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Abstract

How can we predict the occurrence of acute kidney injury (AKI) in cancer patients based on

machine learning with serum creatinine data? Given irregular and heterogeneous clinical

data, how can we make the most of it for accurate AKI prediction? AKI is a common and sig-

nificant complication in cancer patients, and correlates with substantial morbidity and mor-

tality. Since no effective treatment for AKI still exists, it is important to take timely preventive

measures. While several approaches have been proposed for predicting AKI, their scope

and applicability are limited as they either assume regular data measured over a short hospi-

tal stay, or do not fully utilize heterogeneous data. In this paper, we provide an AKI prediction

model with a greater applicability, which relaxes the constraints of existing approaches, and

fully utilizes irregular and heterogeneous data for learning the model. In a cohort of 21,022

cancer patients who were registered into Korea Central Cancer Registry (KCCR) in Seoul

National University Hospital between January 1, 2004 and December 31, 2013, our method

achieves 0.7892 precision, 0.7506 recall, and 0.7576 F-measure in predicting whether a

patient will develop AKI during the next 14 days.

Introduction

Acute kidney injury (AKI) is a common complication in cancer patients [1, 2]. A study on

a cohort of 37,267 Danish cancer patients [3] reports that the 1-year and 5-year risk of AKI

were 17.5% and 27.0%, respectively, with the 1-year risk increasing to 31.8% to 44.0% among

patients with multiple myeloma, liver cancer, and kidney cancer. Also, during the intensive

care unit (ICU) stay, 12% to 49% of critically ill cancer patients experience AKI, with 9% to
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32% of them requiring renal replacement therapy (RRT) [4, 5]. AKI in patients with cancer is

strongly associated with substantial morbidity and mortality [1, 2, 6]. Previous studies report a

three-month mortality rate of greater than 30% among cancer patients with AKI [7], and a six-

month mortality rate of 73% in critically ill cancer patients with AKI [8]. Moreover, develop-

ment of AKI may decrease the likelihood that cancer patients receive optimal cancer treatment

as the dose of chemotherapy is often required to be reduced, or potentially curative medication

may have to be contraindicated for patients with cancer [3, 4, 7]. Despite decades of research,

there does not exist an effective therapy for AKI yet, with the only supportive measure being

RRT [9]. As a result, it is of great importance to take timely preventive measures, and reduce

the risk of developing AKI.

In this paper, we aim to propose a predictive model for AKI. More specifically, the focus of

our work is to develop a highly general AKI prediction model for irregular and heterogeneous

clinical data available at the time of prediction. Although several studies have been conducted

for predicting AKI [10–14], the scope and applicability of existing methods have been limited.

Many models make predictions of whether a patient will develop AKI using data measured

during one hospital stay [10, 12, 14], or assume ICU settings where patients are under con-

stant, close monitoring [10, 13, 15]; clinical data obtained in these settings are usually regular

both in terms of frequency and the type of measurements taken. However, about two thirds of

AKI are acquired in the community (i.e., outside of hospitals) [16], in which case the measure-

ments are relatively infrequent and much less regular. Also, several existing predictive models

[12, 17–19] are not designed with various, heterogeneous clinical data in mind. Some of them

perform predictions based on the value of a single variable such as estimated glomerular filtra-

tion rate (eGFR) [17] and neutrophil gelatinase-associated lipocalin (NGAL) [19]; and many

methods do not fully use non-temporal variables and temporal variables (i.e., variables that are

measured repeatedly over time as in the case of serum creatinine (SCr) for patients experienc-

ing kidney function decline) for prediction.

Our proposed method addresses the aforementioned limitations of existing approaches.

First, our method does not make predictions only for the duration when patients are hospi-

talized; instead, it assumes outpatient treatments, which enables predictions for a greater

number of patients. Second, our approach does not assume that clinical data are regular and

frequently observed as in ICU environment, but supposes a more relaxed condition where

data can be irregular and infrequently obtained as is often the case in less intensive treat-

ments. Third, our method is designed to fully utilize available heterogeneous data; both

non-temporal and temporal data are used in making predictions. Our approach is to build a

machine learning model that learns from irregular and heterogeneous data taken over a pos-

sibly longer period of time than a single hospital stay, predict the maximum SCr value within

the next 14 days, and use the predicted SCr value for predicting the occurrence and severity

of AKI.

The main contributions of this paper are as follows:

• Model. We describe our model for AKI prediction that relaxes the constraints of existing

prediction models, and thus has an improved applicability.

• Method. We present a detailed explanation of our method. In particular, we delineate how

we preprocess the heterogeneous and irregular data, how we create feature vectors, and how

we structure our proposed framework for AKI prediction.

