Furthermore, inclusion of 13 M. chelonae and 9 M. sp. isolates from Germany

and Belgium revealed higher similarity to”M. chelonae chemovar niacinogenes” ATCC 19237

and M. salmoniphilum ATCC 13758T, respectively (S2 Fig).

ITS. A 257 bp ITS sequence was extracted for the M. chelonae-abscessus isolates. However,

different ITS extraction product lengths were observed for isolate H9, M salmoniphilum
ATCC 13758 (256 bp), M immunogenum CCUG 47286 (267 bp), and pipefish and seahorse1

(245 bp). Multi-sequence alignment of the clinical isolates and reference strains revealed ade-

quate grouping into species-specific branches, but the high percent identity (99.1%) between

H9 and the cow and turtle strains did not provide an accurate separation of the identities of

the three isolates. For this study, isolates with greater than 98.8% (254/257bp) identity at the

ITS locus to M. chelonae ATCC 35752T were considered M. chelonae (S3 Fig).

hsp65. Targeted extraction of the 441bp partial hsp65 gene sequence reproduced the main

M. chelonae ATCC 35752T clusters generated by core genome analysis (S4 Fig). Isolates with

greater than 98.4% identity (434-441/441 bp) to M. chelonae ATCC 35752T were considered

M. chelonae. Although minimal sequence diversity is present at this locus (0–7 bp difference),

two large sub-clusters, each containing strains 99.8–100% identical to each other are present.

One sub-cluster contained exclusively human isolates (H7, H10, H11, H15, H18, H19, H20)

and the other a mixture of M. chelonae ATCC 19237, human (H8, H12, H13, H14), fish (cich-

lid, trumpetfish, seadragon1, seadragon2, seahorse2, seahorse3, seahorse4, seahorse5), and bio-

film (biofilm1, bioflm2, biofilm3) isolates. The partial hsp65 sequence of human isolate H9 was

98.4% identical (434/441 bp) to M. franklinii DSM45524. The turtle and cow isolates also

branched separately from the M. chelonae cluster and were 99.5% identical (439/441bp) to M.

saopaulense EPM 10906. Inclusion of M. chelonae and M. sp. isolates from Nogueira et al. [19]

showed a similar distribution where human M. chelonae isolates clustered together with 100%

similarity to a mixture of environmental isolates, veterinary isolates, and “M. chelonae chemo-

var niacinogenes” ATCC 19237.

The complete 1,626 bp hsp65 multisequence alignment was more discriminating than the

partial sequence and produced some clusters mirroring the core genome phylogeny (S5 Fig).

All isolates with greater than 95.3% identity (1,550/1,626 bp) to M. chelonae ATCC 35752T at

the complete hsp65 were considered M. chelonae. As with the core genome and partial hsp65

4 subclusters. Scale bar represents average number of nucleotide substitutions per site. 0.004 represents approximately 13,000

nucleotides that are not identical. T Denotes Type strain � Denotes sequence used from GenBank. # Denotes ATCC isolate

sequenced in study.

https://doi.org/10.1371/journal.pone.0214274.g001
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phylogenies, the same group of human isolates branched together (H7, H10, H11, H15, H18,

H19, H20) and shared 99.9–100% (1,625–1,626/1,626 bp) identity, but all M. chelonae isolates

were greater than 99.1% identical to each other, showing minimal genetic variation in the

group at this locus.

rpoB

Phylogenetic analysis of rpoB (752 bp) produced similar phylogenetic positioning as the core

genome (S6 Fig). Isolates with identities greater than 97.9% identity (736/752 bp) to M. chelo-
nae ATCC 35752T were considered as M. chelonae. The largest grouping consisted of multiple

fish, biofilm, water, and human isolates, all of which had 99.9–100% identity to each other and

contained ATCC 19237, but not ATCC 35752T.

