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ABSTRACT
Background  The time after hospital discharge carries 
high rates of mortality in neonates and young children in 
sub-Saharan Africa. Previous work using logistic regression 
to develop risk assessment tools to identify those at risk 
for postdischarge mortality has yielded fair discriminatory 
value. Our objective was to determine if machine learning 
models would have greater discriminatory value to identify 
neonates and young children at risk for postdischarge 
mortality.
Methods  We conducted a planned secondary analysis of 
a prospective observational cohort at Muhimbili National 
Hospital in Dar es Salaam, Tanzania and John F. Kennedy 
Medical Center in Monrovia, Liberia. We enrolled neonates 
and young children near the time of discharge. The 
outcome was 60-day postdischarge mortality. We collected 
socioeconomic, demographic, clinical, and anthropometric 
data during hospital admission and used machine learning 
(ie, eXtreme Gradient Boosting (XGBoost), Hist-Gradient 
Boost, Support Vector Machine, Neural Network, and 
Random Forest) to develop risk assessment tools to 
identify: (1) neonates and (2) young children at risk for 
postdischarge mortality.
Results  A total of 2310 neonates and 1933 young 
children enrolled. Of these, 71 (3.1%) neonates and 67 
(3.5%) young children died after hospital discharge. 
XGBoost, Hist Gradient Boost, and Neural Network models 
yielded the greatest discriminatory value (area under the 
receiver operating characteristic curves range: 0.94–0.99) 
and fewest features, which included six features for 
neonates and five for young children. Discharge against 
medical advice, low birth weight, and supplemental oxygen 
requirement during hospitalisation were predictive of 
postdischarge mortality in neonates. For young children, 
discharge against medical advice, pallor, and chronic 
medical problems were predictive of postdischarge 
mortality.
Conclusions  Our parsimonious machine learning-
based models had excellent discriminatory value to 
predict postdischarge mortality among neonates and 
young children. External validation of these tools is 

warranted to assist in the design of interventions to reduce 
postdischarge mortality in these vulnerable populations.

INTRODUCTION
Postdischarge mortality rates among neonates 
and young children in sub-Saharan Africa 
are as high as 3–13%,1–3 far outpacing rates 
of mortality during hospital readmission in 
settings like the USA (ie, 0.1%).4 The accu-
rate identification of young children at risk 
for postdischarge mortality is the first step 
towards developing interventions to reduce 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Postdischarge mortality is increasingly recognised 
as a contributor to persistently high rates of mor-
tality among neonates and young children in sub-
Saharan Africa.

	⇒ Previous work using logistic regression to develop 
risk assessment tools to identify those at risk for 
postdischarge mortality has yielded fair discrimina-
tory value.

WHAT THIS STUDY ADDS
	⇒ From a prospective cohort study that included a total 
of 2310 neonates and 1933 young children, eXtreme 
Gradient Boosting, Hist-Gradient Boost, Neural 
Network, and Random Forest models with as few as 
six features demonstrated excellent discriminatory 
value (ie, area under the receiver operating charac-
teristic curve 0.94–0.99) and outperformed tradi-
tional logistic regression models in both age groups.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ After external validation, machine learning models 
to identify neonates and young children at risk for 
postdischarge mortality may be used to direct re-
sources to at-risk infants and young children.
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mortality during this vulnerable time for young children 
in sub-Saharan Africa.5 Clinical care providers, without 
the use of clinical decision aids, are unable to identify 
neonates or young children at risk for postdischarge 
mortality in the weeks following hospital discharge.6 
Hospital discharge provides a valuable opportunity for 
clinicians to identify risk factors that confer greater risk 
for postdischarge mortality among young children in 
regions with high rates of postdischarge mortality.