• Experiment. We provide extensive empirical evidences for the performance of our

approach, obtained with cross validation on the medical records of 21,022 cancer patients.
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Methods

Ethics statement

The protocol of this study was in accordance with the principles expressed in the Declaration

of Helsinki. The institutional review board at SNUH approved this study (H-1509-051-702),

and waived the necessity to obtain informed consent from patients since the study design was

innocuous to the patients.

Detecting and staging AKI

Several classification systems [20–22] have been developed for the diagnosis of AKI. Among

them, Kidney Disease: Improving Global Outcomes (KDIGO) [20] has been widely used for

detecting and staging AKI. How we detect AKI occurrences and calculate their stages in this

paper is based on the KDIGO criteria. Our approach uses several different definitions and

time windows for SCr. Fig 1 provides an illustration of these definitions and windows for SCr.

Below we describe these definitions, and how they are used in detail.

Two different SCr values are used for the diagnosis and staging of AKI: the initial SCr and

the recent SCr. Let SCra denote the first one among all SCr values measured between two

months before and after the registration date, and let SCrb denote the first SCr value measured

after the registration. The initial SCr is defined to be:

1. The smaller value of SCra and SCrb, if both exist, or

2. SCra or SCrb otherwise.

The recent SCr is defined as the minimum SCr value among those measured within the past

three weeks.

Detecting AKI. The normal range of SCr is 0.8-1.3 mg/dL in adult males, and 0.6-1.1 mg/

dL in adult females. AKI is determined to have occurred if either of the following two cases is

satisfied:

• The current SCr is greater than 1.5 times the initial or the baseline SCr; or

• The current SCr is greater than the initial or the baseline SCr by more than 0.3 mg/dL.

Fig 1. Definitions and time windows for serum creatinine (SCr) measurements used for detecting and staging AKI. Circles represent SCr measurements of a

single patient taken at time points t1, � � �, t13. Double-headed arrows represent time windows. The first window is centered around the registration date of a patient,

and used to obtain SCra. The second and third windows are positioned next to each other such that the current date is located between them, and they are used for

obtaining recent SCr, and staging AKI, respectively. See text for more details on SCra, SCrb, and baseline SCr.

https://doi.org/10.1371/journal.pone.0199839.g001
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Staging AKI. There are three AKI stages for patients diagnosed as having AKI, from stage

1 to stage 3; a higher AKI stage indicates greater severity, leading to an increased risk for death

and need for RRT. In addition, we use AKI stage 0 for patients without AKI.

We define the baseline SCr to be the SCr value that led to the detection of AKI with respect

to the current SCr; according to the rules for AKI detection, baseline SCr is either the recent

SCr of current SCr or the initial SCr. For each AKI occurrence, we go over the SCr value corre-

sponding to the AKI incidence, and the following SCr values measured within the next two

weeks (if available); for the current SCr (the one currently being visited), we compute its ratio

(= each SCr / baseline SCr) and its increment (= each SCr − baseline SCr) with respect to the

baseline SCr to compute the AKI stage as follows.

• If the ratio of the current SCr to baseline SCr is greater than or equal to 3.0, stage 3.

• If the current SCr is greater than or equal to 4.0 mg/dL, stage 3.

• For all computed ratios, we determine the stage by ratio to be

• 3 if the maximum ratio is greater than or equal to 3.0,

• 2 if the maximum ratio is smaller than 3.0, and greater than or equal to 2.0,

• 1 if the maximum ratio is smaller than 2.0, and greater than or equal to 1.5,

• 0 otherwise.

For all computed increments, we determine the stage by increment to be

• 1 if the maximum increment is greater than 0.3 mg/dL,

• 0 otherwise.

The greater one among the stage by ratio and the stage by increment becomes the AKI stage.

Comparison with KDIGO. Our approach is different from KDIGO in a few respects.

First, our criteria do not include urine output. Considering that, clinically, AKI diagnosis

among cancer patients has been mostly performed using serum creatinine (SCr) measurements

instead of urine output, we assume it will not make much difference to not use urine output.

Also, our dataset consists of records of cancer patients, while urine output is rarely measured

routinely for cancer patients; therefore, it is not possible to apply AKI criteria that are based on

urine output. As a result, we use SCr measurements for AKI detection and staging.

Second, the size of the window used by our criteria for AKI detection is different from that

used in KDIGO. While KDIGO diagnoses AKI by checking an increase in SCr with respect to

the baseline value within the prior 7 days, our criteria compare the current SCr with the recent

SCr which is obtained using a window of three weeks, or with the initial SCr which can be

away from the current SCr by more than three weeks. This decision is because our study con-

siders not just inpatients whose SCr values can be measured every day or every 2–3 days, but

both inpatients and outpatients. In particular, the interval between SCr measurements of out-

patients ranges from 2–3 weeks to 3–6 months, depending on the types of treatments per-

formed. We use a window of three weeks to take this into account, and make the most of

available SCr data.

