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Respiration rate (RR) and respiration patterns (RP) are considered early indicators of

physiological conditions and cardiorespiratory diseases. In this study, we addressed

the problem of contactless estimation of RR and classification of RP of one person

or two persons in a confined space under realistic conditions. We used three impulse

radio ultrawideband (IR-UWB) radars and a 3D depth camera (Kinect) to avoid any blind

spot in the room and to ensure that at least one of the radars covers the monitored

subjects. This article proposes a subject localization and radar selection algorithm

using a Kinect camera to allow the measurement of the respiration of multiple people

placed at random locations. Several different experiments were conducted to verify the

algorithms proposed in this work. The mean absolute error (MAE) between the estimated

RR and reference RR of one-subject and two-subjects RR estimation are 0.61±0.53

breaths/min and 0.68±0.24 breaths/min, respectively. A respiratory pattern classification

algorithm combining feature-based random forest classifier and pattern discrimination

algorithm was developed to classify different respiration patterns including eupnea,

Cheyne-Stokes respiration, Kussmaul respiration and apnea. The overall classification

accuracy of 90% was achieved on a test dataset. Finally, a real-time system showing RR

and RP classification on a graphical user interface (GUI) was implemented for monitoring

two subjects.

Keywords: respiration rate, respiration patterns, IR-UWB radars, Kinect, contactless respiration monitoring,

remote sensing

1. INTRODUCTION

Contactless monitoring has several advantages in comparison with wearable technologies including
the fact that it does not interfere with the subject’s normal behavior, does not require any
activation of the system or daily maintenance such as cleaning or charging batteries and does
not require contact with the body. However, contactless monitoring using radars also has several
disadvantages in comparison with wearables including reduced accuracy of monitored parameters
and its dependence on the orientation of subjects and their location in the room, monitoring only
in confined areas, difficulties in identifying the person being measured, or assigning the measured
signals to the same person in multiple-person scenarios and interference from other moving people
might affect the measurements of stationary people. These are serious problems that limit the
widespread use of contactless devices in general and/or limit them to monitoring a single person.
In this study, we tried to address several of these issues. In this article, we propose a system

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2022.799621
http://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2022.799621&domain=pdf&date_stamp=2022-03-09
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:she014@uottawa.ca
https://doi.org/10.3389/fphys.2022.799621
https://www.frontiersin.org/articles/10.3389/fphys.2022.799621/full


He et al. Contactless Respiration Monitoring

for contactless monitoring of respiration rate (RR) and
respiration patterns (RP) of two subjects using three radars
and a 3D depth camera (Kinect). The system continuously and
unobtrusively monitors people when they are in the range of
sensors. The main applications of our system include monitoring
respiration patterns of patients with congestive heart failure
(Tobushi et al., 2019), detecting drug overdose (Bachmutsky
et al., 2020), monitoring inmates (Graichen et al., 2012),
monitoring elders in their living environments (home, retirement
home) and assisting in monitoring COVID-19 (Islam et al.,
2021). However, this work is a proof of concept and has not yet
been used in these applications.

We use inexpensive off-the-shelf components to build the
system. Multiple radars are used to cover the whole area of the
room. In addition, detection of the subject by multiple radars
allows us to select the best signal from the radars reducing the
dependence on the orientation of the subjects, their location in
the room, or movement of other people on the accuracy of RR
estimation. We do not record videos or utilize RGB videos in any
way for privacy reasons. From the depth camera, we only use the
skeleton information in the form of subject’s joints coordinates
and IDs. In addition, inaccuracies in RR estimation are further
reduced by detectingmotion artifacts and recognizing/classifying
the abnormal breathing patterns before RR estimation.

Respiration rate is the number of breaths a person takes per
unit of time and it is usually determined in practice by counting
the number of times the chest rises or falls per minute. RR
is one of four primary vital signs that can be used to assess
an individual’s general physical health. The current practice is
to use contact-based RR monitoring methods in clinical and
occupational setting. These methods are based on recording
respiratory airflow, sounds, air temperature, and chest wall
movements (Massaroni et al., 2019b). The drawbacks of these
approaches include sensitivity to motion artifacts and often
uncomfortable to wear limit their use for long-term monitoring.

Recently, contactless RR monitoring has become an attractive
research topic. In Massaroni et al. (2019a), an RGB camera was
used to monitor the subject’s breathing pattern and RR at a
distance of 1.2 m and the mean error between the estimated
RR and the reference measurement was −0.01 breaths/min. In
Chan et al. (2020), an infrared thermal camera was employed
for contactless RR estimation within 1 m (0.4–0.6 m). The IR-
UWB radar which has high resolution and good penetration
can recognize the subtle movement of human body parts
through clothing (Lazaro et al., 2010; Hu and Jin, 2016) and
therefore it is widely used for contactless RR monitoring as
well. The important component of radar-based RR estimation
is detection and localization of human subjects. In Goldfine
et al. (2020), a multiple-radar system was developed for
subject localization and RR estimation. However, the focus of
the article is on localization and RR estimation of a single
subject. In Koda et al. (2021), frequency modulated continuous
wave (FMCW) radar with 3 × 4 receiving and transmitting
element was used to locate and estimate multiple people and
their RR.

