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Abstract

Here, we present a new method to scan a large number of lithic artefacts using three-dimen-

sional scanning technology. Despite the rising use of high-resolution 3D surface scanners in

archaeological sciences, no virtual studies have focused on the 3D digitization and analysis

of small lithic implements such as bladelets, microblades, and microflakes. This is mostly

due to difficulties in creating reliable 3D meshes of these artefacts resulting from several

inherent features (i.e., size, translucency, and acute edge angles), which compromise the

efficiency of structured light or laser scanners and photogrammetry. Our new protocol Styr-

oStone addresses this problem by proposing a step-by-step procedure relying on the use of

micro-computed tomographic technology, which is able to capture the 3D shape of small

lithic implements in high detail. We tested a system that enables us to scan hundreds of arte-

facts together at once within a single scanning session lasting a few hours. As also bigger

lithic artefacts (i.e., blades) are present in our sample, this protocol is complemented by a

short guide on how to effectively scan such artefacts using a structured light scanner (Artec

Space Spider). Furthermore, we estimate the accuracy of our scanning protocol using prin-

cipal component analysis of 3D Procrustes shape coordinates on a sample of meshes of

bladelets obtained with both micro-computed tomography and another scanning device

(i.e., Artec Micro). A comprehensive review on the use of 3D geometric morphometrics in

lithic analysis and other computer-based approaches is provided in the introductory chapter

to show the advantages of improving 3D scanning protocols and increasing the digitization

of our prehistoric human heritage.
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Introduction

Traditional typological and metric analyses of lithic artefacts are commonly used in archaeol-

ogy to study both intra- and inter-site assemblage variability as well as spatiotemporal develop-

ment in relation to human evolution and an individual’s ability to craft and use stone tools [1–

4]. While typology-based approaches are affected by the analyst’s experience, low reproducibil-

ity, and classification biases [2], traditional metric analysis is based on more objective features:

two-dimensional linear distance measurements, ratios, and angles. These measurements can

be reliably and easily collected in a quantitative manner; however, they are still constrained by

some inherent methodological boundaries [2, 5]. One of the major drawbacks is the relatively

low number of well-defined measurements used to quantify the dimensions of artefacts. Addi-

tionally, measurements cannot be used to establish any spatial relationship between measured

distances. As a consequence, analysis mostly focuses on size characteristics, whereas informa-

tion about the shape and form of an object are limited and mostly assessed using qualitative

approaches [5–9].

Geometric morphometrics (GM) is an effective alternative to quantitatively capture and

preserve shape and form information throughout statistical analysis [10, 11]. GM analysis has

been increasingly used in the natural sciences since the second half of the last century, proving

to be a valuable set of statistical tools to better understand morphological variability and evolu-

tion within and between species [11, 12]. Over the last decades, a vast number of studies have

empirically demonstrated the advantages of GM analysis over traditional linear morpho-

metrics beyond biological research, including the study of material culture in archaeology

[e.g., 13, 14–16]. Today, GM analysis of lithic assemblages has already outgrown its novelty sta-

tus and many recent research projects make use of this approach to study shape- and form-

related techno-functional aspects of tool use and edge resharpening, technological variability,

as well as differences between artefact types [see among others: 1, 9, 17, 18–37].

The most common data format in GM are landmarks and semilandmarks. These measure-

ments consist of a set of either two- (2D) or three-dimensional (3D) Cartesian coordinate data,

which accurately capture the relational shape or form information of a specimen [5]. Useful

open-source software solutions to manually collect (semi)landmarks are, among others, the

3D mesh editor program MeshLab [38], Morphodig [39], the Tps software series [40] and the

R [41] package geomorph [42]. Traditional landmark data points as defined by Bookstein [43],

depend on precisely defined and clearly identifiable homologous points that have to be present

on all specimens across the entire sample. These traditional so-called Bookstein landmarks,

however, often correspond to the endpoints of linear measurements in traditional 2D morpho-

metrics as mentioned above and, therefore, display the same limitations [2]. Furthermore, as

stone tools are human-made objects and not organically grown, it is in theory and practice

impossible to establish geometric correspondence [43], which is typically required in most tra-

ditional applications of GM [2]. The concept of semilandmarks can be used to effectively over-

come this obstacle [2, 7, 44].