Third, while KDIGO includes the initiation of RRT as a criterion for stage 3 AKI, it is

not used in our criteria as we had limited access to the records on RRT. Instead, we exclude

patients who had severe chronic kidney disease when hospitalized, which we detail in the Data

preprocessing subsection.
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Data description

The Ministry of Health and Welfare initiated a hospital-based nationwide cancer registry

called Korea Central Cancer Registry (KCCR) in 1980 in order to accurately measure, and

build a database of the incidence of cancer nationwide. Our data include patient information

measured and collected by Seoul National University Hospital (SNUH), which is a tertiary

referral hospital in Seoul, Korea, having more than 1,000 general admission beds. In particular,

our dataset consists of several irregular and heterogeneous temporal and non-temporal data

measured from cancer patients who registered for KCCR for the first time in SNUH between

January 1, 2004 and December 31, 2013. Cancer treatments were performed after patients

were registered into KCCR, after which follow-up care was given at different timing for each

patient. In the following subsections, we give a description of non-temporal and temporal

data.

Non-temporal data. Non-temporal data consist of several different types of medical

records as follows: date-type variables (birth date, dialysis date, etc), Boolean-type variables

(sex, whether a patient has diabetes, tuberculosis, and chronic liver disease, etc), and numeri-

cal/categorical-type variables (age, weight, height, systolic and diastolic blood pressure, occu-

pation, hemoglobin, protein, sodium, triglyceride, etc). In total, a single entry in the non-

temporal data consists of 57 variables. In the non-temporal data, each patient has only one

entry, i.e., these 57 variables are measured once for each patient. Non-temporal variables

were measured the first time patients were admitted to the hospital during the four months

between two months before and after the registration date. Since cancer patients undergoing

either surgical operations or anticancer treatments routinely receive only basic serum lab

testing over the course of their treatment, most biomarkers are not assessed frequently

enough to be used as temporal data. Also, blood pressure records are used as non-temporal

data, as they are not maintained in the SNUH’s electronic medical record (EMR) system in

many cases.

Temporal data. In contrast to the non-temporal data, the temporal data can have multiple

entries for a single patient, each associated with a specific date; at the same time, there can be

no entry for a patient in case no measurements have been taken for that patient. Our temporal

data are composed of six different sets of records (SCr measurements, patients’ age at SCr mea-

surements, CT scans, intravenous (IV) chemotherapeutics, oral chemotherapeutics, and neph-

rotoxic drugs), which we describe below.

SCr measurements. SCr measurements are records of all SCr measurements of registered

patients, which mainly consist of SCr values and the time when they were measured. Each

patient in our dataset can have multiple SCr measurements.

Patients’ age at SCr measurements. This is a record of the patients’ age when each SCr

measurement was performed.

CT scans. CT scans data mainly consist of the date, code, and region of all CT scans taken

for each patient. We do not take account of the type and dosage of contrast medium used for

CT scans, but consider only whether a patient has taken a CT scan at a given date.

IV chemotherapeutics. IV chemotherapeutics data contain the following information:

the data of prescription, drug code, drug name, unit of injection, and duration in days. For the

sake of simplicity, we consider only whether a patient is administered IV chemotherapeutics at

a specific date, but do not take the unit of injection into account.

Nephrotoxic drugs. This is a prescription history of nephrotoxic drugs with the following

information: drug code, start and end dates of medication, unit and amount of prescribed

drugs. To take the effect of nephrotoxic drugs into account, we group them into two groups,

the first being diuretics drugs, and the second being ACE (Angiotensin Converting Enzyme)
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inhibitor and ARB (Angiotensin Receptor Blocker). We consider whether a patient is pre-

scribed a nephrotoxic drug at a specific date separately for each of these two groups.

Oral chemotherapeutics. Oral chemotherapeutics data are a history of oral chemothera-

peutic agents that are dispensed both inside and outside hospitals, which contains the date of

prescription, drug code, number of days of medication, and the total amount.

Data preprocessing

We preprocess the given dataset to make it available as an input to the regression algorithms,

and maximize their predictive performance. First, we exclude some variables or some user’s

data based on the following criteria:

• We exclude those patients who were receiving maintenance dialysis, and had an initial esti-

mated glomerular filtration rate (eGFR) value of less than 15.0 ml/min per 1.73 m2, as this

signifies that these patients had already been suffering from severe chronic kidney disease

(CKD) at the time of hospital admission. The CKD-EPI formula [23] is used in calculating

eGFR values.

• We filter out the following variables since they do not provide meaningful information

for AKI prediction: occupation, income level, educational status, follow-up duration, and

whether a patient experienced tuberculosis or chronic liver disease.

