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Abstract

To develop a convolutional neural network visualization strategy so that optical coherence 

tomography (OCT) features contributing to the evolution of age-related macular degeneration 

(AMD) can be better determined. We have trained a U-Net model to utilize baseline OCT to 

predict the progression of geographic atrophy (GA), a late stage manifestation of AMD. We have 

augmented the U-Net architecture by attaching deconvolutional neural networks (deconvnets). 

Deconvnets produce the reconstructed feature maps and provide an indication regarding the 

inherent baseline OCT features contributing to GA progression. Experiments were conducted on 

longitudinal spectral domain (SD)-OCT and fundus autofluorescence images collected from 70 

eyes with GA. The intensity of Bruch’s membrane-outer choroid (BMChoroid) retinal junction 

exhibited a relative importance of 24%, in the GA progression. The intensity of the inner 

retinal pigment epithelium (RPE) and BM junction (InRPEBM) showed a relative importance 

of 22%. BMChoroid (where the AMD feature/damage of choriocapillaris was included) followed 

by InRPEBM (where the AMD feature/damage of RPE was included) are the layers which appear 

to be most relevant in predicting the progression of AMD.
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1. | INTRODUCTION

Age-related macular degeneration (AMD) is the leading cause of severe vision impairment 

among elderly individuals in the developed world. One in seven, who are over 50 years 

old, experiences a worsening of vision due to AMD that may affect one or both eyes. The 

incidence of AMD increases with age.1 It is anticipated that about 8 million people in 

the United States who are 55 years of age and older are suffering vision impairment due 

to monocular or binocular intermediate AMD or monocular advanced AMD.2 Advanced-

stage AMD is manifest by the development of geographic atrophy (GA) or macular 

neovascularization (MNV) and may be associated with severe visual loss or blindness. The 

likelihood of progression to advanced AMD over 5 years period is 27% for patients with 

intermediate AMD.3 For patients, who already have advanced AMD in one eye, the chance 

that the other eye progresses to advanced AMD can be as high as 43%.3 Although there 

are now effective treatments for patients with neovascular AMD, these patients commonly 

progress to develop atrophy over time, and as result ultimately go on to lose vision. No 

proven treatment is presently available in the setting of non-neovascular disease to stop 

the development and progression of atrophy. Development of better treatment approaches, 

however, requires a more comprehensive understanding of crucial biomarkers contributing to 

the development and progression of AMD.

Historically, color fundus photography was the gold standard to diagnose early AMD. Large 

drusen, increased total drusen area, hyperpigmentation, and depigmentation are some of 

the important biomarkers identified from color fundus photographs,3,4 to determine both 

the presence AMD and its risk of progression. Fundus autofluorescence (FAF) imaging, 

which is another noninvasive, 2D imaging technique of metabolic mapping of naturally 

or pathologically occurring fluorophores of the ocular fundus also gained popularity in 

identification of atrophic lesions.5 In recent years, optical coherence tomography (OCT) 

has largely supplanted color fundus photography and FAF imaging as the primary imaging 

modality in clinical practice. OCT produces 3D cross-sectional imaging of the tissue and 

provides detailed anatomic information on the axial location of retinal abnormalities, which 

color fundus photography and FAF imaging cannot provide.

A number of studies have identified several OCT-based features to determine the level of 

AMD and its progression.6 Higher central drusen volume,7 intraretinal hyperreflective foci,8 

heterogeneous internal reflectivity within drusenoid lesions,9 and reticular pseudodrusen or 

subretinal drusenoid deposits,10 are some of the most promising OCT based features that are 

found to be associated with a higher risk for progression to advanced AMD.7

A number of approaches have already been proposed for automated and semiautomated 

analysis of AMD-related features on OCT, including drusen,11 GA,12,13 pigment epithelial 

detachment,14 and intra-/subretinal fluid.15,16 Aside from Sisternes et al,17 most of 

these methods focused on detecting and/or analyzing AMD features from a single time 

point. Sisternes et al focused on analyzing the likelihood of progression from early and 

intermediate AMD to exudative AMD and utilized 11 drusen specific features for making 

this determination.
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Recently, there has been an increasing interest in applying deep learning based techniques 

for automated diagnosis of eye disease including AMD.18,19 In comparison to traditional 

machine learning approaches that still rely on handcrafted features to analyze images to 

detect pathologies, deep learning learns these features from the data itself. Deep learning is 

capable of characterizing hidden complex features by applying neural network architectures 

with multiple hidden layers. Deep convolutional neural networks (CNN) exhibit feature 

hierarchy and learn features of increasing complexity and abstraction with increasing 

network depth. While CNN-based models have achieved state-of-the-art performance in 

several AMD assessment tasks, they are often criticized for their “black box” nature. In 

particular, they may be difficult to interpret and it is not inherently obvious how they reach 

their final predictions. In the context of AMD, no attempt has been made so far to visualize 

the inherent patterns that contribute to a certain decision by the CNN and to justify its 

clinical relevance. On that perspective, as a preliminary study, this paper reports a deep 

learning system designed to better visualize and understand the intrinsic features in the data 

that contributes to the development and progression of AMD, particularly progression of 