Semilandmarks are not constrained by clear-cut definitions regarding their locations and

can, therefore, be placed practically anywhere. This allows the analysts to capture homologous

surfaces and/or curvature outlines, which are not or are rarely represented by traditional land-

mark configurations. As opposed to Bookstein landmarks, it is recommended to ‘slide’ semi-

landmarks after their digitization [44]. Although this is not always necessary, the sliding

process helps to remove the influence of the arbitrary spacing of manually digitized points and

to establish geometric correspondence between semilandmark configurations of homologous

structures across specimens. In subsequent GM analysis, semilandmark data points are statisti-

cally analysed like fixed landmarks [7, 44]. Semilandmarks can either be placed manually
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using one of the aforementioned programs or with (semi)automatic software such as the

open-source package Artifact Geomorph Toolbox 3D (AGMT3-D) which has been specially

developed for the analysis of lithic artefacts [20].

AGMT3-D first aligns the position and orientation of the lithic scans and then automati-

cally places surface and curve semilandmarks over the entire surface and outline of 3D artefact

meshes. The user is only required to check and adjust the positioning of each artefact in the

3D space to allow for the digitization of geometrically correspondent semilandmarks across

the whole sample and to specify a semilandmark configuration. The software will then auto-

matically place and save the collected landmark data for further statistical analysis.

Once the (semi)landmark data has been collected it can be subjected to multivariate GM

analyses including Generalized Procrustes Analysis, Principal Component Analysis, Partial

Least Square Analysis, Linear Discriminant Function, and Multi Regression Analysis, among

others [5]. Different programs exist to conduct these kinds of analyses, such as the statistical

programming software environment R [41], for which special GM packages like geomorph
[42] and morpho [45] were developed. There are also programs that come with inbuilt GM

functions and more intuitive graphic user interfaces, such as PAST [46]. Likewise, AGMT3-D

has a wide range of standard analytical GM functions [20]. We encourage the reader to see

Mitteroecker and Gunz [5] and Brande and Saragusti [47] for additional information on GM

and Shott and Trail [8] and Okumura and Araujo [10] for an in-depth discussion on GM as

applied to stone tools.

Despite the increasing application of GM analyses to assess the variability of lithic artefacts,

more effort is required to reach higher scientific standards for scanning and recording 3D

meshes, as well as subsequent data handling, standardisation of landmark configurations for

comparability and reproducibility, and the sharing of lab protocols and raw data to support

Open Science compliant practices [48]. As data acquisition, handling, and analytical proce-

dures are much more complex with 3D GM approaches compared to traditional linear mor-

phometrics, there is increasing demand for the sharing of methods and data, which ensures

transparency for independent research validation and cross-study comparability. In the fol-

lowing paragraphs, we will focus solely on the 3D scanning process for lithic artefacts, as this

usually represents the preliminary step for any 3D GM analysis. We will not discuss lithic pho-

tography [e.g., 37] or drawing [e.g., 35], which could alternatively be used for the collection of

2D semilandmarks of a lithic’s outline [5]. The increasing accessibility to optical scanners and

other devices, as well as increasing interest by archaeologists in new computerized methods

[49, 50], has made such devices more accessible to archaeological institutes worldwide.

There are numerous factors contributing to the final quality of 3D models which are partic-

ularly apparent when comparing the different scanning techniques, 3D registration, and

reconstruction methods available [51]. One of the main problems with 3D data acquisition of

lithic artefacts is that they are usually found in large quantities during archaeological excava-

tions. In many cases, it is considered time consuming and impractical to scan lithic artefacts

individually when designing a 3D GM analysis. Furthermore, many Palaeolithic assemblages

are dominated by very small lithic implements that sometimes have a maximum linear dimen-

sion of 10 mm (e.g., bladelets, microblade, and small flakes). The considerably small dimen-

sions of these artefacts can hinder the use of common surface scanning procedures (i.e.,

structured light and laser scanning) or image-based, close-range photogrammetry. In these cir-

cumstances, accurate detection of the often very sharp edges of a lithic might fail, resulting in a

negative influence on the subsequent shape analysis. Likewise, semi-transparent, translucent,

as well as reflective, shiny surfaces can also lead to scanning problems depending on the mate-

rial properties of the scanned artefact. Special aerosol sprays that are easy to remove and usu-

ally contain talc particles, alcohol, and acetone have been developed to temporally dull the
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surface to help optical scanners detect and match geometry features more efficiently. However,

it is not always feasible to expose archaeological materials to chemicals, as it might affect use-

wear and residue analyses. If lithics are not intended for further analyses, it is suggested, never-

theless, to test beforehand whether the spray has any effect on labelling and other surface fea-

tures [21, 51].