Risk assessment tools are powerful instruments derived 
using statistical analyses of observational data and can be 
used at the bedside to reduce uncertainty and improve 
accuracy in medical decision making.7 They can be 
effective across a range of settings, including those with 
limited resources.8 9 Several studies have leveraged data 
available at the time of hospital discharge, including vital 
signs, anthropometry, and hospital clinical diagnoses, to 
develop logistic regression-based risk assessment tools to 
identify neonates, infants, and children at risk for post-
discharge mortality in sub-Saharan African countries.10–13

However, risk assessment tools derived using logistic 
regression have demonstrated only fair-to-good discrimi-
natory value (ie, area under the receiver operating charac-
teristic curve (AUROC) from 0.77 to 0.82).10 11 13 14 Thus, 
more accurate risk assessment tools to identify young chil-
dren at risk for postdischarge mortality are warranted. 
Machine learning is one approach to improve risk assess-
ment as it augments the discriminatory value of these 
tools by identifying complex latent relationships between 
patient features not identifiable through standard linear 
or non-linear regression methods.15–17 However, the 
application of machine learning methods to identify 
young children at risk for postdischarge mortality has 
been limited.18

Machine learning model applications in clinical medi-
cine are rapidly evolving and may have superior accuracy 
to logistic regression models. Thus, to develop more accu-
rate risk assessment tools to identify (1) neonates and 
(2) young children at risk for postdischarge mortality, 
our objective was to determine if non-linear machine 
learning tools yield greater discriminatory value to iden-
tify young children at risk for postdischarge mortality 
compared with standard logistic regression models that 
we have previously developed.13 19 We hypothesised that 
machine learning-based risk assessment tools would have 
greater discriminatory capacity than our logistic regres-
sion models to identify young children at risk for post-
discharge mortality. Furthermore, we hypothesised that 
machine learning models would have excellent discrimi-
natory value (ie, AUROC ≥0.90).20

METHODS
Study design
We conducted a planned secondary analysis of data 
collected in a prospective observational cohort study 
that included neonates (aged 0–28 days) and young chil-
dren (aged 1–59 months) discharged from two national 

referral hospitals in sub-Saharan Africa and were followed 
for 60 days (2019–2022). The full protocol has been 
published previously.21

Patient and public involvement statement
The development of the research question was informed 
by the disease burden of postdischarge mortality among 
children in sub-Saharan Africa. Patients were not involved 
in the design, recruitment, or conduct of the study, nor 
were they advisers in this study. Results of this study will 
be made publicly available through publication.

Study setting
We enrolled neonates and young children who were 
discharged from Muhimbili National Hospital (MNH) in 
Dar es Salaam, Tanzania and John F. Kennedy Medical 
Center (JFKMC) in Monrovia, Liberia. These are both 
large national referral hospitals in their respective coun-
tries. Both hospitals are located in urban settings and are 
supported by the Ministry of Health in each country. Both 
are teaching hospitals and serve as major training sites 
for medical students and paediatrics residents in their 
respective countries. The neonatal and paediatric wards 
of each hospital are staffed by clinicians who provide clin-
ical care according to each country’s national guidelines. 
All participants received standard clinical care provided 
by the clinical care teams and not by study staff. The deci-
sion to discharge a neonate or young child was not influ-
enced by our study staff.

Study population
Participants were included if their caregivers consented 
to have their hospital admission data collected, had access 
to a phone, and agreed to receive follow-up phone calls 
following hospital discharge. We enrolled neonates who 
were admitted for an illness (ie, not routine newborn care) 
with no restriction based on reason for hospital admis-
sion. We enrolled young children who were admitted for 
an injury or illness with no restriction to admission or 
discharge diagnoses. We excluded neonates and young 
children who: (1) died during the initial hospital admis-
sion, (2) were older than 59 months of age at enrolment, 
or (3) had non-consenting caregivers.

Study procedures
Research staff was present on clinical rounds each day to 
identify potential participants and to conduct consecu-
tive enrolment of discharged neonates and young chil-
dren. Caregivers of neonates and young children were 
approached by research staff for potential enrolment 
near the time of hospital discharge. Caregivers provided 
written consent in Tanzania and, due to local preference, 
oral consent in Liberia.

Consenting caregivers agreed to have their child’s 
clinical data extracted, to respond to sociodemographic 
questions, and to receive phone calls to ascertain the 
child’s well-being following hospital discharge. Research 
staff at each site collected detailed demographic, socio-
economic, anthropometric, and clinical data that were 



3Rees CA, et al. BMJ Paediatrics Open 2025;9:e003547. doi:10.1136/bmjpo-2025-003547

Open access

collected during each participant’s hospitalisation. Care-
givers were contacted by our research staff at each site by 
telephone 7 days, 14 days, 30 days, 45 days, and 60 days 
after discharge to assess the participants’ vital status. All 
data were stored in password-protected electronic data 
capture forms (Microsoft SQL in Tanzania and KoboTo-
olbox in Liberia).