GA. To justify the relevance of these features in disease evolution, extensive experiments are 

conducted on a longitudinal dataset of progressive AMD cases.

2. | BACKGROUND

2.1. | CNN visualization

Visualization of image features that contribute to CNN decision is of significant interest 

to gain intuition about why and how a certain decision is made. While a number of 

visualization methods are available, the majority of them are limited to visualize image 

features only at the initial layer where projections to pixel space are plausible.20 Only a few 

methods are capable to effectively visualize the contributing image features at the different 

layers of the CNN. Among this short list of methods, the method proposed by Erhan et al21 

finds the stimulus that maximizes the unit’s activation. An optimal stimulus is determined 

for each unit. The method explicitly performs gradient descent operation in image space, 

which requires vigilant initialization. Another drawback of the method is that it does not 

provide any insight about the unit’s invariances. To resolve the shortcomings of Erhan et 

al’s method, Ngiam et al22 focused on computing the Hessian of a given unit around the 

optimal response to provide a parametric view of unit’s invariances. The method works well 

for lower layers, however, for higher layers, the invariances are very multifaceted and are 

thus poorly apprehended by simple quadratic approximation. Simonyan et al23 proposed two 

techniques to visualize CNN. The first method creates an artificial image, which maximizes 

the class score and visualizes the notion of the class. The second method produces a 

saliency map, specific to a given image and class. Girshick et al24 produces visualizations 

by identifying patches that are accountable for strong activations at the higher layers of the 

model. The method proposed by Zeiler et al20 visualizes which patterns in the training set 

activates the feature map. It also provides a non-parametric view of invariance. While the 

method is similar to Simonyan et al, it provides better insight into the contributing patterns. 

In contrast to Girshick et al,24 the visualizations produced by Zeiler et al20 are not just crops 

of input images, but rather top-down estimates that disclose structures inside each patch that 

excite a particular feature map.
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2.2. | U-Net

U-Net25 is a state-of-the-art deep learning architecture for semantic segmentation. U-Net 

can be trained end-to-end from very few images. Structure-wise U-Net uses a contracting 

path of convolutional blocks (encoders), followed by an expansive path of convolutional 

blocks (decoders). The encoders learn the contextual features and their hierarchy. The 

decoders perform semantic segmentation. In the original U-Net, the classical stochastic 

gradient descent optimization approach was used to interactively update network weights. 

However, in this work, we used a more efficient adaptive moment estimation (Adam) 

optimizer.6 In this work, we optimized a joint loss function26 which consists of weighted 

logistic regression loss and Dice overlap loss, in comparison to the original weighted loss. 

Each encoder block of U-net consists of four key layers, that include a convolution layer, 

batch normalization layer, ReLU activation layer and a max pooling layer. The size of the 

convolution kernels in this work is kept static across encoder blocks which are defined to be 

7 × 7. The feature maps are appropriately zero padded so that the dimension before and after 

the convolution layer remains the same. Each decoder block consists of five key layers, that 

include an unpooling layer, concatenation layer, convolution layer, batch normalization layer 

and a ReLU activation layer.

3. | METHODOLOGY

3.1. | Generation of en face images

In non-exudative AMD, the areas affected by GA as evident in 3D SD-OCT images are 

characterized by loss of the photoreceptor layer, retinal pigment epithelium (RPE) layer, and 

choriocapillaris layer. The involvement of multiple layers of the retina make 2D en face 

images generated from the 3D layers a useful tool for the study of GA.27

More specifically, an in-house developed automated 3D graph-based program28 was used to 

segment the 3D OCT retinal layers and to generate the 2D OCT en face images between 

two retinal surfaces Li and Lj potentially affected by AMD by calculating the mean pixel 

intensities among them. A set of seven en face images were generated taking into account 

different depth profile. Among them, 4 en face images were generated from retinal layers 

extended from inner retina to outer retina. The four en face images included IPLINLELM 

en face image generated between the retinal surface located in inner plexiform layer (IPL) 

and inner nuclear layer (INL) junction, and the retinal surface of external limiting membrane 