To close some of the aforementioned gaps in 3D data acquisition of especially large lithic

assemblages, we provide a comprehensive, step-by-step protocol relying on the use of micro-

computed tomographic (Micro-CT) scanners and structured light scanners that will allow

archaeologists to increase the utility of computerized methods in the study of stone tools with

variable morpho-metric attributes.

Materials and methods

The different challenges in 3D scanning discussed in this paper relate mostly to inter-depen-

dent factors such as the large number of artefacts that need to be scanned, their size, the acute

edge-angle, and their translucency, which can cause several problems when using photogram-

metry and surface scanners. However, these issues can be avoided when using a Micro-CT

scanner. The StyroStone protocol described in this peer-reviewed article is published on proto-

cols.io, doi.org/10.17504/protocols.io.4r3l24d9qg1y/v2 [52], and is included for printing as

supporting information file 1 with this article. The protocol shows step-by-step how to rapidly

scan large numbers of small lithic artefacts and extract 3D meshes using a Micro-CT scanner

(i.e., a Phoenix v-tome-x s model by General Electronics MCC, Boston MA) and various soft-

ware programs for postprocessing, such as Avizo Lite (Thermo Fischer Scientific Inc., Berlin;

version 9.2.0) and Artec Studio Professional (Artec Inc., Luxembourg; version 15.0.3.425).

Furthermore, the protocol shows how to effectively scan larger lithic artefacts (above ~35 mm

in maximum length) using the structured blue light Artec Space Spider Scanner (https://www.

artec3d.com/). This protocol has been successfully applied to scan several hundred blades and

bladelets from the Protoaurignacian layers at Fumane Cave in north-eastern Italy [53]. All 3D

models in both .ply and .wrl formats are archived on Zenodo and are free to be used with

proper attribution [54]. The Protoaurignacian lithic assemblage from Fumane Cave [55] is

permanently stored at the University of Ferrara, Dipartimento di Studi Umanistici, Sezione di

Scienze Preistoriche e Antropologiche, Corso Ercole I d’Este, 32, I-44100 Ferrara, Italy. Lithics

had not individual numbers, but were labeled according to the site of provenience (RF, that

stands for Riparo di Fumane), square, sub-square, and archaeological layer. No permits were

required for the described study, which complied with all relevant regulations.

Fig 1 schematically shows the general structure of the protocol working pipeline. Using a

Micro-CT scanner and our protocol, we were able to scan up to 220 bladelets at once in a rela-

tively short period of time (ca. 2 hours). To do that, we prepared a Styrofoam body where arti-

facts were arranged in multiple rows in both faces of the Styrofoam body (note that the

protocol also describes the steps necessary to prepare such Styrofoam bodies). Although the

scanning procedure could be accomplished over a short period of time, the subsequent extrac-

tion and separation of the individual artefacts in Avizo and Artec Studio Professional was time

consuming. However, in comparison to other methods of scanning small artifacts, this extra

time is negligible. Our protocol is particularly suitable to this contingency as it minimizes the

number of scans while maximizing the number of artefacts scanned in a single session. In this

study, the Phoenix Micro-CT scanner was operated by a lab technician and the resolution

used was 140 microns. Resolution largely depends on the distance between the source and the

target. Even though the Phoenix Micro-CT scanner is technically capable of producing models

with greater resolution, our tests suggest that the used resolution represents a good balance for
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scanning a large number of artefacts at once, while avoiding distinguishable inaccuracies in

the resulting 3D surface shapes. Our protocol can be applied when using other Micro-CT scan-

ner models although the scanning procedure and commands might be different. The final CT

scans had around 1,000 image slices and a total file size of approximately 25 to 50 gigabytes.