Outcome and candidate features
The outcome of postdischarge mortality within 60 days 
of hospital discharge was determined through caregiver 
report during follow-up telephone calls. All candidate 
features were selected prior to the enrolment of the 
first participant and prior to knowledge of the outcome. 
Candidate features were selected by the investigator team 
based on: (1) clinical experience, (2) frequency of assess-
ment in routine clinical care, (3) results of prior studies 
on postdischarge mortality in the region,1 2 22 23 (4) a list 
of candidate features from a modified Delphi survey of 
public health experts, paediatricians and epidemiolo-
gists in sub-Saharan Africa,24 25 and (5) availability to 
clinicians at the time of hospital discharge. As previously 
published,13 19 a total of 115 features were considered for 
the neonatal models and 121 features were considered 
for the models for infants and children.

Statistical analyses
We developed traditional non-linear machine learning 
based risk assessment tools using eXtreme Gradient 
Boosting (XGBoost), Hist-Gradient Boosting, Support 
Vector Machines, Neural Networks, and Random Forest 
to separately identify features predictive of postdischarge 
mortality among (1) neonates and (2) young children. 
To develop these models, we first randomly assigned the 
(1) neonatal population and (2) the population of young 
children to derivation (80%) and validation (20%) 
cohorts with equal partitions to ensure equal numbers 
of participants who experienced postdischarge mortality 
in each group combining datasets from Tanzania and 
Liberia. We elected to combine datasets from both sites 
to minimise potential overfitting that may occur with 
non-random data splitting and to develop models that 
are generalisable beyond a single site. To mitigate class 
imbalance during the training phase of algorithm devel-
opment, we performed data augmentation through the 
synthetic minority oversampling technique (SMOTE),26 
which addresses the skewed distribution of data points 
between target classes by oversampling minority class data 
and assigning higher weights to misclassified minority 
populations. SMOTE was used to synthetically generate 
new examples of the minority class until its size reached 
50% of the majority class, using five nearest neighbours 
to construct each synthetic sample. Subsequently, we 
applied random undersampling to reduce the majority 
class to 80% of the (post-SMOTE) minority class. Before 
SMOTE, 3.1% of the population in the training and vali-
dation cohort had postdischarge mortality. Following 
SMOTE, which was applied to the training cohort only, 

44.4% of the training cohort had postdischarge mortality. 
To prepare the dataset for machine learning model 
development and to prevent potential overfitting, we 
performed data transformation, where categorical vari-
ables were one-hot encoded and continuous variables 
were scaled to a mean of zero and standard deviation of 
one.

To identify features predictive of postdischarge 
mortality, we used minimal redundancy/maximum rele-
vance to find 30 non-redundant clinical features that 
were predictive of the outcome ranked from most to least 
predictive. However, as 30 features were thought to be 
beyond what could be clinically useful in the absence of 
electronic health records, using backwards selection and 
clinical relevance, we tested the discriminatory value (ie, 
AUROC) of models with each machine learning approach 
with as few as five features to find the minimum number of 
features that achieved AUROC ≥0.90 in derivation. As we 
used 10 features in our previously developed regression 
models that had fair discriminatory value (ie, AUROC= 
0.77),13 19 we postulated that ≤10 features would allow for 
even greater discriminatory value with more advanced 
and precise machine learning approaches. Aligning with 
other machine learning studies,27 28 in order to visualise 
the relative predictive contribution of each feature, we 
plotted Shapley additive explanations for each model.