(ELM); the EMLInRPE en face image (where the AMD feature/damage of photoreceptor 

was included) generated between the retinal surface of EML, and the retinal surface of 

inner RPE; the InRPEBM en face image (where the AMD feature/damage of RPE was 

included) generated between the retinal surface of inner RPE and the retinal surface of 

Bruch’s membrane (BM); and the BMChoroid en face image (where the AMD feature/

damage of choriocapillaris was included) generated between the retinal surface of BM and 

the retinal surface of outer choroid. Additionally, three en face images with different division 

of the photoreceptor and RPE retinal layers were also included. The three en face images 

were the ELMISOS en face image generated between the retinal surface of ELM and the 

retinal surface located in the photoreceptor inner segment and outer segments junction; the 

ELMOutRPE en face image generated between the retinal surface of ELM and the retinal 
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surface of outer PRE; as well as the ELMBM en face image generated between the retinal 

surface of ELM and the retinal surface of BM.

The resultant en face images had a resolution of 512 pixels horizontally and 128 pixels 

vertically; therefore, each en face image was stretched vertically by a factor 4 to obtain a 

square image of 512 × 512 pixels.

Figure 1 shows some example en face images. From Figure 1, it is observable that some 

vessel artefacts in the en face images are highly likely. InRPEBM, the apparent artefacts 

are because of the thin retinal layer due to severe AMD, and the presence of retinal vessel 

shadows in the layer. For BMChoroid, the artefacts are due to the choroid vessels present in 

the layer.

3.2. | Ensembled CNN for pathology segmentation

Figure 1 shows the flowchart of the ensembled CNN architecture used to predict the GA 

progression based on baseline en face OCT images. Each of the CNNs here is an augment 

U-Net25 which has square instead of rectangular sized filters and has a visualization 

block attached. FAF imaging has served as the gold standard modality for measuring and 

monitoring the enlargement of GA lesions due its high contrast. The training of the CNNs 

utilizes the seven baseline OCT en face images as input images and the corresponding 

manually segmented GA regions from FAF images at a future visit as the ground truth data.

While training the CNN, we optimized the weighted two-class logistic loss, dice loss and an 

additional weight decay term for regularization, likewise in26 and defined as bellow:

ℒOverall = λ1ℒLogloss + λ2ℒDice + λ3 W ( ⋅ ) F
2 .

Here, λ1, λ2, λ3 are the weight terms, W ( ⋅ )
F
2

 represents the Frobenius norm (also called 

Euclidean norm) on the weights W of the CNN, and ℒLogloss  and ℒDice  are, respectively, 

the weighted multiclass logistic loss and dice loss.

Weighted two-class logistic loss is defined as bellow:

ℒLogloss = − ∑
x ∈ S

ω(x)gl(x)logpl(x),

where pl(x) is the probability estimates of pixel x belonging to class 1, ω(x) is the 

associated weight, and where gl(x) is a vector of ones and zeros representing the ground 

truth probability of pixel at location x to belong to class 1.

With the same definition of pl(x) and gl(x), the dice loss is defined as bellow:

ℒDice = 1 −
2∑x ∈ S pl(x)gl(x)

∑x ∈ S pl
2(x) + ∑x ∈ S gl

2(x)
.
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A total of seven CNNs were ensembled and each of them were independently trained to 

segment GA using different en face images. The final segmentation is performed based upon 

the strongest output of the seven CNNs.

A pixel is classified as “GA” or “non-GA” based on the following equation29:

l = argmax
l = 1, 2

Ol

Ol = max
j = 1, 2, …, 7

Outputlj; l = 1, 2, (1)

where j = 1, 2, …, 7, represents the different neural networks, l = 1 and 2, respectively, 

characterizes “non-GA” and “GA” pixel label. Equation (1) indicates that a pixel is 

classified to “GA” or “non-GA,” based on the strongest response between the two labels 

from the strongest output of the seven trained CNNs.

3.3. | Visualizing inherent en face features using deconvolutional neural 

network

To gain an understanding of which image features are influencing the CNN’s predictions 

for GA progression, we have adopted the visualization strategy proposed by Zeiler et al.20 

We attach a deconvolutional network (in short “deconvnet”) to each convnet block of the 

U-Net architecture (Figure 2). It should be noted that, similar to a convolutional network, a 

deconvnet also uses filtering, rectification, and pooling, however, in reverse order and thus 

maps the feature activity back to the input pixel space.