One hundred and seventy rpoB sequences from the MNRL were evaluated with the 31 clini-

cal isolates for SNPs, which ranged from zero in M. chelonae ATCC 35752T up to 5 in some

clinical isolates. Seventeen sequevars were recognized based on SNPs consistently identified at

positions 24 (A-to-G), 36 (C-to-G), 90 (C-to-T), 99 (C-to-T), 100 (C-to-T), 102 (C-to-G), 123

(C-to-T), 126 (C-to-A), 204 (G-to-A), 237 (T-to-C), 363 (T-to-C), 384 (C-to-T), 385 (C-to-T),

430 (G-to-A), 444 (G-to-A), 480 (C-to-G), 559 (C-to-T), 654 (C-to-A), and 723 (G-to-T).

However, sequence translations revealed only one amino acid change in a single human isolate

from the sequence database, where a G-to-A substitution at codon 430 resulted in a glutamic

acid substitution for lysine. Multisequence alignment of the additional rpoB sequences showed

greater than 99.2% identity to M. chelonae ATCC 35752T.

hsp65 whole sequence and rpoB
Concatenation of partial hsp65 (441 bp) and rpoB (752 bp) sequences produced a 1,193 bp

sequence. The phylogenetic positioning of several isolates was not consistent with that of the

core genome and no further analysis was performed. A concatenation of the complete hsp65
(1,626 bp) and partial rpoB (752 bp) created a 2,378 bp sequence (S7 Fig). Clustering of clinical

isolates was almost identical to the core genome phylogeny. However, unlike the core phylog-

eny, M. chelonae ATCC 35752T branched at a different location. Isolates with greater than

96.1% (2,285/2,387 bp) identity to M. chelonae ATCC 35752T were considered M. chelonae.

16S rRNA, rpoB, and partial hsp65
Concatenation of 16S rRNA (1,521–1,526 bp), rpoB (752 bp), and partial hsp65 (441 bp)

sequences from the present study and the Nogueira et al. [19] isolates revealed similar phyloge-

netic positioning to the core genome (S8 Fig). Human, veterinary, and environmental M. che-
lonae isolates grouped together with more than 97.2% similarity. However, M. chelonae ATCC

35752 and M. chelonae ATCC 19237 are 99.7% identical and grouped differently than the core

phylogeny.

Erm (41)

The erm (41) gene was only observed in GenBank reference strains M. abscessus subsp. absces-
sus ATCC 19977T, M. chelonae 1518, M. abscessus subsp. bolletii strain MC1518, and the seak-

rait isolate. All other clinical isolates and reference strains lacked this genetic sequence.

Restriction fragment length polymorphism analysis (hsp65 PRA). The partial 441 bp

hsp65 sequences were evaluated to produce two-step BstEII and HaeIII in-silico digestion ref-

erence patterns to compare the accuracy of identification in relation to the core genome phy-

logeny (S9 Fig) using fragments over 60 bp. In addition, fragments over 35 bp were also
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evaluated for pattern of fragmentation. BstEII produced three groups, each with 2–4 frag-

ments: 310/131 bp, 231/210 bp, and 231/116/84 bp. If these groupings are followed, M. frankli-
nii, isolate H9 and M. salmoniphilum are considered within the grouping for M. chelonae.
HaeIII did not separate M. salmoniphilum from M. chelonae ATCC 35752T unless fragments

under 35 bp were considered. Additionally, human isolates H7, H10, H11, H15, H18, H19,

and H20 were separated from other M. chelonae isolates. The patterns between these groups

differ at 60 bp and under. The pattern for the M. chelonae 1518 GenBank sequence was the

same as M. abscessus subsp. abscessus ATCC 19977T.

dDNA-DNA Hybridization. DNA-DNA relatedness for M. chelonae-abscessus members

and clinical isolates were tested using M. chelonae ATCC 35752T and “M. chelonae chemovar

niacinogenes” ATCC 19237 as a reference (S2 Table). As expected, all M. chelonae isolates had

a higher percent relatedness to M. chelonae ATCC 19237, ranging from 77.8% (CI 74.9–80.6%)

to 95.7% (CI 94.2–96.8%), than to M. chelonae ATCC 35752T, which ranged from 63.3% (CI

60.4–66.1%) to 66.3% (CI 63.4–69.2%).