Respiratory patterns related to breathing disorders are
commonly analyzed based on the respiratory signal collected
by contact-based devices, including respiratory inductance
plethysmography (RIP) and polysomnogram. The recognition of
abnormal breathing patterns is important for health monitoring
and disease prognosis (LibreTexts, 2018). Generally, abnormal
respiratory patterns are induced by injury of respiratory centers,
use of narcotic medications and respiratory muscle weakness
(Yuan et al., 2013), stroke, heart failure (Lanfranchi et al., 1999),
and other conditions.

Recently, there have been several works that perform
respiratory pattern classification methods based on contactless
sensors including optical sensors and radars. The respiratory
patterns can be classified using the respiratory signal extracted
from the radar range bin corresponding to the subject’s chest
wall. The respiratory patterns can be used to implement identity
authentication or breathing disorder recognition. Identity
authentication is the characteristic analysis of the breathing
signal (mainly normal breathing) of specific subjects, while
breathing disorder recognition focuses on respiratory pattern
classification (mainly abnormal breathing) regardless of the
subject. For the identity authentication, Islam et al. (2020)
reviewed and summarized the existing radar-based identity
authentication algorithms, and evaluated the state-of-the-art
identity authentication algorithms’ performance and limitations.
For the breathing disorder recognition which is related to this
study, in Wang et al. (2020a,b), authors implemented the RP
classification using recurrent neural networks based on 60-s
respiratory signal extracted from a depth camera. It was trained to
classify six respiratory patterns (eupnea, tachypnea, bradypnea,
Biot’s respiration, Cheyne Stokes respiration, and central apnea).
There are also several machine-learning-based classification
schemes based on 30-s radar-extracted respiratory signals.
They were designed to classify respiratory patterns including
normal breathing, Biot’s respiration, Cheyne Stokes respiration,
dysrhythmic breathing in general, Kussmaul breathing and
central apnea. In Miao et al. (2017), an SVM-based classifier
was developed to classify four breathing patterns with a
total accuracy of 90%. In Feng et al. (2019), a KNN-based
classifier was developed to classify six breathing patterns with
a classification accuracy of each breathing pattern ranging
from 60 to 97%. In Zhao et al. (2019), an SVM classifier
was developed to classify six breathing patterns with an
average accuracy of 94.7%. However, for the radar-based
breathing disorder recognition algorithms mentioned above,
they were all implemented in a batch processing manner.
The reason is that the respiration signal distorted by the
random body movement needs to be manually filtered out,
otherwise it will affect the classification accuracy (Le Kernec
et al., 2019). That is why the existing radar-based breathing
disorder recognition methods are not applicable in continuous
stream processing.

In our previous work (He et al., 2020), we used Kinect to
detect and locate the subjects using 3D skeleton information.
This article extends this initial work by implementing a real
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time system capable of estimating RR and classifying RP for
two persons.

2. CONTRIBUTION

The main contributions of this work are as follows

• Many factors can affect respiration rate estimation including
small movements, detection of incorrect range bin by the
radar, other movements in the room, orientation toward the
radar, clutter. If the breathing is irregular, aperiodic or follows
some of the breathing patterns detected in this article, it
is difficult to determine the radar range bin corresponds to
the subject’s chest. We have presented a real-time system for
robust RR estimation including detection of the chest by using
radars and a depth camera, selecting the signal from the radar
that has the best “view” of the subject’s chest, classifying the
respiration patterns, estimating signal quality only in case
when the person is stationary and detected pattern is eupnea
and then estimating the respiration rate.

• RR estimation and RP classification of multiple people is
challenging especially if the people occupy the similar range
bins of the radars. Associations of signals from the radars
to each monitored person is a challenge as well especially
when people move. Our contributions at the system level that
allow us to partially address these challenges by utilizing depth
camera to do data association and intelligently selecting radars
that “see” subjects in different range bins.

• To the best of our knowledge this is the first real-time
implementation of the breathing disorder recognition using
data from IR-UWB radars.

3. MATERIALS AND PROTOCOLS

The steps of RP classification and RR estimation using Kinect
camera and IR-UWB radars are shown in Figure 1. The
data is collected by a Kinect camera, three IR-UWB radars
and the respiration belts that are employed as the reference
devices for RR measurement. The data pre-processing includes
data synchronization, resampling, signal denoising and clutter
removal. The subject’s localization include conversion of the
joints’ coordinates (chest, left, and right shoulders) from a rotated
Kinect coordinated system to a reference coordinate system. A
motion detection algorithm is implemented to determine if a
subject is moving or stationary based on the average velocity of
the middle point between the shoulders. If a subject is stationary,
then a radar selection approach is considered to select the
best radar based on the subject’s location, orientation, and the
distance of the subject’s chest from the radar. The respiratory
signal will be extracted from the selected radar data and the RP
classification algorithm will be applied. RR will be estimated only
if the subject is breathing normally and the respiratory signal
quality is good. Our work aims to provide a real-time respiration
monitoring system that can be used in long-term healthcare
monitoring applications, such as home healthcare monitoring,
senior apartment and hospitals. In this article, several different
experiments were conducted and each module was verified

separately, a real time system that includes all of the proposed
approaches was also implemented.

3.1. Study Population
Five healthy subjects (3 males and 2 females) participated in
the single-subject RR monitoring experiments and three of these
subjects (2 males and 1 female) participated in the two-subjects
RR monitoring experiments. Besides, two healthy subjects
(2 males) participated in the single-subject RP classification
experiments and 9 different subjects participated in building a
dataset for training the RP classification models. The experiment
protocol was approved by the University of Ottawa Research
Ethics Board.

