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INTRODUCTION

Genome-wide association studies (GWAS) are used to detect genetic variants that explain common
human diseases in populations. The initial GWAS achieved notoriety by successfully identifying
thousands of genes associated with a variety of genetic disorders. However, these identified genes
have been most successful in establishing individual associations with Mendelian diseases and
explaining only a small portion of the heritability. Complex diseases are likely better explained by
multiple interacting genetic and environmental variants. Such non-linear, non-additive gene-gene
interaction effects, i.e., epistasis, render traditional one-gene-at-a-time analysis methods ineffective
for GWAS. Instead, powerful machine learning algorithms that can detect and characterize
high-order interactions among multiple genetic variants are needed.

The focus of this Special Topic Issue is to examine the novel design and application of machine
learning algorithms in detecting interacting genetic variants for GWAS in six included articles.

Liu et al. proposed a deep-learning framework using convolutional neural networks to predict
the quantitative traits from single nucleotide polymorphisms (SNPs) and to investigate genotypic
contributions to the trait using saliency maps. The authors evaluated the performance of the
proposed approach using both simulation and experimental soybean datasets. The results showed
that deep learning modeling can bypass the imputation of missing values and achieve more
accurate results for predicting quantitative phenotypes than well-established statistical methods.
The authors claim their approach effectively and efficiently identifies significant SNPs and SNP
combinations associated with GWAS data.

Zhang et al. presented circLGB, a machine learning-based framework to discriminate circRNA
from other lncRNAs. This approach combined commonly used sequence-derived features and
three new ones; adenosine to inosine (A-to-I) deamination, A-to-I density, and internal ribosome
entry site. circLGB categorizes circRNAs by utilizing a LightGBM classifier with feature selection.
In addition, the authors apply circMRT, another ensemble machine learning framework to
systematically predict the regulatory information for circRNA, including their interactions with
microRNA, RNA binding protein, and transcriptional regulation. Feature sets including sequence-
based features, graph features, genome context, and regulatory information features were modeled
in circMRT. Experiments on publicly available datasets and lab generated ones showed that the
proposed algorithms outperform the available state-of-the-art methods.

In a review article by Nicholls et al., the authors discussed the landscape of ML applications
in GWAS by following three components: selected models, input features, and output model
performance. The authors focused particularly on the prioritization of complex disease-associated
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loci and explored the contributions ML has made toward
reaching the GWAS end-game with consequent wide-ranging
translational impact.

Leem et al. have proposed a permutation method for GWAS,
i.e., ENhanced Permutation tests via multiple Pruning (ENPP).
ENPP prunes the features in each permutation round if they were
determined to be non-significant. Their simulation study showed
that the ENPP method could remove about 50% of the features,
at the first permutation round, and by the 100th permutation
round, 98% of the features were removed. Only 7.4% of the
compute time was required, compared to the original unpruned
permutation approach. In addition, they applied this approach
to a real data set of ∼300K SNPs, to find the association with a
non-normal distributed phenotype.

Arabnejad et al. designed a machine learning algorithm,
i.e., Nearest-neighbor Projected-Distance Regression
(NPDR), in order to detect complex multivariate effects for
GWAS. NPDR used a regression formalism that allowed
statistical significance testing and efficient control for
multiple testing. In addition, the regression formalism
provided a mechanism for NPDR to adjust for population
structure, which was applied to GWAS data of Systemic
Lupus Erythematosus (SLE). The authors also tested
NPDR on benchmark simulated genetic variant data with
epistatic effects, main effects, imbalanced data for case-
control design, and continuous outcomes. NPDR identified
potential epistatic and other effects that influence the complex
SLE disorder.

Lastly, in the article by Ni et al., ∼300K stomach tissue-
specific eSNPs with gastric cancer (GC) risk in three GWAS
datasets were investigated. The authors conducted a gene-based
analysis to calculate the cumulative effect of eSNPs through
a sequence kernel association combined test and Sherlock
integrative analysis. At the SNP-level, they identified two novel
variants associated with GC risk. Gene-based analyses identified
2 novel susceptibility genes for GC which were significantly
overexpressed in GC tissues than in their adjacent tissues and
the high expression level of these two genes was associated with
an unfavorable prognosis of GC patients. Co-expression genes
with these two novel genes in normal stomach tissues were
significantly enriched in several cancer-related pathways.
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