Post hoc, we identified the feature ‘discharge against 
medical advice’ was strongly predictive of the outcome of 
postdischarge mortality, which may have suggested that 
feature violated the causality constraint (ie, ‘discharge 
against medical advice’ was both a predictor of, and a 
proxy for, postdischarge mortality). Thus, in order to 
identify other potential features that would be present 
before the decision is made to ‘discharge against medical 
advice’ and to ensure that our models performed well 
without this feature, we sought additional covariates 
that were most strongly predictive of ‘discharge against 
medical advice’ through minimal redundancy/maximum 
relevance and using the same approach for feature selec-
tion for the main models and replaced ‘discharge against 
medical advice’ with the six most strongly predictive 
and clinically relevant features in the XGBoost, Support 
Vector Machine, and Random Forest models to predict 
postdischarge mortality as the outcome.

We used five-fold cross-validation to perform param-
eter tuning for each model in the derivation sets (online 
supplemental table 1). For validation of the models, we 
evaluated the AUROC and area under the precision-
recall curve (AUPRC) in the 20% validation sets. We 
internally validated our risk assessment tools using boot-
strapping methodology with 100 repetitions and calcu-
lated the 95% CIs for the AUROC and AUPRC curve for 
each model.29–32 We compared the developed machine 
learning models for effective predictions of young chil-
dren at risk for postdischarge mortality to our previously 
developed logistic regression models using the DeLong 
test. We used multiple imputation for variables with 
data missing at random by using the chained equations 

https://dx.doi.org/10.1136/bmjpo-2025-003547
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R package to create 10 imputed datasets based on fully 
conditional specifications.33 Individuals were weighted 
by one minus their fraction of missing data divided by 
the number of imputed datasets to account for multiple 
imputations.34 35 Multiple imputation was performed for 
variables with >70% complete data prior to splitting each 
dataset into derivation and validation sets. All analyses 
were conducted using Python.

RESULTS
A total of 4243 participants enrolled and had 60-day 
survival status available (2310 (54.4%) neonates and 1933 
(45.6%) young children; table 1). Just over half (n=2249, 
53.0%) of the enrolled participants were discharged from 
JFKMC and 47% (n=2014) were enrolled from MNH. Of 
enrolled participants, there were 138 (3.3%) who died 
within 60 days of hospital discharge (71 [51.4%] neonates 
and 67 [48.6%] young children). Among the 71 neonatal 
deaths that occurred within 60 days of discharge, 26.8% 
occurred in the first 7 days and 50.7% of the 67 deaths 
among infants and children occurred within 30 days of 
discharge.

Risk assessment tools to identify neonates at risk for 
postdischarge mortality
The XGBoost model to identify neonates at risk for post-
discharge mortality selected discharge against medical 
advice, caregiver age, the receipt of oxygen therapy, 

caregiver education level, the presence of congenital 
birth defects, and admission weight of the neonate as 
features predictive of postdischarge mortality (figure 1). 
The XGBoost model for neonates demonstrated an 
AUROC of 0.99 (95% CI 0.99, 0.99) in the derivation and 
an AUROC of 0.99 (95% CI 0.97, 0.99) in the validation 
set (figure 2). The AUPRCs of the XGBoost model for 
neonates were 0.99 (95% CI 0.99, 0.99) in the derivation 
and 0.82 (95% CI 0.73, 0.87) in the validation set (online 
supplemental figure 1).

The Hist Gradient Boost model for neonates selected 
the same six features as the XGBoost model (figure 1). 
This model also yielded excellent discriminatory value 
in the derivation (AUROC 0.99, 95% CI 0.99, 0.99) and 
validation sets (AUROC 0.99, 95% CI 0.99, 0.98; figure 2) 
and an AUPRC above the prevalence of postdischarge 
mortality in the derivation (AUPRC 0.99, 95% CI 0.99, 
0.99) and validation sets (0.86, 95% CI 0.83, 0.91; online 
supplemental figure 1).

The Random Forest model for neonates included the 
same six features as both boosted models (figure 1) and 
demonstrated excellent discriminatory value in deriva-
tion (AUROC 0.99, 95% CI 0.99, 0.99) and validation 
(AUROC 0.99, 0.98, 0.99; figure 2). The Random Forest 
model demonstrated an AUPRC above the prevalence of 
postdischarge mortality in both derivation (AUPRC 0.99, 
95% CI 0.99, 0.99) and validation (AUPRC 0.92, 95% CI 
0.89, 0.94; online supplemental figure 1).