3.2. Experiment Protocol
For one-subject RR experiments, each subject was sitting
stationary on an office chair within the radar detection area
and breathing normally. The simultaneous radar, reference
respiratory signal and Kinect data were collected for 2 min in
one experiment. Each subject was asked to perform two sets of
experiments with their chests pointing toward radar1 and radar2,
respectively. The subject’s location and orientation were different
for each experiment.

In two-subjects RR experiments, two subjects were sitting
stationary on the chairs within the radar detection area. The
simultaneous radar, reference respiratory signal and Kinect
data were collected for 2 min in each experiment. Five
experiments were conducted with different subjects’ locations
and orientations. The subjects’ locations and orientations were
set intentionally for each experiment to test our system in realistic
situations and the details of each experiment are demonstrated in
Figure 2.

For one-subject RP experiments, we collected data separately
for training and testing. To construct a respiration pattern
signal dataset for model training, 9 healthy human volunteers
(6 males and 3 females) were recruited to emulate breathing
corresponding to each respiration pattern and used the radar
to record their respiration movement. In each experiment, a
volunteer was asked to imitate one of the respiration patterns
for 1 min under a fixed radar-chest distance of 1.5 m. Each
of the volunteers was asked to perform at least 2 sets of
experiments. After the signal collection, each 1-min breath data
chunk was segmented into four 15-s chunks. The non-stationary
data chunks, which include respiration-irrelevant signals and
distorted respiratory signals, are also selected from these radar-
collected data chunks. We also designed a simple respiratory
signal simulator (Han, 2021) according to the characteristic of the
radar-collected apnea to augment the classes with less data.

For testing, the subjects were asked to imitate certain
respiration patterns at a certain stage of the experiment. The
experiment was conducted in the following manner: the subject
was asked to perform eupnea and imitate Cheyne Stokes
respiration, Kussmaul respiration and apnea in the monitored
area. Except for the period of simulating the respiration patterns,
the subject was able to move freely. Two healthy male subjects
participated in this experiment. None of these two subjects
participated in the previous experiment used to build respiration
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FIGURE 1 | The workflow of RP classification and RR estimation using Kinect camera and IR-UWB radars.

FIGURE 2 | The setup that shows the placement of radars and Kinect for the experiments of two-subjects RR estimation. The position of sensors are the same in all

figures while the orientation and subject location changes. The subjects’ locations, orientations and the distances between subjects’ chests to three radars (unit:

meters) in (A) Experiment1, (B) Experiment2, (C) Experiment3, (D) Experiment4, and (E) Experiment5.

pattern dataset to prevent any bias in classification. The
experiment duration was determined according to the subject’s
physical status. The experiment duration for the first subject was
5 min and for the second subject was 8 min. All collected data
were manually labeled after the experiment.

The two-subject RP classification experiments are not
presented in this article. The experiment results are similar to
those of the one-subject RP experiments. The only difference
in results is observed when two subjects appear in the same
range bin of the radar - then the extracted respiratory signal is
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corrupted. This problem is resolved by selecting one of the three
radars for which the distance between the subjects and the radar
is different and therefore the extracted respiratory signals are in
different range bins.

3.3. Signal Acquisition System
The signal acquisition system consists of three IR-UWB radars,
a Kinect camera and two respiration belts. The UWB radar
used in this experiment is a XethruTM X4M03 development kit
manufactured by Novelda (Oslo, Norway), which uses the X4
chip operating at a center frequency of 7.29 GHz. The radar
is equipped with 6-8.5 GHz directional patch antennas with a
beam of 60◦ in both azimuth and elevation axes. The sampling
rate of this radar is 23 GS/s in fast time, up to 20S/s in slow
time (Baird, 2017) and it was set to 17 S/s in this work. The
output data is in the form of a matrix where rows represent
observations or samples in slow time and the columns represent
samples in fast time (corresponding to range bins). The range
resolution of the X4 radar is approximately 5.22 cm. During
experiments the radar was programmed to record data up to a
distance of 9.4 m (XPengZhao, 2020) away from the radar which
resulted in 180 columns in the data matrix. These UWB radar
sensors were placed at different locations in the laboratory, as
shown in Figure 4A. Since the radar used in this study is pseudo-
random noise UWB radar, each radar has its unique pattern when
transmitting. Pulses from other radar will be treated as noise
and therefore the radar pulses from different radars would not
interfere with each other (Andersen et al., 2017; Novelda, 2018).

The Azure Kinect (Microsoft R©) is an RGB-D camera that
includes a 12 megapixel RGB camera supplemented by a 1-
Megapixel Time-of-Flight (ToF) depth camera. The Kinect
body tracking software can detect and track multiple humans
simultaneously and the maximum detection range of the depth
camera is 5.46 m (Microsoft, 2021). Each detected human is
assigned an ID for temporal correlation between frames and the
kinematic skeleton. A skeleton includes 32 joints and all joint
coordinates are given relative to the depth camera 3D coordinate
system (Microsoft, 2019a). An example of joints detected by the
Kinect camera when a subject was sitting on an office chair is
shown in Figure 3A. This work only extracts the coordinates
of three joints (chest, left shoulder, right shoulder) from Azure
Kinect Body Tracking SDK and does not use RGB or depth
frames due to privacy concerns. The Kinect camera operated
at 1 fps in this work and it was placed on a 2.11 m pole. The
experimental setup for this work is shown in Figure 4A.