MIC susceptibility and colony morphology

Twenty-seven non-genetically identical clinical isolates and three ATCC strains were evaluated

using the Sensititre RAPMYCO panel (S3 Table). Subtle phenotypic differences in colony mor-

phologies were observed when isolates were viewed simultaneously. The majority (22/30) were

nonpigmented, smooth, glossy, and raised. The cow and turtle isolates produced similar colo-

nies, but turned the 7H11 media brown after 7 days. The pipefish and seahorse1 outliers grew

as nonpigmented, granular, glossy, raised, colonies, different from all others. Isolates H12,

H13, H17, seahorse5 and python1 produced nonpigmented, rough, crusty, raised colonies.

MICs of the NTM isolates were classified as susceptible, intermediate, or resistant. A high

degree of antimicrobial resistance was observed among all isolates, but the greatest resistance

was found in the aquatic biofilm and fish isolates. However, 93% (28/30) were susceptible to

the macrolide clarithromycin (S3 Table). Only M. abscessus subsp. abscessus ATCC 19977T

and isolate H10 were resistant to clarithromycin after 14 days. For the M. chelonae isolates,

70% (21/30 isolates) and 60% (18/30 isolates) were susceptible to the aminoglycosides tobra-

mycin and amikacin, respectively. Only 50% of the M. chelonae isolates were susceptible to

linezolid, the majority of which were of human origin (n = 9). Susceptibilities of M. chelonae
were low for cefoxitin, trimethoprim/sulfamethoxide, imipenem, moxifloxicin, and ciprofloxa-

cin at 3%, 10%, 3%, 13% and 20% (1/30, 3/30, 1/30, 4/30, 6/30), respectively. The human

ATCC 19237 had a more resistant antimicrobial pattern than ATCC 35752T. The “M. chelonae
chemovar niacinogenes” ATCC 19237 strain had a pattern more like the fish (cichlid, sea-

horse2, seahorse3, seahorse4, seahorse5, seadragon1), human (H10, H11, H12, H14, H17,

H19, H20), and biofilm (biofilm1, biofilm2, biofilm3) isolates than ATCC 35752T.

Discussion

Disease caused by members of the M. chelonae-abscessus complex in healthy and immuno-

compromised humans is increasing [14, 51–53]. M. chelonae infections are common in aquatic

species and cause significant losses in certain groups of fish, particularly syngnathids (sea-

horses, seadragons and pipefish) [15, 54, 55]. Since M. chelonae-abscessus complex organisms

are a human and veterinary health concern, characterization and appropriate identification

methods are key to understanding the delicate balance of NTM interactions among humans,

veterinary species, and the environment for disease control. Whole genome sequencing and

core genome analysis was used to characterize NTM from fish, reptiles, mammals, and aquatic

biofilms to investigate their genetic variation. High sequence homology was observed across
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M. chelonae isolates. Genetically similar strains infected a range of hosts and existed within

environmental samples. A correlation between the environmental presence of M. chelonae and

human disease has been established [56]. Similar strain characteristics and the low genetic var-

iability of M. chelonae isolates from fish and biofilms suggests an environmental source of

infection, a theory supported by a study of diseased pompano Trachinotus carolinus [12].

Certain human isolates tended to cluster using the different gene targeted sequencing meth-

ods, while others were more genetically similar to the aquatic animal or biofilm isolates. The

consistent clustering of isolates H7, H10, H11, H15, H18-H20, suggests an epidemiologic link,

although they share no known geographic or environmental associations. Human isolates

H12, H13, H14, and H16 were genetically similar to fish and biofilm isolates, and to human

“M. chelonae chemovar niacnogenes” ATCC 19237. It is reasonable to speculate that they may

have originated from aquatic sources [57–59].