To examine a given convnet activation, we set all other activations in the layer to zero and 

pass the feature maps as input to the attached deconvnet layer. Then we successively (a) 

unpool, (b) rectify, and (c) filter, to reconstruct the activity in the layer beneath that gave 

rise to the chosen activation. This procedure is then repeated until the input pixel space is 

reached.

4. | EXPERIMENTS AND RESULTS

4.1. | Dataset

A total of 70 eyes that were diagnosed as having AMD with evidence of progressive 

GA from the Doheny Image Reading Center database were utilized in this study. These 

eyes did not show any evidence of choroidal neovascularization, or other ocular diseases 

or atrophy due to disease aside from AMD. For each eye both FAF and spectral domain 

(SD)-OCT images were available. FAF images were captured using a Heidelberg confocal 

scanning laser ophthalmoscopy (cSLO) (Spectralis HRA+OCT, Heidelberg Engineering, 

Heidelberg, Germany). The FAF image resolution varied from 496 × 596 pixels to 1536 

× 1536 pixels with a physical size of 9 mm × 9 mm. All the images were resized to a 

consistent dimension. SD-OCT images were captured using a Cirrus HD-OCT camera (Carl 
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Zeiss Meditec, Dublin, California) with 1024 (depth) 512 × 128 cube (2 × 6 × 6 mm) 

centered on the fovea. Follow-up image were captured at 6 to 12 months intervals.

All images were deidentified according to Health and Insurance Portability and 

Accountability Act Safe Harbor prior to analysis. Ethics review and institutional review 

board approval from the University of California - Los Angeles were obtained. The research 

was performed in accordance with relevant guidelines/regulations, and informed consent 

was obtained from all participants.

A certified expert Doheny Image Reading Center (DIRC) FAF grader manually delineated 

all the follow-up FAF images. A labeled GA mask (an image with the GA region highlighted 

in white and the background of “non-GA” region in black) was created for each FAF 

image. The labeled GA masks of follow-up FAF images were used to generate GA masks 

as ground truths for the OCT baseline en face images for the GA progression prediction. 

A semiautomated software platform was developed to register30,31 FAF (as well as label 

masks) and OCT en face images. An experienced grader individually aligned the FAF 

image with the different en face images using that platform. The software platform then 

automatically generated the GA mask for the en face image under consideration. Generating 

GA masks likewise for the en face images, not only saved time but also produced more 

robust delineation, since GA has better visibility and contrast in FAF compared with SD-

OCT.

4.2. | Experiments

4.2.1. | Training the CNNs and visualizing the inherent image features—Each 

of the CNN in Figure 2 is independently trained to segment GA using a mutually exclusive 

set of en face images. In line with Reference 26, in this work, we empirically set λ1 = 1, λ2 

= 0.5, λ3 = 0.0001, ω1 = 10 and ω2 = 5. Seventy en face images and their corresponding 

manual annotations of GA were available to train each CNN. En face images of the baseline 

capture were used, however, GA masks of the latest follow-up visits were used; since, the 

aim is to identify early imaging features responsible for disease progression. A total of 490 

(ie, 70 × 7) en face images and 490 GA masks were available to train the ensemble. We 

performed data augmentation, specifically, rotation (in the range of −5° to 5°), shearing (in 

the range 0.2), scaling (in the range 0.2), and flipping, to increase the number of images by 

30 times. Thus, a total of 14 700 en face images were used to in the experiment. At the start 

of the training, the learning rate was set to 0.1 and was gradually reduced by an order of 

magnitude at every 30 epochs. The training was performed with a momentum of 0.9. Ninety 

percent of the images were used for training and rest 10% were used for validation.

For the quantitative evaluation of the segmentation performance, we computed intersection 

over union (IoU) score, and accuracy of the ensembled CNN. IoU was defined as (A ∩ B)
(A ∪ B) , 

where A and B are, respectively, the ground truth and CNN produced atrophy region. 

Accuracy defined as (TP + TN)
(P + N) , measured the proportion of the enface image with actual 

atrophy (positive [P]) and without actual atrophy (negative [N]) which are correctly 

identified as with atrophy (true positive [TP]) and without atrophy (true negative [TN]). 

We obtained an average IoU score of 0.76 ± 0.07 and accuracy of 0.78 ± 0.06.
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Once the ensembled CNN is trained, the reconstructed features maps were generated at three 

different layers as shown in Figure 2, for each input en face image. All of the 490 original 

en face images (ie, en face images without augmentation) were passed through the network 

in batch and reconstructed features maps were generated. Figure 3 shows some sample 

visualizations. For any given feature map, we only show the top-most activation, projecting 

down to pixel space to reveal the inherent structures that excite a given feature map. In 

addition, with these visualizations we also show the corresponding input en face images.