After 3D reconstruction and extraction of individual artefacts, each model was about 200 to

2,000 kilobytes large depending on its physical size. The subsequent extraction and 3D recon-

struction steps will overall remain identical if the same software is applied (i.e., Avizo, Artec

Studio, and MeshLab). Likewise, all described 3D model reconstruction, extraction, and post-

processing steps can also be achieved by other software such as 3D-Slicer (https://www.slicer.

org/) and Morphodig [39], although some minor adjustments may be necessary.

While it is true that most archaeological institutions do not own a Micro-CT scanner,

mainly due to the purchase prices and their costly maintenance, many well-resourced natural

science faculties do own Micro-CT scanners and often grant access upon request [56]. Medical

CT devices, which are far more common and can be found in most larger clinics as well as

local radiology offices, cannot be considered a proper solution for small lithic artefacts due to

the rather low resolution, typically between 0.5 to 0.3 mm, in comparison with Micro-CT scan-

ners. Besides their overall high costs, most Micro-CT scanners are stationary and cannot be

transported elsewhere. This limits the application of Micro-CT scanning in areas without reli-

able and/or affordable access to scanning devices. In this case, it may be useful to discuss the

transfer of archaeological materials within and between countries, with respect to the potential

logistical, legal, and political challenges [51].

As mentioned above, we used an Artec Space Spider scanner for larger objects, mainly to mini-

mize the number of Micro-CT scans needed. Based on our experience, we suggest using this scan-

ner for lithic artefacts that are greater than ~35 mm in the maximum linear dimension and ~2.5

mm in thickness. While it might still be possible to scan slightly smaller artefacts with an Artec

Spider scanner, size, opacity, and edge sharpness may increase the likelihood of scanning errors.

The Artec Space Spider Scanner has an accuracy of up to 0.05 mm and an ultra-high resolu-

tion of up to 0.1 mm, which makes it an ideal scanner for small to medium-large objects (https://

Fig 1. General working pipeline of the StyroStone protocol. The first two phases (starting from the left) summarize the insertion of the lithic artifact in the Styrofoam

body, followed by the Micro-CT scanning, the 3D reconstruction and postprocessing of the scans. Finally, the last frame displays a sample of extracted 3D models of

bladelets.

https://doi.org/10.1371/journal.pone.0267163.g001
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www.artec3d.com/portable-3d-scanners/artec-spider). Another scanner of the same company

specially designed for small to very small objects is the Artec Micro with an accuracy of up to

0.01 mm and a resolution of up to 0.029 mm (https://www.artec3d.com/portable-3d-scanners/

artec-micro). The efficiency of the Artec Micro in scanning small lithic artifacts has been tested

by one of us (AF) and the related step-by-step protocol is available on protocols.io [57].

Pricewise, the Artec scanners, which come together with the software Artec Studio Profes-

sional, can be considered a more cost-effective solution compared to Micro-CT scanners, con-

sidering its wide applicability, high resolution, and overall user-friendliness. The Space Spider

model can be transported directly to sites for fieldwork activities using an external battery. It

should however be kept in mind that its use in warmer and more humid climates and the

exposure to dust particles, which are common problems on archaeological sites, might cause

technical damage to the scanner. Next to the scanner itself, a powerful laptop, a number of

cables, calibration tools, a protective transport case, and optionally a turntable are also

required. The latter can generally be recommended in 3D scanning processes as it accelerates

and comforts the procedure. Small, non-automatic turntables can be purchased for a very low

price. The artefact only needs to be secured on the turntable using, for instance, a modelling

clay that does not leave traces when removed. As already suggested by [21], an effective way to

enhance tracking during the scanning process is to use a white turntable (this can also be

achieved by covering the turntable with white cardboard) with several drawn reference circles

in red and blue. Note that a wide range of other light- and laser-based surface scanners exist

on the market, which might be equally suitable for scanning archaeological materials; however,

none of these have been tested or applied by us.

Validation study

Although only occasionally done for 3D meshes of lithic artefacts [58], an increasing number

of validation studies tested and compared the accuracy of different scanners and 3D registra-

tion methods, also including Micro-CT and structured-light surface scanners [51, 56, 59–62].