Core genomic comparison accurately identified closely related species in the M. chelonae-
abscessus complex, as well as two divergent outliers (pipefish and seahorse1) cultured from

syngnathid fish. Additional targeted gene sequencing, dDDH, and PRA analysis (S2 Table and

S7 Fig) established the two outliers as a novel species, Mycobacterium syngnathidarum [60].

Core genome analysis of the remaining 41 whole mycobacterial genomes separated the human

“M. chelonae chemovar niacinogenes” ATCC 19237 and turtle M. chelonae type strain ATCC

35752T into subgroups. Clinical isolate sequences were more similar to ATCC 19237 (98.4–

99.6%) than to ATCC 35752T (96.5–96.6% identity). Adékambi et al. found similar results

when comparing human clinical isolates with ATCC 19237 and ATCC 35752 T [61]. M. chelo-
nae ATCC 35752T also had a slightly different antimicrobial sensitivity profile than ATCC

19237 and the other M. chelonae isolates (S3 Table). Likewise, dDDH showed a difference in

relatedness between the clinical isolates and M. chelonae ATCC 35752T. The genomic and anti-

microbial data support recognition of two M. chelonae subspecies and indicate that use of M.

chelonae ATCC 35752T as a type strain may not be optimal for phylogenetic studies of M. che-
lonae isolates.

Core genome comparison revealed that earlier identification methods lacked fidelity for

identification of M. chelonae isolates. Power of the core comparisons was high, because over

half of the bacterial genome consisting of 4,898,027 bp and 4,489 CDS for M. chelonae ATCC

35752T [62], was used for analysis. In the core alignment, 65.4% of the genome and 70% of the

conserved coding regions were analyzed, including common housekeeping genes that are

employed independently for species identification, such as EF-Tu, SecA, gyrA, Mn-SodA, 16S

rRNA, rpoB, and hsp65. As a result, two human mycobacterial sequences in GenBank previ-

ously identified as M. chelonae 1518 and M. abscessus subsp. abscessus MC 1518 were found to

be incorrect. The core alignment and presence of erm (41) delineate the sequences as M.

abscessus subsp. abscessus ATCC 19977T. Isolates originally identified by hsp65 or phenotyping

as M. chelonae and Mycobacterium sp. (seahorse5, cow, turtle, and seakrait) were more pre-

cisely identified as M. chelonae, M. saopaulense and M. abscessus subsp. abscessus.
Similar to other published studies, WGS provided the greatest discrimination of M. chelo-

nae-abscessus complex isolates, but is not yet practical in diagnostic settings where multilocus

sequence analysis offers a practical alternative [10, 19, 63]. Comparison of commonly targeted

genes to the core genome indicated that concatenated complete hsp65 and partial rpoB
sequences were diagnostically useful. Isolates with identities greater than 98.4% to turtle refer-

ence strain M. chelonae ATCC 35752T were considered M. chelonae. While promising for spe-

cies identification, there is no published data to support the proposed threshold and a larger

sample size is needed to validate the method. Using the concatenated complete hsp65 and par-

tial rpoB sequences, the turtle type strain M. chelonae ATCC 35752T and human reference
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strain M. chelonae ATCC 19237 both had greater than 99.1% identity to the main M. chelonae
group of isolates, making differentiation between the potential subspecies difficult.

As previously reported, 16S rRNA analysis did not adequately differentiate species in the

M. chelonae-abscessus complex [22] (S1 and S2 Figs and S1 Table). However, similar to that

stated by Ballard et al. [64], SNPs patterns of the tested isolates designated M. chelonae were

the same as ATCC 19237, not the turtle type strain ATCC 35752T (three nucleotides different),

further supporting the two as subspecies of M. chelonae. The genes gyrA, gyrB, EF-Tu, RecA,

and Mn-Sod did not reliably identify species or produced inaccurate phylogenetic positioning,

while the ITS, partial and complete hsp65, and rpoB loci were the most discriminating and

identified isolates similarly to the core genomic analysis (S3, S4, S5 and S6 Figs). Partial hsp65,

complete hsp65, and rpoB sequences identified the cow and turtle isolates as M. saopaulense,
while rpoB and partial hsp65 delineated H9 as M. franklinii. However, contradictory to the

core genome analysis, hsp65 (partial and complete), and the rpoB phylogenies, the ITS

sequences of M. salmoniphilum ATCC 13758T and H9 (M. franklinii) were 98.1% identical,

which may not differentiate the species.