There are two Go Direct R©respiration belts (Vernier)
employed to measure reference respiratory waveform from the
subjects’ chest. The reference RR belt is a force sensor based
device which can measure the movement of the chest caused by
respiration and the sampling rate is 10 Hz.

A laptop (Intel Core i7, Nvidia GeForce GTX 1050 Ti, 16 GB
RAM, Windows10) was used for data collection, data storage
and analysis. Our real-time system was also implemented on
this laptop. Data was saved in separate CSV files for analysis,
the signals were processed and the proposed algorithms were
implemented using Python 3.5.

4. METHODS

4.1. Data Pre-processing
All the signals were resampled to 17 Hz because of different
sampling frequencies of the radars and breathing belts. The
background noise was removed from radar signals by subtracting
the background data from raw radar data. Then the singular
value decomposition (SVD) was applied to filter the clutter from
radar signals.

4.2. Subject’s Localization
The Kinect camera was employed for body tracking and
localization. As defined by the manufacturer, the origin [0, 0, 0]
is located at the focal point of the camera, and the reference
coordinate system is oriented such that the positive x-axis points
to the right, the positive y-axis points down and the positive z-
axis points forward (Microsoft, 2019b), as shown in Figure 3B

(solid lines). In practice, to cover a larger detection area, the
Kinect camera was placed on a pole pointing downwards at a
certain angle that means the reference frame of the Kinect was
rotated about its x-axis by that angle as shown in Figure 3B (dash
lines). The rotation matrix widely used in robot kinematics was
applied to transform the coordinates from the rotated frame to
the reference frame. Since the Kinect coordinate system was only
rotated about x-axis in this work, the joints’ coordinates of the
subject in the reference frame can be converted from the rotated
frame by calculating the product of the rotation matrix and the
detected coordinates:

0P = 0R1 ·
1P =





1 0 0

0 cosA − sinA

0 sinA cosA



 ·





xrot
yrot
zrot



 (1)

where, 0P = [x0, y0, z0] are the coordinates of one joint in the

reference Kinect frame, 0R1 is the rotation matrix and A is the

rotation angle which is -30◦ in this study, 1P = [xrot , yrot , zrot] are
the coordinates of that joint in the rotated Kinect frame. Then the
Euclidean distances between subject’s joints and each radar can be
calculated as:

dist(i) =

√

(x0 − xi)2 + (y0 − yi)2 + (z0 − zi)2 (i = 1, 2, 3) (2)

where, dist(i) is the distance between the subject’s joint to each
radar, [x0, y0, z0] is the joint coordinates in the reference Kinect
frame and [xi, yi, zi](i = 1, 2, 3) are the radar’s coordinates in
the reference Kinect frame. The coordinates of the Kinect and
three radars in the reference coordinate system can be found in
Figure 4A.

4.3. Motion Detection
After locating a subject using a Kinect camera and the proposed
method, a threshold based motion detection algorithm was
developed to determine if a subject is moving or stationary.
The middle point of the left and right shoulders was used as a
reference point to calculate the movement trajectory. A subject is
determined non-stationary (or moving) if the average velocity of
the reference point is greater than a threshold of 0.7 m/s which
is similar to the slow walking speed. The RR estimation and RP
classification will only be conducted if the subject is stationary.
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FIGURE 3 | (A) Joints and skeletons detected and visualized by the Azure Kinect Tracking Viewer when a human subject was sitting on a chair. (B) The Kinect frame

is rotated about x-axis by an angle A (solid lines: reference frame; dash lines: rotated frame).

FIGURE 4 | (A) The location of the devices and their coordinates in the reference frame. (B) The method to determine if a subject is within radar detection area (black

dash line: radar detection area). (C) Radar selection method based on subject’s orientation.

FIGURE 5 | An example of the relation between subject’s orientation and respiration signals. (A) A subject was sitting on a chair facing toward Radar1. (B) The

respiration signal extracted from Radar1 (RRest = 15.45 breaths/min). (C) The respiration signal extracted from Radar2. (D) The respiration signal extracted from

Radar3. (E) The respiration signal detected by a reference breathing belt (RRref = 15.52 breaths/min).

4.4. Radar Selection
A single radar has limited detection area and therefore three
radars were placed at different locations to cover the entire room.
A good quality respiratory waveform can be extracted when
the subject is facing toward the radar. A demonstration of the
relation between subject’s orientation and extracted respiration

signals from three radars can be seen in Figure 5. The respiration
signal detected by radar1 (Figure 5B) is almost the same to
the respiration signal measured by a breathing belt (Figure 5E)
when a subject was sitting on a chair and facing toward radar1.
Therefore, it is necessary to include a radar selection algorithm
based on the subject’s location and orientation to extract the
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FIGURE 6 | Respiration belt samples of typical respiratory patterns, (A) Eupnea, (B) Apnea, where red boxes represent the apnea events, (C) Kussmaul respiration,

and (D) Cheyne Stokes respiration.

best possible respiratory waveform for RP classification and
RR estimation.