Table 1  Characteristics of enrolled participants who were discharged from referral hospitals in Dar es Salaam, Tanzania and 
Monrovia, Liberia

Characteristic
Overall, N=4243, 
n (%)

Neonates, N=2310, 
n (%)

Young children, N=1933, 
n (%)

Postdischarge mortality 138 (3.3) 71 (3.1) 67 (3.5)

Site

 � Liberia 2249 (53) 1165 (50) 1084 (56)

 � Tanzania 1994 (47) 1145 (50) 849 (44)

Age at discharge, median (IQR) –* 8 (4, 15) 11 (4, 23)

 � (Missing) 189 50 139

Sex

 � Female 1859 (44) 1068 (46) 791 (41)

 � Male 2373 (56) 1238 (54) 1135 (59)

 � (Missing) 11 4 7

Disposition from hospital

 � Discharge 4093 (97) 2224 (96) 1869 (97)

 � Against medical advice 145 (3.4) 85 (3.7) 60 (3.1)

 � Transfer 3 (<0.1) 1 (<0.1) 2 (0.1)

 � (Missing) 2 0 2

Number of discharge diagnoses, median (IQR) 2 (1, 3) 2 (1, 2) 2 (1, 3)

Presence of any chronic medical conditions 403 (9.5) 68 (2.9) 335 (17)

 � (Missing) 2 0 2

*Neonates' age was measured in days, infants and children were measured in months.

https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
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The Support Vector Machine model for neonates 
required the inclusion of 17 features (figure 1) to yield 
good discriminatory value in the derivation set (ie, 
AUROC 0.88, 95% CI 0.86, 0.91) and validation set (ie, 

AUROC 0.89, 95% CI 0.89, 0.90; figure  2). Despite its 
lower discriminatory value, the AUPRC of the Support 
Vector Machine model for neonates had an AUPRC 
above the prevalence of postdischarge mortality in both 
the derivation (AUPRC 0.21, 95% CI 0.17, 0.25) and vali-
dation sets (0.84, 95% CI 0.83, 0.85; online supplemental 
figure 1).

The Neural Network model to identify neonates at 
risk for postdischarge mortality included eight variables 
(figure 1) and had excellent discriminatory value in deri-
vation (AUROC 0.95, 95% CI 0.92, 0.97) and validation 
(AUROC 0.97, 95% CI 0.96, 0.98; figure 2). The AUPRC 
for the Neural Network model was above the prevalence 
of postdischarge mortality in derivation (AUPRC 0.48, 
95% CI 0.39, 0.56) and validation (AUPRC 0.96, 95% CI 
0.95, 0.97; online supplemental figure 1).

Each of the machine-learning models for neonates had 
greater discriminatory value than the logistic regression 
model for predicting postdischarge mortality (all p<0.001 
by DeLong test). With the exception of the Support 
Vector Machine model, all machine-learning models for 
neonates had F-1 scores >0.90 and had excellent sensi-
tivity and specificity at 50% probability of postdischarge 
mortality (online supplemental table 2).

Risk assessment tools to identify young children at risk for 
postdischarge mortality
Our XGBoost model for young children selected 
these five features as most predictive of postdischarge 
mortality: discharge against medical advice, presence 

Figure 1  Features predictive of postdischarge mortality among neonates in each machine learning model.

Figure 2  Receiver operating characteristic curves for 
machine learning models to identify neonates at risk for 
postdischarge mortality. AUC, area under curve; XGBoost, 
eXtreme Gradient Boosting.

https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
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of pallor, haemoglobin level, presence of an infectious 
condition, and presence of chronic medical problems 
(figure  3). This model resulted in an AUROC of 0.94 
(95% CI 0.94, 0.95) in derivation and AUROC of 0.91 
(95% CI 0.88, 0.93) in validation (figure 4). The AUPRC 
for the XGBoost model for young children was above 
the prevalence of postdischarge mortality among young 
children in derivation (AUPRC 0.94, 95% CI 0.93, 0.94) 
and validation (AUPRC 0.49, 95% CI 0.46, 0.59; online 
supplemental figure 2).