Regardless of phylogenetic differences produced by hsp65 (partial and complete), partial

rpoB, and the core genome, these methods can identify M. chelonae and closely related species

when specified breakpoints are employed[19]. With other bacterial genera this is widely done

for the16S rRNA locus where a 98.7% identity is applied as a cut-off level [65]. Breakpoints of

98.4% for partial hsp65 (441 bp), 95.4% for complete hsp65, and 97.9% for rpoB or greater will

identify M. chelonae when compared to the turtle type strain M. chelonae ATCC 35752T. Fur-

thermore, inclusion of M. chelonae isolates from Germany and Belgium to the partial hsp65
and rpoB analyses provides additional support for these breakpoints and the representative

nature of ATCC 19237 to the current clinical isolates being evaluated worldwide, potentially

making it a better candidate for comparison and identification purposes. Although a break-

point was found for hsp65, additional partial and complete sequences are needed to confirm

their validity.

Examination of a 170 sequence dataset provided by the Mycobacteria/Nocardia Research

Laboratory confirmed the 97.9% rpoB breakpoint differentiates M. chelonae from other closely

related species, but does not agree with Adékambi et al., which found intraspecies homology

was 98.3–100% for the partial rpoB [24, 61, 66]. This discrepancy may be the result of compari-

son to M. fortuitum rather than M. chelonae strains in the earlier study. Further evaluation of

SNPs from the rpoB sequences separated isolates into sequevars. Translation of the sequences

confirmed that gene function was likely not affected, as amino acid sequences were unchanged

in all but one sequence. Identifying rpoB sequevars may be useful for epidemiologic tracking

of outbreaks, but no such connection could be made from the data set.

Replacement of PRA by targeted gene sequencing is supported by findings in this study.

Comparisons of the partial hsp65 PRA algorithm of Telenti et al. [18] and revised by Taylor

et al. [46] and Chimera et al. [67] using in-silico digested fragments confirms the inability of

PRA to differentiate species closely related to M. chelonae, likely a result of the greater discrim-

inating power of “in-silico” analysis (1 bp) versus human interpretation of agarose gels (up to

10 bp). The fragments produced were 9–15 bp different than those derived using previously

reported algorithms. For example, the PRA pattern for M. chelonae is 320/130 bp for BstEII

and 200/60/55 bp for HaeIII, compared to the “in-silico” restriction pattern of 310/131 bp and

197/60/58/54 bp, respectively [46]. PRA analysis should not be used to identify mycobacteria

in the M. chelonae-abscessus complex without revision of the algorithm to accommodate in-sil-

ico fragment sizes and fragments less than 60 bp in length, which were not assessed in the ear-

lier studies that used traditional methods.
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Susceptibility patterns, including significant antimicrobial resistance, have been reported

for Mycobacterium chelonae-abscessus isolates and a multitude of acquired resistance mecha-

nisms exist [31, 68–70]. One such example is the MspA gene, which, when expressed, has

shown differential resistance of M. chelonae 9917 and M. chelonae ATCC 35752T to rifampin

(rifampicin), vancomycin, ciprofloxacin, clarithromycin, erythromycin, linezolid, and tetracy-

cline. Investigation into specific resistance genes was not pursued for this study; however, the

observed variable resistance to amikacin, ciprofloxacin, moxifloxacin, trimethoprim/sulfa-

methoxide, imipenem, cefoxitin, and linezolid among genetically similar isolates suggests dif-

ferential expression of regulatory genes. The evaluated clinical isolates exhibited multidrug

resistance, but biofilm isolates had the broadest resistance patterns [30, 49, 69]. Regardless of

their origin, 96% of M. chelonae strains were susceptible to clarithromycin. Isolate H10 was

resistant to clarithromycin and a gene mutation associated with resistance is suspected.