In this work, the beam solid angle of the employed
radar is 60◦. As shown in Figure 4B, a subject is
determined in the radar detection area (beam solid angle)
if 60◦ < arctan (|1z|/|1x|) ≤ 90◦ and dist < 5m (calculated
using Equation 2). |1x| is the absolute difference between the
subject’s chest coordinates and radar’s coordinates on the x-axis
and |1z| means the absolute difference between the subject’s
chest coordinates and radar’s coordinates on z-axis.

If a subject is detected by multiple radars, then the radar
toward which the subject is oriented will be selected. Ideally, if
a subject is facing straight to the radar, the 6 RMD should be 90◦

(see Figure 4B). The orientation angle 6 RMD can be expressed
as:

6 RMD = arccos
RM2 +MD2 − RD2

2 · RM ·MD
(3)

where RM is the distance between right shoulder to the shoulders’
middle point on xz plane (Kinect reference frame), MD is the
distance between the shoulders’ middle point and the radar on
xz plane, RD is the distance between the right shoulder and the
radar on xz plane as shown in Figure 4C. If a subject is inmultiple
radars’ detection areas, then the orientation angle 6 RMD will be
calculated for each of them and the radar whose orientation angle
is closest to 90◦ will be selected.

If there are multiple subjects detected, an algorithm was
developed to select the corresponding radar for each subject
based on their orientations and locations. The pseudocode
of the proposed radar selection method can be found in
Supplementary Algorithm 1. This radar selection algorithm is
demonstrated with several examples.

• If the difference of the distances between chests of the subjects
and the radars is greater than 30 cm (6 range bins), then the
radars they are oriented to will be selected for respiratory
signals extraction. Such experiments are Experiment 1-4 in
Section 3.2.

• If the difference of the distances between subjects’ chests and
the radars is smaller than 30 cm (6 range bins), then another
radar will be selected for estimating RR. For example, in
Experiment5 in Section 3.2, it is estimated that Subject1 and
Subject2 are oriented toward radar1 and radar2, respectively.
However, the difference of the distances between the chests of
Subject1 and Subject2 to radar1 is around 5 cm which means
that it is difficult to identify Subject1’s respiratory signal using
radar1. Therefore the radar whose orientation angle is the
second closest to 90◦ will be selected for Subject1. This means
that radar2 will be selected for both Subject1 and Subject2.
Also, the difference of the distances between subjects’ chests to
radar2 is greater than 30 cm which makes it possible to extract
respiratory signals from radar2 for both subjects.

4.5. Respiratory Signal Extraction
If the subject is detected stationary and a radar is selected, the
respiratory signal will be extracted. A narrow range of ±3 range
bins (similar to the thickness of the human body) around the
calculated distance between the subject’s chest and the radar using
Equation (2) is extracted from the selected radar data matrix.
Within these range bins, the one with the maximum variance is
determined as the respiratory signal.

4.6. Respiratory Pattern Classification
RP classification includes two steps: classification itself and
pattern discrimination. The second step is needed in order
to prevent miss-classifications due corrupted signal. Pattern
discrimination further processes the signal waveform to
determine signal quality, detect individual breaths, and also
confirms respiration patterns. The extracted breath sample is
classified into five patterns: eupnea (normal breathing), Cheyne
Stokes respiration (CSR), Kussmaul respiration, apnea, and
non-stationary. The pattern “non-stationary” is used to classify
the extracted respiratory signals which are distorted by minor
body movements, or the respiration-irrelevant signals. If the
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TABLE 1 | Statistical features.

Categories Features

Time domain features (signal peak) Amplitude variability

Mean amplitude

Maximum amplitude

Number of peaks

Time-frequency domain features (instantaneous frequency) Variability

Mean

Maximum

Minimum

Range

Short-term domain features (signal energy for 5-s segment) Variability

Maximum

Minimum

Range

TABLE 2 | Parameter settings of the classification models.

Classifier Parameters

Support Vector Machine Kernels: “linear”, “polynominal”, “Gaussian”, “sigmoid”

Decision Trees Max depth: 5, 10, 100

Random Forest Number of trees: 10, 100, 1,000

subject localization module does not output a correct radar-chest
distance, the system may extract the signal from a range bin
irrelevant to respiration chest movement, which we refer to
as the respiration-irrelevant signal. The distorted respiratory
signals and respiration-irrelevant signals would deeply influence
the classification accuracy as shown in Le Kernec et al. (2019).
The illustrations of some typical respiratory patterns are shown
in Figure 6.

A machine learning classifier based on three types of
statistic features: time-domain features, time-frequency domain
features and short-term energy features as shown in Table 1

(Zhao et al., 2019) was developed. For the time-frequency
domain features, the instantaneous frequency is calculated by
the Hilbert Transform. For the classification, three types of
classifiers including support vector machine (SVM), decision
trees (DT), and Random Forest (RF) were implemented
using the Python scikit-learn library. To find out the best
performance of each classifier, several parameters of each
classifier have been tested, as shown in Table 2. The parameters
which are not mentioned in the table were set as scikit-learn
default values.

The details of the training dataset is described in Section
3.2. We have mentioned that collected data was augmented
with simulated data so that the database contains 250 sets of
15-s breath chunks, including 50 sets of eupnea, 50 sets of
CSR, 50 sets of Kussmaul respiration, 50 sets of apnea and 50
sets of non-stationary chunks. The 15-s chunks of each pattern
are shown in Figure 7. Since the period of CSR is normally
longer than 15 s, a full period of CSR is demonstrated in

Figures 7D,E representing the crescendo phase and decrescendo
phase, respectively.