The Hist-Gradient Boost model for young children 
also demonstrated excellent discriminatory value in deri-
vation (AUROC 0.95, 0.94, 0.95) and validation (0.91, 
95% CI 0.88, 0.94; figure 4) with the selection of the same 
five variables as the XGBoost model for young children. 
The Hist-Gradient Boost model yielded an AUPRC above 
the prevalence of postdischarge mortality in derivation 
(AUPRC 0.94, 95% CI 0.94, 0.95) and validation (0.52, 
95% CI 0.48, 0.61; online supplemental figure 2).

The Random Forest model for infants and children 
included the same five features as the boosted models 
and had excellent discriminatory value in derivation 
(AUROC 0.98, 0.97, 0.98) and validation (0.93, 95% CI 
0.90, 0.95; figure 4). The Random Forest model also had 
an AUPRC far above the prevalence of postdischarge 
mortality among young children (ie, AUPRC 0.97, 95% CI 
0.97, 0.97 in derivation and 0.61, 95% CI 0.54, 0.67 in vali-
dation; online supplemental figure 2).

Figure 3  Features predictive of postdischarge mortality among infants and children in each machine learning model. 
*Infectious disease diagnosis includes any of the following: pneumonia, malaria, sepsis, tuberculosis, infectious diarrhoea, 
meningitis, or skin and soft tissue infection.

Figure 4  Receiver operating characteristic curves for 
machine learning models to identify infants and children 
at risk for postdischarge mortality. AUC: area under curve; 
XGBoost: eXtreme Gradient Boosting.

https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
https://dx.doi.org/10.1136/bmjpo-2025-003547
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The Support Vector Machine model selected 25 
features (figure 3) to create a model with good discrim-
inatory value in derivation (AUROC 0.84, 95% CI 0.80, 
0.86) and in validation (AUROC 0.86, 95% CI 0.85, 0.86; 
figure 4). This model also demonstrated an AUPRC above 
the prevalence of postdischarge mortality among young 
children (0.21, 95% CI 0.16, 0.28 in derivation and 0.81, 
95% CI 0.80, in validation; online supplemental figure 2).

The Neural Network model for young children selected 
25 features (figure 3) and demonstrated an AUROC of 
0.95 (95% CI 0.93, 0.97) in derivation and AUROC 0.98 
(95% CI 0.97, 0.99) in validation to identify young chil-
dren at risk for postdischarge mortality (figure 4). The 
Neural Network model also demonstrated an AUPRC 
above the prevalence of postdischarge mortality among 
young children (AUPRC 0.73, 0.66, 0.78 in derivation 
and 0.98, 95% CI 0.97, 0.98 in validation; online supple-
mental figure 2).

Each of the machine-learning models for young chil-
dren had greater discriminatory value compared with 
the logistic regression model for predicting postdis-
charge mortality (all p<0.001 using the DeLong test). 
All machine-learning models for infants and children 
had F-1 scores >0.90 (online supplemental table 2). 
The XGBoost, Hist-Gradient Boost, and Random Forest 
models had excellent specificity at 50% probability of 
postdischarge mortality.

Our post-hoc analyses on the prediction of postdis-
charge mortality supplanting the feature ‘discharge 
against medical advice’ with features predictive of 
‘discharge against medical advice’ demonstrated similar 
discriminatory value to our main models for both 
neonates and infants and children (online supplemental 
table 3).

DISCUSSION
We developed several machine learning models to identify 
neonates and young children at risk for all-cause 60-day 
postdischarge mortality at two sites in sub-Saharan Africa. 
Each of the developed models had greater discriminatory 
value than previously published risk assessment tools for 
postdischarge mortality among children in sub-Saharan 
Africa,10 14 36–38 including the tools we developed from the 
same dataset using logistic regression.13 19 The XGBoost, 
Hist-Gradient Boost, and Random Forest models may be 
best suited for clinical use due to their inclusion of fewer 
features while also demonstrating excellent discrimina-
tory value in internal validation.