So far, both scanning technologies have been shown to provide highly accurate 3D models [63,

64]. To demonstrate the accuracy achieved by our protocol, we conducted a GM shape analysis

of a small sample (n = 11) of randomly selected and experimentally produced bladelets. To do

so, we scanned all artifacts twice, using both a Micro-CT scanner, following the StyroStone
protocol, and an Artec Micro scanner following the MicroStone protocol [57]. After scanning,

all 3D models in .wrl format were loaded into AGMT3-D v3.1 [20] to standardize their posi-

tion and orientation and to automatically place a total of 400 semilandmarks using a 20x10

grid on both artefacts’ surfaces. The semilandmark coordinates were then subjected to Gener-

alized Procrustes Analysis (GPA) to produce Procrustes shape coordinate data that are invari-

ant of size, position and rotation [5]. An error shape-PCA was then performed on the

Procrustes variables to obtain PC scores. All PC scores were then exported as .csv file and

loaded into R (version 4.0.3) to create a PCA plot using the packages ggplot2 v3.3.5 [65] and

ggrepel v0.9.1 [66]. 3D models, as well as raw semilandmark coordinates, generated datasets,

and R scripts are available in the associated research compendium available on Zenodo [67].

Fig 2 shows the shape distribution of all scanned specimens in a bivariate plot of the first two

principal components (PCs), that cumulatively explain 70.94% of the captured shape variance.

Here, each pair of bladelets from both scanning methods clusters closely together. This indi-

cates that the variance in shape between repetitions is much smaller than the overall variance

observed for both scanning methods. In order to further test the differences across the two

groups, we performed a nonparametric MANOVA (i.e., PERMANOVA) on the first five PCs

(explaining the 90% of total variance) using 10,000 repetitions in PAST v4.03 [46]. We find no
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significant variation between the blanks scanned with the Micro-CT and the Artec Micro

(F = 0.04, p = 1). This finding allows us to conclude that both Micro-CT and Artec Micro pro-

duce overall similar 3D models that can be effectively used to collect semilandmarks for 3D

GM analysis. Furthermore, this estimation of disparity between two different scanning meth-

ods shows the merits of exploring and comparing different scanning devices and artefacts’

inherent attributes. Future research will thus provide additional information to estimate these

interrelated variables to enhance scientific standards of accuracy and reproducibility.

Expected results

The last few decades of Palaeolithic research have seen an exponential interest in computer-

based methods applied to archaeological research [49], which has resulted in several studies

that have explored material culture variability and human behaviour with a higher degree of

objectivity. In this fervent and stimulating research framework, the accessibility to new tech-

nologies that allow for the fast reconstruction of 3D meshes of archaeological artefacts has

resulted in the application of new and powerful means of analysis. Besides the numerous

papers that have explored the use of GM analysis to stone artefacts discussed in this paper, the

use of 3D technology has also allowed researchers to quantify reduction intensity on cores

[e.g., 68], accurately measure angles between surfaces of bone and stone tools [e.g., 69, 70], and

assess knapping skills with the use of virtual refittings [e.g., 71, 72], among other applications.

We hope that our new method to scan large quantities of lithic artefacts with Micro-CT

scanners and the following generation of 3D meshes will enable researchers to conduct more

Fig 2. Error shape-PCA of an experimental sample of bladelets (n = 11) obtained from Micro-CT (blue) and Artec Micro (pink) scanners. Together, PC1 and PC2

explain 70.94% of the captured 3D shape variation. The R script used to produce this plot is available in the research compendium on Zenodo [67].

https://doi.org/10.1371/journal.pone.0267163.g002
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detailed studies on small-sized stone tool technologies such as bladelets and microliths that are

still challenging to accurately scan with other scanners. This will permit researchers to focus

not only on macro-tools but also to explore the small-sized component that characterizes

many late Pleistocene and early Holocene technocomplexes. We believe that 3D scanning and

3D GM will contribute to a better understanding of our prehistory, although these methods

should always be considered complementary tools to more traditional methods of analysis [21,

73]. Lastly, 3D scanning will allow researchers to create open-access repositories of archaeolog-

ical artefacts that can be accessed worldwide, encouraging more collaborative studies across

academic institutions and enhancing Open Science practices in archaeological sciences.

Supporting information

S1 File. Step-by-step protocol entitled ‘StyroStone: A protocol for scanning and extracting

three-dimensional meshes of stone artefacts using Micro-CT scanners’. Also available on

protocols.io (doi.org/10.17504/protocols.io.4r3l24d9qg1y/v2).

(PDF)
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