The erm (41) sequence in strains M. abscessus subsp. abscessus and M. abscessus subsp. bol-
leti MC 1518T, but not M. chelonae, can indicate inducible macrolide resistance [45, 71]. The

presence of erm (41) in isolates originally identified as M. chelonae (M. chelonae 1518, M.

abscessus subsp. bolletii MC1518, and seakrait), support their identification as M. abscessus
subsp. abscessus by complete genome sequencing. Although erm (41) in a bacterial genome

does not necessarily convey macrolide resistance, sensitivity to macrolides could serve as an

aide in the identification of M. chelonae-abscessus complex species.

Colony morphology and phenotypic traits can aid conventional and molecular diagnostics

[72, 73], but as demonstrated here, rarely provide sufficient evidence for definitive identifica-

tion. Most isolates produced similar raised nonpigmented colonies that were smooth to dry

and flaky, and virtually impossible to distinguish without side by side observation. Exceptions

were the novel pipefish and seahorse1 isolates, which produced granular rough colonies, and

M. saopaulense, which turned agar brown after several days of incubation [2]. This morpho-

logic variance supported identification of the turtle and cow isolates as M. saopaulense, not M.

chelonae as originally determined.

This whole genome evaluation of environmental, non-mammalian, and mammalian M.

chelonae-abscessus isolates provides insight into the diversity of isolates within the complex

and similarity of M. chelonae isolates. Identification of isolate similarity throughout different

sources supports the necessity to understand the intricate relationship and interactions of the

bacteria with humans, animals, and the environment. Especially because the high sequence

homology among isolates from different geographic locations and host origin suggest an epi-

demiologic link. Core genome, dDDH, and 16S rRNA sequences indicate that M. chelonae is

not a homogeneous species and that the current turtle type strain ATCC 35752 T and human

ATCC 19237 represent two M. chelonae subspecies. Core genome comparison was the most

discriminatory method for species identification, but concatenation of the complete hsp65 and

partial rpoB genes produced similar results and could be used for identification purposes.

Supporting information

S1 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by 16S

rRNA analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus complex iso-

lates relative to eight GenBank sequences using the 16S rRNA 1,522 bp locus and two M. syng-
nathidarum outliers as an outgroup. Phylogeny was produced using the best scoring

Maximum Likelihood model with 1000 bootstrap replications. Scale bar represents average

number of nucleotide substitutions per site. 0.002 represents 2–3 nucleotides which are not

identical.

T Denotes Type strain.
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� Denotes sequence used from GenBank.

(TIF)

S2 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by 16S

rRNA analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus complex iso-

lates relative to eight GenBank sequences and sequences from Noguiera et al. (2007) using the

16S rRNA 1,522 bp locus and two M. syngnathidarum outliers as an outgroup. Phylogeny was

produced using the best scoring Maximum Likelihood model with 1000 bootstrap replications.

Scale bar represents average number of nucleotide substitutions per site. 0.002 represents 2–3

nucleotides which are not identical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S3 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by ITS anal-

ysis. Phylogenetic comparison of Mycobacterium sp. clinical isolates relative to eight reference

sequences at the ITS locus using two M. syngnathidarum outliers as an outgroup. Phylogeny

was produced using the best scoring Maximum Likelihood model with 1000 bootstrap replica-

tions. Dotted box delineates branch with M. chelonae isolates. Scale bar represents average

number of nucleotide substitutions per site. 0.02 represents 0–1 nucleotides which are not

identical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S4 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by partial

hsp65 analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates includ-

ing 22 M. sp. isolates from Belgium and Germany relative to eight GenBank sequences and

two M. syngnathidarum outliers at the partial hsp65 441 bp locus. Phylogeny was produced

using the best scoring Maximum Likelihood model with 1000 bootstrap replications. Scale bar

represents average number of nucleotide substitutions per site. 0.02 represents 8–9 nucleotides

which is not identical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S5 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by whole

hsp65 analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates rela-

tive to eight GenBank sequences and two M. syngnathidarum outliers at the complete hsp65