To our knowledge, ours is the first study to use machine 
learning approaches to develop parsimonious risk assess-
ment tools to identify neonates and young children 
at risk for postdischarge mortality. Investigators in the 
multicountry Childhood Acute Illness and Nutrition 
Network used XGBoost to identify 25 factors predictive 
of postdischarge mortality among children aged 2–24 
months in six countries (including four sub-Saharan 
African countries).18 However, their objective was not to 

develop tools that could be used in clinical practice to 
accurately identify individual young children at risk for 
postdischarge mortality. Other studies have used tradi-
tional logistic regression to develop risk assessment tools 
for postdischarge mortality.10 13 14 19 36 37 Although some 
studies suggest that logistic regression-based models 
may outperform machine learning models,38 our study 
suggests that, with recent advances in prediction model-
ling, more precise approaches for identifying children 
at risk for postdischarge mortality are possible through 
machine learning.

Although each model for neonates and young chil-
dren demonstrated superior discriminatory value to 
traditional logistic regression-based models, some of our 
models were more parsimonious than others. Specifi-
cally, we found that XGBoost, Hist Gradient Boost, and 
Random Forest models for both neonates and young 
children had the greatest discriminatory value, the 
fewest features, and were less computationally taxing 
than Support Vector Machine and Neural Network 
approaches. We elected to test several approaches to 
identify models that may balance discriminatory value 
with feasibility for use in clinical practice in busy settings 
with limited resources. Prior studies have demonstrated 
that the optimal machine learning approach may vary 
by disease process and outcome.39–41 In our study, the 
Support Vector Machine approach was suboptimal as it 
required the inclusion of 17 features for neonates and 25 
for young children to achieve good discriminatory value, 
which may not be feasible for risk stratification in clinical 
practice in the absence of electronic health records as is 
currently the case in many settings in sub-Saharan Africa.

The features selected by our XGBoost, Hist Gradient 
Boost, and Random Forest models align with those iden-
tified in prior studies,10 37 which suggests that both social 
and biological phenomena drive postdischarge mortality. 
For example, discharge against medical advice, having 
lower haemoglobin levels or pallor, and having lower 
birth weight were predictive of postdischarge mortality, 
as observed in previous studies.10 13 19 37 Despite the use 
of sophisticated modelling, all the identified features can 
be collected in routine clinical practice, which makes the 
future use of these models potentially feasible. Discharge 
against medical advice can be measured at discharge 
and, although strongly associated with postdischarge 
mortality, could be supplanted by other features in our 
models and retain excellent discriminatory value.

Although the machine learning risk assessment tools 
we developed require sophisticated digitised health data, 
which is not widely available in sub-Saharan Africa, their 
clinical applicability at the bedside will only be possible 
with a simple calculator, which may be developed in the 
form of a smartphone application. Such applications 
have demonstrated feasibility in sub-Saharan Africa,42 
but have yet to be implemented widely. The use of such 
tools has the potential to more precisely direct resources 
to the highest risk populations, which warrants further 
study. However, prior to the development of such mobile 
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applications for our machine learning models, geograph-
ical external validation is necessary to ensure the reli-
ability of our findings. To this end, we will conduct an 
external validation study of these models at two sites in 
Western Kenya with enrolment beginning in 2025.

Limitations
Our findings should be interpreted in the context of their 
limitations. First, although we used a list of >110 candi-
date features to develop our models, there may be other 
unmeasured confounding variables not assessed in our 
study that could contribute to postdischarge mortality. 
Due to the number of events of postdischarge mortality, 
we were unable to assess our models’ confidence at each 
follow-up time point. Additional studies with larger 
sample sizes may allow for further development of 
models that can add precise prediction of clinical param-
eters predictive of postdischarge mortality at specific time 
points following discharge. This study was also conducted 
at national referral hospitals in Tanzania and Liberia and 
thus may not be representative of other settings in sub-
Saharan Africa, such as district or lower-level hospitals. 
Thus, external validation studies are warranted prior to 
the clinical use of our machine learning models for post-
discharge mortality prediction.

CONCLUSIONS
Our parsimonious machine learning models had excel-
lent discriminatory value to predict all-cause, 60-day 
postdischarge mortality among neonates and young chil-
dren in two large hospitals in sub-Saharan Africa. These 
models required fewer features than previous models and 
demonstrated superior discriminatory value. However, 
before their implementation, external validation studies 
of these tools are warranted. This may assist in the design 
of appropriate interventions to reduce postdischarge 
mortality among the most vulnerable populations.
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