All the classifiers listed inTable 2were tested with the database
by 10-fold cross-validation. The RF classifier with 100 trees
achieved the highest accuracy of 90%, the SVM classifier with
linear kernel achieved the highest accuracy of 86% among the
SVMmodels and the DT classifier with max depth of 10 achieved
the highest accuracy of 85% among the DT models. Thus, the RF
classifier with 100 trees was selected as the classifier of the RP
classification model.

We developed a breathing pattern discriminator to further
analyze each breath chunk and possibly modifies the results
obtained by the classifier. The pattern discriminator is developed
based on the morphology of the breathing signal. It comprises
two sections: signal quality evaluation section and specific pattern
evaluation section. The signal quality evaluation criteria are
proposed based on the signal quality index (SQI) algorithm that
consists of the following steps (Charlton et al., 2021):

• A median filter with a kernel size of 5 is applied to filter the
original signal. This filtering process is used to improve the
signal-to-noise ratio (SNR) for the signal quality evaluation.

• Then, the signal is normalized to a range of [0,1].
• The peaks and troughs (local extrema) in the signal chunk

are detected. The extrema are defined according to the
criterion that the normalized peak and trough should have a
prominence larger than 0.15.

• The chunks which have at least one relevant trough between
the time spanning consecutive relevant peaks are defined as
valid breaths.

At the second stage, the respiratory signal plausibility is assessed
based on the valid respiratory interval. Respiratory signals with
less variable cycle time have higher plausibility. Two criteria
were used: (i) the normalized standard deviation of breath
intervals should be smaller than 0.25, which is used to permit
only moderate variation in the duration of detected breaths;
(ii) there are at least 3 valid breath intervals in a 15-s chunk.
Any chunk which did not satisfy these criteria was deemed to
be of low quality and eventually labeled as “non-stationary”.
Only the respiratory chunks which satisfy the criteria can
be considered high quality and retain their label given by
the classifier.

The pattern evaluation is mainly designed for the
identification of CSR. It is developed based on the tidal
volume variation feature of crescendo and decrescendo in CSR,
as shown in Figure 8. Firstly, we detect all the peaks in the signal,
and locate the peak with maximum value, such as the peak
around 12 s in Figure 8. We set this location as a boundary, and
compare the amplitude of each peak to see whether they meet
the following criteria: the amplitude of each peak precede the
boundary is smaller than the latter peak, as Figure 8A, and the
amplitude of each peak after the boundary is smaller than the
former peak as Figure 8B. Only the breath chunks which are not
only labeled as CSR by the classifier but also meet the criteria of
both sections would be confirmed as CSR. A chunk with CSR
label that passes the signal quality evaluation, but fails to pass the
CSR pattern evaluation would be eventually labeled as eupnea.
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FIGURE 7 | Respiratory pattern database examples of each pattern, (A) Eupnea, (B) Kussmaul respiration, (C) Apnea, (D) CSR (crescendo phase), (E) CSR

(decrescendo phase), and (F) Non-stationary.

FIGURE 8 | Pattern evaluation example (A) CSR crescendo phase (B) CSR decrescendo phase.

TABLE 3 | Classification report of statistic feature-based model.

Precision Recall F1-score Support

Eupnea 0.94 0.8 0.86 84

CSR 0.85 1 0.92 32

Kussmaul 0.94 0.97 0.96 34

Apnea 1 0.82 0.90 11

Non-stationary 0.86 0.95 0.90 93

4.7. Respiration Rate Estimation
After detecting the normal breathing signals, a 3rd Butterworth
bandpass filter with the lower cutoff frequency of 0.1 Hz and
higher cutoff frequency of 0.5 Hz (corresponding to 6–30
breaths/min) was applied to further denoise the signal, and a
peak interval based approach was applied for RR estimation. The
peaks of the respiration signal has already been detected in the
last section, the mean peak-to-peak interval 1t between every
two successive respiration pulses is calculated and the estimated
RR can be expressed by Equation 4

RRest = 60/1t (4)

The reference RR (RRref ), when the respiration signal is recorded
by the breathing belt, is also calculated using this approach.

5. RESULTS

5.1. Subject Tracking and Localization
An experiment was conducted to evaluate the performance of the
Kinect camera and the proposed approach of subject localization.
We conducted an experiment in which the subject was tracked

using Kinect around the room and the outcomes were compared
to a reference position. (please see Supplementary Figure 1).
Since the human body is a three-dimensional form and the
body may swing during the test. We find that the Kinect and
the proposed algorithm can accurately locate human subjects.
However, the location of the chest can have an error of several
tens of cm. Since the range bin of the radar is about 5 cm, we
perform additional range bin selection in order to detect the
range bin where the breathing signal is the strongest for each
radar as explained before.

5.2. Respiration Pattern Classification
The experiment for RP classification was described in Section 3.2.
Data was collected as well as processed in real-time. In the pre-
processing stage, the data is segmented into 15-s chunks with 12-s
overlap. Eventually, there were 103 breath chunks collected from
the first subject and 151 breath chunks from the second subject,
a total of 254 chunks. The respiratory pattern classification was
implemented in real time.