• We exclude variables, such as whether a patient had hemodialysis, peritoneal dialysis, con-

tinuous renal replacement therapy (CRRT), kidney transplantation (KTPL), that are related

with dialysis as they are directly associated with AKI.

• We exclude redundant variables, such as whether a patient received a cancer surgery or a

chemotherapy, took a computerized tomography (CT) scan, or had a dialysis, since they can

be inferred from other variables and thus add no new information for AKI prediction.

• We also exclude such variables whose missing rate is greater than 0.4 to reduce errors that

can be introduced by imputation, which is performed after ruling out variables.

Second, while variables with high missing rates are excluded in the previous step, remaining

variables may still have missing entries. Supposing that the regression models that we employ

do not allow missing entries, we perform multiple imputation for the missing values of the

remaining variables. Since the decision to measure biomarkers is based on existing patient rec-

ords, and data are not missing completely at random in general, we assume that missing values

in our dataset are missing at random; under this assumption, we apply multivariate imputation

by chained equations (MICE) [24] to the non-temporal data of entire patients. We use the fan-
cyimpute library [25] for the implementation of MICE. With the parameters set to their default

values, missing values are imputed 100 times, and averaged to produce the final estimate.

Third, while some of our data are originally numeric values, others are written in text such

as male/female and yes/no. We convert these non-numeric values into numbers so that the

dataset consists of only numeric values that can be fed into the regression models.

Creating feature vectors and target values

Using the preprocessed data, we create a set of feature vectors and target values. A feature vec-

tor and a target value are created for one SCr measurement, and a feature vector consists of

non-temporal and temporal features. Fig 2 gives an overview of how we create temporal fea-

tures and target values using a window-based approach.

Predicting acute kidney injury in cancer patients using heterogeneous and irregular data
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Non-temporal features. All non-temporal variables in the preprocessed dataset become

the non-temporal part of a feature vector. Therefore, if a patient took several SCr measure-

ments, the same non-temporal part appear repeatedly over all feature vectors created for this

patient. We try to balance the ratio between non-temporal and temporal features by excluding

non-temporal variables that are not meaningful or do not add much new information for AKI

prediction.

Temporal features. We aim to incorporate the changes of temporal variables over differ-

ent time periods into the temporal part of a feature vector by using a window-based approach.

For each temporal feature of the feature vector, we define separate windows, and compute the

summary or statistics of the measurements that fall within each window. We use [s, e) notation

to denote a window whose relative start (inclusive) and end (exclusive) times with respect to

the current moment are s and e (both in hours), respectively. For example, [−7 × 24, −1 × 24)

indicates a window for measurements taken from seven days ago (inclusive) to yesterday

(exclusive). Temporal variables included in the feature vector are as follows.

• Current SCr value for which the feature vector is created.

• Patient’s age at the time of current SCr measurement.

• Statistics of previous SCr values. We use two windows: [−180 × 24, −30 × 24), [−30 × 24, 0).

We compute the average, standard deviation, minimum, maximum, delta (maximum − min-

imum) of previous SCr values contained in each window. We also compute delta-delta val-

ues (defined as the difference between delta values from two consecutive windows). In case

no previous SCr values exist for any of the given window, we do not create a feature vector

for the current SCr measurement.

• Number of previous CT scans. We use two windows: [−45 × 24, −15 × 24), [−15 × 24, 0).

Fig 2. Window-based data creation. Blue, vertical arrows represent serum creatinine (SCr) measurements, and grey, vertical arrows in a dashed line represent oral

chemotherapeutics. There are other temporal data that are also included as temporal features, but we omit them for simplicity’s sake. t1, � � �, t8 represent the times when

SCr values are measured. The highlighted blue arrow at t5 indicates the current SCr. The double-headed arrows represent windows: the windows to the left of time t5

are to summarize the temporal data before the current time t5, and the window to the right of time t5 is to capture the target value.

https://doi.org/10.1371/journal.pone.0199839.g002
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• Number of injections of intravenous chemotherapeutics. We use two windows: [−45 × 24,

−15 × 24), [−15 × 24, 0). We distinguish the nephrotoxicity of anticancer drugs into ‘yes’,

‘no’, and ‘unknown’, and calculate the injection count separately.

• Whether non-anticancer, nephrotoxic drugs are dosed. We use one window: [−30 × 24, 0).

Since the prescription length of nephrotoxic treatments is shorter than three to four weeks

in many cases, we use a shorter window for this variable than those used for the above ones.

We count (1) whether angiotensin receptor blockers (ARBs) or angiotensin-converting

enzyme (ACE) inhibitors are dosed, and (2) whether diuretics are dosed within the window.