1,626 bp locus. Phylogeny was produced using the best scoring Maximum Likelihood model

with 1000 bootstrap replications. Dotted box delineates branch with M. chelonae and M.

franklinii. Scale bar represents average number of nucleotide substitutions per site. 0.002 rep-

resents 3 nucleotides which are not identical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S6 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by partial

rpoB analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates relative

to six reference strains and two M. syngnathidarum outliers at the partial rpoB 752 bp locus.

Phylogeny was produced using the best scoring Maximum Likelihood model with 1000
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bootstrap replications. Scale bar represents average number of nucleotide substitutions per

site. 0.02 represents 15–17 nucleotides which are not identical.
T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S7 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by rpoB
and hsp65 analysis. Phylogenetic comparison of Mycobacterium chelonae-abscessus clinical

isolates relative to seven reference sequences and two M. syngnathidarum outliers using the

concatenated whole hsp65 1,626 bp and partial rpoB 752 bp sequences. Phylogeny was pro-

duced using the best scoring Maximum Likelihood model with 1000 bootstrap replications.

Scale bar represents average number of nucleotide substitutions per site. 0.02 represents 34

nucleotides which are not identical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S8 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by 16S

rRNA, rpoB and hsp65 analysis. Phylogenetic comparison of Mycobacterium chelonae-absces-
sus clinical isolates from the USA, Belgium, and Germany relative to four GenBank sequences

and two M. syngnathidarum outliers using the concatenated whole hsp65 1,626 bp, partial

rpoB 752 bp, and partial hsp65 441 bp sequences. Phylogeny was produced using the best scor-

ing Maximum Likelihood model with 1000 bootstrap replications. Scale bar represents average

number of nucleotide substitutions per site. 0.02 represents 35 nucleotides which are not iden-

tical.

T Denotes Type strain.
� Denotes sequence used from GenBank.

(TIF)

S9 Fig. Phylogenetic comparison of Mycobacterium chelonae-abscessus isolates by partial

hsp65 PRA analysis. Summary of in-silico PCR-restriction length polymorphism analysis

results performed on the partial hsp65 (441 bp) fragment (hsp65 PRA). Results are arranged

according to the Taylor et al. (63) algorithm with slight modification to account for fragment

length created in-silico and inclusion of fragments 35 bp or greater.

T Denotes type strain.

(TIF)

S1 Table. Nucleotide location substitution for whole 16S sequence of M. chelonae isolates.

Delineation of sequevars identified within clinical isolates at 16S rRNA.

(XLSX)

S2 Table. dDNA-DNA hybridization of M. chelonae-abscessus isolates and two M. syng-
nathidarum outliers. dDDH relatedness of clinical isolates compared to M. chelonae ATCC

35752T and “M. chelonae chemovar niacinogenes” ATCC 19237. Confidence intervals are

denoted within brackets.

(XLSX)

S3 Table. Drug susceptibility data of Mycobacterium chelonae-abscessus clinical isolates

reported as MICs.a a Green shading represents susceptible (S); Green to yellow shading repre-

sents intermediate susceptible (I); Red to yellow shading represents intermediate resistant (I);

Red shading represents resistant (R). Susceptibility patterns interpreted using CLSI recom-

mendations. b NA, Not available. Isolates with missing Linezolid, Moxifloxacin, and
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Trimethoprim/Sulfamethoxazole values were evaluated for MIC prior to the use of these anti-

biotics.
T Denotes type strain.

(XLSX)
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