Table 3 and Figure 9 summarizes the model performance of
the classification. The average classification time for each sample
is 0.008 s. According to the results, the model composed of a
machine learning classifier and a pattern discriminator is able to
implement accurate RP classification.

5.3. Respiration Rate Estimation
Experiments were conducted either with one subject or two
subjects to assess the performance of the proposed algorithms for
RR estimation. The experiments were described in Section 3.2.

The synchronized data from all the sensors was divided into
15 s chunk with 12 s overlapping for RR analysis. The RR
estimation error for the ith chunk is a function of the absolute
error between the estimated RRest and corresponding reference
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FIGURE 9 | Confusion matrix of the classification model.

TABLE 4 | Mean and standard deviation of the RR estimation error between the estimated RR and the reference RR of one-subject experiments (unit:breaths/min).

Subject1 Subject2 Subject3 Subject4 Subject5

MeRR SDeRR MeRR SDeRR MeRR SDeRR MeRR SDeRR MeRR SDeRR

Experiment 1 0.20 0.19 1.92 0.99 0.34 0.37 0.30 0.40 0.55 0.25

Experiment 2 0.59 0.40 1.01 0.99 0.22 0.38 0.69 0.46 0.27 0.29

measurement RRref which is extracted from a breathing belt
(eRR(i) = |RRest(i)− RRref (i)|). The RR estimation error was
validated using two statistical metrics; mean of the RR estimation
error MeRR and standard deviation of the RR estimation error
SDeRR.

5.3.1. RR Estimation for One Subject
The mean and standard deviation of the RR estimation error for
each subject can be found in Table 4. The correlation plot and
Bland-Altman plot of the estimated RR and reference RR for one-
subject experiments can be found in Supplementary Figure 2A.

5.3.2. RR Estimation for Two-Subjects Experiments
The radar with the best monitoring angle selected by the
proposed method, the mean and standard deviation of the RR
estimation error of each subject in each experiment are shown
in Table 5. The correlation plot and Bland-Altman plot of the

estimated RR and reference RR for two-subjects experiments can
be found in Supplementary Figure 2B.

6. NEAR REAL-TIME IMPLEMENTATION

In this work, we implemented the software that can stream and
process multiple sensors in near real time (NRT) and shows
results on a graphical user interface (GUI). An NRT solution is
a software application that can consume, process, and generate
results very close to real-time but can not be guaranteed that all
the processing will be completed before the deadline (Saxena and
Gupta, 2017).

Our NRT implementation was performed using
multiprocessing and a fixed-length overlapping sliding window.
The data acquisition from multiple devices (Kinect and
Radars) requires multiprocessing framework. We have used
the multiprocessing python package that supports spawning
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TABLE 5 | The selected radar, mean and standard deviation of the RR estimation error between the estimated RR and the reference RR of two-subject experiments

(unit:breaths/min).

Subject1 Subject2 Subject3

Selected radar MeRR SDeRR Selected radar MeRR SDeRR Selected radar MeRR SDeRR

Experiment 1 radar2 0.89 0.92 radar1 0.30 0.26 – – –

Experiment 2 radar2 0.71 0.56 radar1 0.50 0.46 – – –

Experiment 3 radar2 0.67 0.47 radar2 0.48 0.34 – – –

Experiment 4 – – – radar2 1.15 0.92 radar2 0.59 0.45

Experiment 5 – – – radar2 0.81 0.74 radar2 0.74 0.57

FIGURE 10 | (A) Deployment diagram of our near real-time system, (B) GUI that shows the estimated location of two subjects on the top left, reference (blue) and

radar-estimated (red) RRs for subject 1 (graph in the middle and subject 2 (graph on the bottom), and the estimated RRs and patterns for the current 15 s windows on

the right.

processes using an API similar to the threading module
(McKerns et al., 2012). In the system, new processes are
spawned and executed simultaneously to communicate with
the devices and the communication between these processes is
implemented using queues. The deployment diagram, shown in
Figure 10, gives a general overview of the hardware/devices in

the system, the links of communication between them, and the
placement of software files in the system. The application server
manages all the connection with devices using the software
(realtime_system.py) that was implemented in Python. The
application server is a machine with an Intel Core i7-7700HQ,
16GB RAM and Windows 10 Enterprise. Every device supports
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a specific type of connection. The communication with Kinect
was performed using sockets, and with the Radars and Breathing
belts via specific APIs provided by the device manufactures, see
the Figure 10A.

The software artifact hosted in the application server
is responsible for the real-time respiration monitoring and
classification tasks using the raw data that come from RGB-D
camera and IR-UWB radars. This is performed using fixed-length
overlapping sliding window (Dehghani et al., 2019; Malmir and
Rezvani, 2019). The sliding window process is defined as follows.
First we define a window/chunk size T of 15 s duration and an
overlap m of 12 s duration. Following that, the first window X1

is located in the interval [0,T], the second window X2 is located
in interval [T −m, 2T −m], and similarly, the nth window lies in
interval of [(n−1)(T−m), nT−(n−1)m]. The time complexity of
this approach is O(n) and it allows us to perform the respiration
monitoring and classification tasks with a time span of about 3
s with initial delay of 15 s. The total latency of the system is
determined by the data window size 15 s and data processing
latency. A chunk of 255 elements (15s×17 samples/s) is used to
compute the RR, Subject Status and Breathing Class. The results
are displayed on the GUI hosted in the application server, see
the Figure 10B. The GUI displays the location of subjects on the
map, extracted and reference respiratory waveform, estimated RR
(radar) and reference RR (belt), the status of the subject (moving
or stationary) and the breathing class.