• Whether oral chemotherapeutics are dosed. We use one window: [−30 × 24, 0). While the

prescription length of oral chemotherapeutics is usually slightly longer than that of nephro-

toxic drugs, we use a relatively short window for this variable as the prescription length var-

ies a lot, depending on the patients’ condition, and the treatment regimen. We distinguish

the nephrotoxicity of oral chemotherapeutics into ‘yes’, ‘no’, and ‘unknown’, and count

separately.

Target value. Our goal is to predict the maximum SCr value that will occur in a relatively

short period of time. More specifically, among SCr values contained in a target window, we

use the maximum as the target value for the given feature vector. We use [1, 14 × 24) as the tar-

get window. If there exist no SCr values in the target window, we skip the current SCr mea-

surement, and do not create a corresponding feature vector.

Post-processing. We apply squeezing and normalization to the feature vectors for post-

processing. First, we compute the lower and upper bounds for each feature, and set the value

of those that lie outside of the boundary to the boundary value. This is to reduce the impact of

outlier values. We set 2% and 98% of each feature as the lower and upper bound. Second, we

normalize each column of (squeezed) feature vectors to prevent those columns that have large

values compared to others from dominating the regression performance. We perform z-score

normalization, which is to standardize each column by subtracting the mean from it and scal-

ing it to unit variance.

AKI prediction and performance evaluation

Using the feature vectors and target values, we train linear and non-linear regression models

that predict SCr values. Once we have the trained regressors, we can predict the maximum SCr

value that will occur within the [1, 14 × 24) window. Given that the windows for AKI detection

and AKI prediction are of the same size, we apply our criteria for AKI detection and staging to

the obtained maximum SCr value to predict the occurrence and stage of AKI, which we then

compare with the corresponding ground truth which is obtained using the actual records of

SCr measurements that belong to the same two-week period.

Using the inverse of SCr. While we use SCr values in the temporal part of a feature vector

and the target value, we also allow our method to use the inverse of SCr. While we use SCr as

the target value to represent the condition of overall renal function, the value of SCr and the

kidney function are known to be inversely proportional, that is, their relationship is non-lin-

ear. Using the SCr value is a straightforward choice for the goal of predicting the SCr value;

however, using the inverse of SCr might make the regression more accurate, especially in the

case of linear regression models. If we use 1/SCr in feature vectors, we use the minimum 1/SCr

as the target value, and use the inverse of what the regressors return in predicting AKI occur-

rence and stage.

Regression models and settings. The following linear and non-linear regression models

are used in our experiments.
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• Linear regression models: linear regression, ridge regression, lasso, least-angle regression

(LARS), stochastic gradient descent (SGD)

• Non-linear regression models: random forest, multivariate adaptive regression splines

(MARS)

In order to prevent overestimation of model performances, we use different datasets for

training and testing the model. In particular, we use k-fold cross validation (CV), where the

entire dataset is divided into k subsets, and the model is trained using k − 1 subsets and tested

using the other one subset. The CV process is repeated k times, using a different subset as the

test data each time; then the k test results are averaged to produce a single estimation. Most of

these regression models have hyperparameters that need to be optimized, such as the α param-

eter of Ridge regression model which controls the regularization strength. We also use k-fold

CV in order to choose model parameters that maximize prediction performance over the vali-

dation set.

Since using the same validation data for tuning hyperparameters and evaluating model per-

formance biases the model to the validation set, and may thus result in an optimistic perfor-

mance estimation [26], we use nested k-fold CV where the inner CV is used to tune the model

parameters and choose the best model, and the outer CV is used to evaluate the model selected

by the inner CV. In our experiments, we set k to 3 for both the inner and outer CV. With this

setting, the inner CV receives two thirds of the data split by the outer CV, and divides it into

three subsets, among which two subsets are used for training a model with specific hyperpara-

meters, and one subset is used for model validation.

We use scikit-learn [27] for all regression models, except for MARS for which we use py-
earth library [28].

Results

Dataset

The number of patients initially included in our dataset is 91,970. After applying the steps for

preprocessing data, and creating feature vectors and target values, the non-temporal and tem-

poral data used in the experiment consist of the following number of records:

• Non-temporal data (number of patients): 21,022

• Temporal data

• SCr measurements: 988,808

• CT scans: 238,573

• IV chemotherapeutics: 645,098

• Nephrotoxic drugs: 7,528

• Oral chemotherapeutics: 81,552

Table 1 lists the descriptive statistics of non-temporal variables where the median and inter-

quartile range are shown for non-categorical variables, and the number of patients in each cat-

egory is shown for categorical variables. The distribution of patients by cancer type is shown in

Table 2: about 30% of the patients had respiratory tract cancer, and patients with respiratory

tract cancer, gastrointestinal tract cancer, and thymus cancer comprised more than 60% of the

total patients. In Table 3, we present the missing rate of non-temporal variables. The distribu-

tion of the number of temporal records among the included patients is shown in Fig 3.
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Regression accuracy

We measure how accurately our method predicts the serum creatinine (SCr) using several

regression models, and how using SCr and the inverse of SCr affects its accuracy. In order to

Table 1. Descriptive statistics of non-temporal variables: The median and interquartile range are shown for non-categorical variables, and the number of patients in

each category is shown for categorical variables.