4.2.2. | Understanding and determining SD-OCT features responsible for 
disease progression—To better understand the SD-OCT features related to disease 

progression, at first, the GA mask from the baseline visit was subtracted by the GA mask 

from a follow-up visit, and the difference mask was computed. The difference mask was 

then applied on the reconstructed feature maps of the baseline OCT en face images. Figure 

4 shows some sample visualizations of the reconstructed feature maps, showing only the 

regions of interests defined by difference GA masks.

In order to better understand which SD-OCT layers32 were most relevant to predicting 

GA progression, for each filter we determined the best three reconstructed feature map 

differences. There are 64 filters in each layer of the U-Net. Thus, we determined a total of 

192 reconstructed feature map differences in each of the three layers of the U-Net (Figure 

3). We then grouped those map differences based on en face image types and counted the 

number of cases within each group. For each layer we computed the relative importance of 

the seven en face images defined as the ratio of the number of cases a particular en face 

image category listed in the best three and the total number of cases (ie, 192). Figure 5 

summarizes the findings.

From the results, it is observable that BMChoroid followed by InRPEBM31 are the 

layers contributing the most to the prediction of GA progression. In layer 1 and layer 2, 

BMChoroid and InRPEBM clearly outnumber other en face images. However, in layer 3, 

along with BMChoroid and InRPEBM, other en face images specially IPLINLELM85 also 

contributes meaningfully.

5. | DISCUSSIONS AND CONCLUSION

AMD is the leading cause of severe vision impairment among elderly individuals in the 

developed world. Early detection is the key in AMD for providing timely treatment and 

minimizing vision loss. If patients who are more likely to progress or progress rapidly 

can be identified, they could be targeted for therapeutic trials of novel agents. CNN-based 

methods have achieved state-of-the-art performance in AMD detection. However, they have 

primarily considered CNN as a black-box and no attempts have been made to unbox 

its decision-making. In principle unboxing a CNN has the potential to determining more 

disease specific pertinent image features. In this study, we have developed a visualization 

strategy so that the interworking of CNNs for AMD evolution can be visualized and 

the inherent image features contributing to disease progression can be understood. As a 

representative of CNN family, we have trained a U-Net model to segment AMD pathology 

specifically GA, which is one of the best performing semantic segmentation models. We 
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have amended the visualization strategy of Zeiler et al20 in this context and determined the 

most contributing retinal layers through visualization of corresponding en face images. We 

used transfer learning18 and used the pretrained weights from previous study5 by our group. 

The training took 28 hours to complete on an Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz 

machine with 16.0 GB RAM and NVIDIA Quadro P4000 GPU.

We conducted a series of experiments on eyes with AMD and progressive GA obtained 

from an anonymized Doheny Image Reading Center database. We observed that BMChoroid 

(where the AMD feature/damage of choriocapillaris was included) followed by InRPEBM 

(where the AMD feature/damage of RPE was included) are the layers which appear to be 

most relevant in predicting the progression of AMD.

Future work could involve applying our method to a larger and more diverse set of images. 

It would also be interesting to determine more specific imaging features responsible for 

disease evolution.
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FIGURE 1. 
A, Sample en face images (generated using different depth profile of the SD-OCT scans) 

showing geographic atrophy of the same eye. B, Flowchart the ensembled CNN architecture
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FIGURE 2. 
Visualizing and understanding U-Net

Saha et al. Page 13

Appl AI Lett. Author manuscript; available in PMC 2022 December 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



FIGURE 3. 
Visualization of features in (A) layer 1, (B) layer 2 and layer (3), in the trained models. 

We show the top nine activations in a random subset of reconstructed feature images. 

Reconstructed feature maps are shown in the left and the actual en face maps are shown in 

the right
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FIGURE 4. 
Sample visualizations of the reconstructed feature maps. A, Layer 1, showing only the 

regions of interests (as determined by the GA evolution). We show the top 3 activations in a 

random subset of reconstructed feature maps (bottom row) and their corresponding en face 

images (top row). B, In layer 2, showing only the regions of interests (as determined by the 

GA evolution). We show the top six activations in a random subset of reconstructed feature 

maps. C, In layer 3, showing only the regions of interests
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FIGURE 5. 
Relative importance of different en faces in GA progression
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