7. DISCUSSION AND CONCLUSION

In this study, a system comprised of an RGB-D camera and
three IR-UWB radars was developed for remote RP classification
and RR estimation. The system of this kind has a potential to
classify posture, activities, detect falls, estimate breathing rate
and heart rate and further learn about behavior and patterns of
monitored subjects. We worked on several of these applications
in our previous works using radars: fall detection (Sadreazami
et al., 2019), activities (Valdes et al., 2018), and classification of
posture (Baird et al., 2018). All of these works, as well as majority
of other published works, focused on a single subject monitoring.
In this work, we address the problem of RR estimation and RP
classification of two subjects.

Contactless monitoring of multiple people in a confined space
has a number of challenges including the inability to detect
and/or extract their respiration signals when they are really close
to one another, associate the extracted breathing signals to the
correct person especially when they move, achieving real-time
processing as latency increases with each additional person in
the room and so on. There have been prior studies to monitor
the respiration of two or more people (Yang et al., 2019; Shang
et al., 2020). In Shang et al. (2020), custom radar is designed that
supports detection and estimation of RR people. In Yang et al.
(2019), multiple people can be detected by a single UWB if they
are in the range bins that are 15 cm apart. However, subjects can
be in the same range bin (same distance from the radar) even
if they are not close to one another and in this case, it will not
be possible to estimate their breathing without radar or without
using multiple radars.

We observed that even small movements can cause large
disturbances of the respiratory signal and walking of one person
can significantly affect the respiratory signal of a stationary
person being monitored using radars. Kinect is able to detect and
track each person in the room but the problem of occlusions
among targets still exist with Kinect camera due to which
association of respiratory signal to its correct target without
mixing becomes difficult. RGB cameras could be used for data
association – however we did not consider RGB cameras for
privacy reasons. Therefore, we included the depth sensor that
detects and track people.

4D imaging and multiple input multiple output (MIMO)
beamforming radars could be used for this application. In a
recent work, authors have used MIMO radar with a 2D digital
beamforming for simultaneousmulti-target vital signmonitoring
(Feng et al., 2021). The 2D digital beamforming helps finding the
subject’s chest location and forming individual narrow beams to
measure respiration and heart rate accurately.

We decided to use UWB radars as they are compact in
size, very simple to use and are cost-effective. The proposed
approach assume the relative positions and orientations of the
radar systems are known in advance that might not be possible in
all the scenarios.

There have been several studies conducted to implement RP
classification based on radar collected data; however, they cannot
be implemented in real-time since the respiration signal distorted
by body movement needs to be manually removed before the
classification. However, the respiration signal distortion is an
unavoidable challenge in vital signs monitoring through radar.
Even though some body movement removal algorithms have
been developed (Lazaro et al., 2014; Khan and Cho, 2017),
they can only be applied in scenarios that abnormal respiration
patterns such as Cheyne Stokes respiration (CSR) are not
considered. With those methods, CSR chunks would probably be
removed because the respiration signal looks irregular. In this
study, we combined the respiration pattern classification with
signal morphology analysis to develop an algorithm that can
classify the abnormal respiration patterns and body movement.
Based on this algorithm, we realized the real-time respiration
pattern classification. Classification precision of eupnea, CSR
and Kussmaul respiration is 94, 85, 94%, respectively. State-of-
the-art RP classification research (Zhao et al., 2019) reported
precision of 89, 87, 91% for the same classes. These results
depend on the number of subjects, data quality, the number
of data points in different classes and so on and therefore it
is not appropriate to compare exact values of precision and
accuracy of different methods without taking all these aspects
into account. However, we can observe that the performance
of our classification model in real-time implementation is
at the similar level as the performance of the state-of-the-
art study.

We also showed that the MAE between the estimated RR
and the reference RR for a single subject varies from 0.2 to
1.92 breaths/min and the MAE between the estimated RR and
the reference RR for multiple subjects varies from 0.3 to 1.15
breaths/min.

The whole system is implemented in software efficiently
so that it monitored two subjects in real-time. It completes
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processing and presents the results on theGUIwith a time span of
≈ 18 s latency, because it relies on data window/chunk size of 15 s
and data processing latency of about 3 s. Processing latency could
be reduced by using a more powerful CPU to process the data.

In future, we intend to improve the several aspects of
the system. We will use 4D imaging radars which might
remove the need for using the depth camera. We also plan to
develop algorithms for sensor fusion of radar signals instead
of performing radar selection. We intend that this article will
be a stepping stone toward providing a non-invasive means of
monitoring congestive heart failure patients after discharging
them from the hospital.

We also intend to implement the respiratory pattern
classification to detect respiration patterns related to COVID-
19. Radars are very useful for COVID-19 because they are
contactless, can be used to estimate distance among people which
is important for COVID-19 distancing protocols and to estimate
RR and detect RP (Islam et al., 2021). According to Wang et al.
(2020a), tachypnea is one of the symptoms of COVID-19 that can
be detected with our system.
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