Variable median (interquartile range) or #

patients in each category

Variable median (interquartile range) or # patients in each category

Chronic liver disease

Y/N

N: 18,682, Y: 2,340 Calcium 9.1 (8.7–9.4)

CRRT Y/N N: 20,522, Y: 500 Phosphate 3.5 (3.1–3.9)

CT scan Y/N Y: 20,339, N: 683 Blood urea nitrogen 14 (11–17)

Number of CT scans

taken

9 (4–15) Glucose 102 (91–121)

Diabetes Y/N N: 18,478, Y: 2,544 Systolic blood pressure 121 (110–133)

HD Y/N N: 20,723, Y: 299 Diastolic blood pressure 76 (70–83)

Hypertension Y/N N: 16,320, Y: 4,702 Uric acid 4.7 (3.7–5.8)

KTPL Y/N N: 20,985, Y: 37 Sodium 140 (138–141)

PD Y/N N: 21,021, Y: 1 Potassium 4.2 (4–4.5)

Tuberculosis Y/N N: 20,109, Y: 913 Chloride 104 (102–106)

Age at diagnosis 59 (50–67) Total carbon dioxide 26 (24–28)

Birth date 49/05/01 (41/06/01–58/10/01) Smoking Y/N N: 12,454, Y: 3,251, n/a: 5,317

Cancer code See Table 2. Body weight 61.65 (54.7–69.1)

Chemotherapy Y/N Y: 17,380, N: 3,642 Height 163.4 (157.1–169)

Clinical study

participation Y/N

N: 19,991, Y: 1,031 Body mass index 23.2947 (21.1556–25.4003)

Dialysis Y/N N: 20,306, Y: 716 Educational status High school: 5,035, university: 4,085, elementary school or lower: 2,682,

middle school: 2,204, graduate school or higher: 852, etc: 170, illiterate: 91, n/

a: 5,903

Sex M: 12,623, F: 8,399 Occupation Unemployed: 4,866, homemaker: 3,558, self-employment: 1,770, company

employee: 1,520, etc.: 318, professionals: 199, student: 126, soldier: 60, n/a:

8,605

Surgery Y/N Y: 11,135, N: 9,887 Income level No answer: 2,426, middle: 2,193, low: 733, high: 167, n/a: 15,503

The first eGFR value 82.5952 (69.7669–94.8359) Radiation treatment Y/

N

Y: 4,633, N: 44, n/a: 16,345

Platelet 227 (166–288) Triglyceride 105 (75–148.75)

White blood cell 6.4 (5–8.2) Low-density

lipoproteins

44 (34–54)

Hemoglobin 13 (11.5–14.2) Mean number of

smoking days per year

25 (15–40)

Cholesterol 168 (142–196) High-density

lipoproteins

101 (76–126)

Alanine transaminase 21 (14–37) Date of dialysis 11/06/26 (09/03/20–14/02/25)

Aspartate

transaminase

23 (18–38) Date of the first CRRT 11/04/28 (09/03/19–13/10/12)

Alkaline phosphatase 77 (60–105) Date of the first HD 12/03/15 (09/03/17–15/02/28)

Albumin 4 (3.6–4.3) Date of KTPL 10/09/01 (05/05/18–14/10/01)

Bilirubin 0.7 (0.5–1.1) Date of the first PD 08/04/03 (08/04/03–08/04/03)

Total protein 7.1 (6.6–7.5)

CT: Computerized tomography, HD: hemodialysis, CRRT: Continuous renal replacement therapy, PD: peritoneal dialysis, KTPL: kidney transplant, eGFR: estimated

glomerular filtration rate, and AKI: Acute kidney injury.

https://doi.org/10.1371/journal.pone.0199839.t001
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measure the regression accuracy, we need to compare the predicted target value against the

actual measurement. Since regressors return only the predicted value without the exact time of

the prediction, for the sake of comparison, we assume that the predicted SCr value is measured

at the same time as the target value, that is, the maximum SCr or the minimum 1/SCr in the

target window.

We report mean squared error (MSE) and mean absolute error (MAE) values obtained

from both versions of regression models in Fig 4. In experiments using SCr, MARS demon-

strates the best performance (MSE: 2.8386 and MAE: 1.0435) with the average MSE and MAE

scores being 2.9713 and 1.0691, respectively. Fig 4 shows the effectiveness of using 1/SCr,

Table 2. Distribution of patients by cancer type.

Cancer Number of patients Cancer Number of patients

Respiratory tract cancer 6,871 (32.68%) Skin cancer 230 (1.09%)

Gastrointestinal tract cancer 4,237 (20.16%) Endocrine cancer 184 (0.88%)

Thymus cancer 2,405 (11.44%) Soft tissue cancer 128 (0.61%)

Hematologic malignancy 1,763 (8.39%) Mesothelioma 91 (0.43%)

Breast cancer 1,656 (7.88%) Metastasis of unknown origin (MUO) 59 (0.28%)

Female genitourinary organ cancer 1,188 (5.65%) Bones and joint cancer 58 (0.28%)

Genitourinary tract cancer 908 (4.32%) Melanoma 51 (0.24%)

Central nervous system cancer 440 (2.09%) Kaposi’s sarcoma 18 (0.09%)

Head and neck cancer 387 (1.84%) Merkel-cell carcinoma 8 (0.04%)

Male genitourinary organ cancer 340 (1.62%)

https://doi.org/10.1371/journal.pone.0199839.t002

Table 3. Missing rate of non-temporal variables.

Variable Missing rate Variable Missing rate Variable Missing rate

Chronic liver disease Y/N 0.0000 Platelet 0.2113 Chloride 0.3519

CRRT Y/N 0.0000 White blood cell 0.2113 Total carbon dioxide 0.3519

CT scan Y/N 0.0000 Hemoglobin 0.2113 Smoking Y/N 0.4116

Number of CT scans taken 0.0000 Cholesterol 0.2172 Body weight 0.4150

Diabetes Y/N 0.0000 Alanine transaminase 0.2175 Height 0.4151

HD Y/N 0.0000 Aspartate transaminase 0.2177 Body mass index 0.4172

Hypertension Y/N 0.0000 Alkaline phosphatase 0.2180 Educational status 0.4299

KTPL Y/N 0.0000 Albumin 0.2182 Occupation 0.5335

PD Y/N 0.0000 Bilirubin 0.2183 Income level 0.7738

Tuberculosis Y/N 0.0000 Total protein 0.2196 Radiation treatment Y/N 0.8891

Age at diagnosis 0.0000 Calcium 0.2367 Triglyceride 0.8913

Birth date 0.0000 Phosphate 0.2369 Low-density lipoproteins 0.8981

Cancer code 0.0000 Blood urea nitrogen 0.2369 Mean number of smoking days per year 0.9067

Chemotherapy Y/N 0.0000 Glucose 0.2576 High-density lipoproteins 0.9393

Clinical study participation Y/N 0.0000 Systolic blood pressure 0.2746 Date of dialysis 0.9874

Dialysis Y/N 0.0000 Diastolic blood pressure 0.2747 Date of the first CRRT 0.9924

Sex 0.0000 Uric acid 0.2772 Date of the first HD 0.9935

Surgery Y/N 0.0000 Sodium 0.3450 Date of KTPL 0.9990

The first eGFR value 0.1253 Potassium 0.3455 Date of the first PD 0.9999

CT: Computerized tomography, HD: hemodialysis, CRRT: Continuous renal replacement therapy, PD: peritoneal dialysis, KTPL: kidney transplant, eGFR: estimated

glomerular filtration rate, and AKI: Acute kidney injury.

https://doi.org/10.1371/journal.pone.0199839.t003
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Fig 3. Distribution of number of temporal records. (a) Serum Creatinine (SCr) measurements, (b) CT scans, (c) administration of intravenous (IV)

chemotherapeutics, (d) administration of oral chemotherapeutics, and (e) administration of nephrotoxic drugs.

https://doi.org/10.1371/journal.pone.0199839.g003
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which improves the regression performance: MSE and MAE scores are improved in almost all

cases, with an average improvement being 19% and 12%, respectively. When using 1/SCr, the

average MSE and MAE score are 2.3947 and 0.9388, respectively with MARS showing the best

performance (MSE: 1.8839 and MAE: 0.9144).

Classification accuracy

We measure how effectively our method classifies AKI stages using several regression

models, and how using SCr and the inverse of SCr affects its performance. The predicted

AKI stages are compared against the ground truth AKI stages obtained with actual SCr

measurements.

In Fig 5, we report the precision, recall, and F-measure obtained from the two versions of

regression models. In experiments where we use SCr, the average precision, recall, and F-mea-

sure are 0.7203, 0.5461, and 0.5935, respectively, with lasso showing the best performance (pre-

cision: 0.7296, recall: 0.5628, and F-measure: 0.6090). When we use 1/SCr instead of SCr, all

models exhibit improved performance across all classification metrics: the average precision,

recall, and F-measure are 0.7293, 0.6261, and 0.6594, respectively, and the random forest

shows the best performance (precision: 0.7313, recall: 0.6402, and F-measure: 0.6706).

We also report the precision, recall, and F-measure for classifying AKI occurrence in Fig

6. While the overall trend is similar between Figs 5 and 6, scores for all metrics are higher

when we classify AKI occurrence than when we classify AKI stages; classifying AKI occur-

rence is an easier problem than classifying AKI stages since classifying into four AKI stages is

reduced to a simpler task of classifying into AKI non-occurrence and occurrence (which cor-

respond to AKI stage 0, and AKI stages 1 to 3, respectively). When we use SCr, lasso shows

the best performance (precision: 0.7794, recall: 0.6790, and F-measure: 0.6862), with the

average precision, recall, and F-measure being 0.7692, 0.6633, and 0.6702, respectively.

When using 1/SCr, random forest achieves the best performance (precision: 0.7892, recall:

0.7506, F-measure: 0.7576); the average precision, recall, and F-measure are 0.7869, 0.7415,

and 0.7490, respectively.

Model evaluation across years

Our dataset was collected in a single university hospital (SNUH) in Seoul for over 10 years.

Since the study period is quite long, patients’ care may have changed along the years. In order

to measure how the performance of our method changes over time, we divide the data into

Fig 4. Performance of serum creatinine (SCr) regression by several models using SCr and 1/SCr. (a) mean squared error, and (b) mean absolute

error. LIN: linear regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient descent, RAF: random

forest, and MRS: multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g004
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three subsets using three, equal-sized intervals (I1, I2, and I3) that cover the entire period,

where I1 is between 2004/1/1 and 2007/11/31, I2 is between 2007/12/1 and 2011/10/31, and I3

is between 2011/11/1 and 2015/9/30. Then we estimate the regression and classification perfor-

mances on each subset, as was reported for the entire dataset. For this experiment, we only use

1/SCr. Fig 7 reports the regression performance of all models over the full data and three sub-

sets divided by three intervals (I1, I2 and I3) in terms of mean squared error (MSE) and mean

absolute error (MAE). While regression performances across time intervals vary a lot by mod-

els and time intervals, it is noticeable that all models achieve the best performance in interval

I1. We also report model performances for classifying AKI stages (Fig 8) and occurrences (Fig

9). Overall, the differences between models and time intervals in Figs 8 and 9 are smaller than

those in Fig 7, and models perform classification with similar performances across time inter-

vals. The performance of AKI occurrence classification in interval I1 is better than those in

other intervals by 1.8% to 4.4% (Fig 9).

Discussion

The primary goal of our experiments was to evaluate the model performance on predicting

whether a patient will develop AKI within the next two weeks, and our approach achieved

0.7892 precision, 0.7506 recall, and 0.7576 F-measure for this task. While some machine learn-

ing algorithms were better than others in terms of classification and regression accuracy, their

performances were quite close to each other. We could also observe that model performances

differed a lot depending on whether SCr or 1/SCr was used.

Fig 5. Performance of AKI stage classification by several models using SCr and 1/SCr. (a) precision, (b) recall, and (c) F-measure. LIN: linear

regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient descent, RAF: random forest, and MRS:

multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g005
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While there exist several previous studies for predicting AKI, in this paper, we focus on

developing an AKI prediction method with a high applicability that makes use of heteroge-

neous and irregular cancer patients’ data collected over a long period of time, with the goal of

enabling better clinical decision making and AKI prevention.

To this end, we assessed the generalizability of our approach by performing nested k-fold

CV. Considering that the method is not particularly suited to the environment of SNUH, we

Fig 6. Performance of AKI occurrence classification by several models using SCr and 1/SCr. (a) precision, (b) recall, and (c) F-measure. LIN: linear

regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient descent, RAF: random forest, and MRS:

multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g006

Fig 7. Performance of serum creatinine (SCr) regression by several models trained with the full data and subsets. (a) mean squared error, and (b)

mean absolute error. I1: an interval between 2004/1/1 and 2007/11/31, I2: an interval between 2007/12/1 and 2011/10/31, and I3: an interval between

2011/11/1 and 2015/9/30. LIN: linear regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient

descent, RAF: random forest, and MRS: multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g007
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think that the proposed approach could perform similarly on the data of other hospitals. Fur-

thermore, we ran an experiment to measure how model performances change over 10 years of

time, in which we saw that models exhibited almost identical performances across different

time periods. It is noticeable, however, that models perform slightly better in interval I1 than

in other cases. We hypothesize that this is because for some temporal variables, the average

number of records available per feature vector in this period is greater than those in other

intervals. For example, there are 11% and 16% more CT scan records on average in interval I1

than in intervals I2 and I3, respectively; also, interval I1 has 18% and 35% more IV chemother-

apeutics data than interval I2 and I3. Based on these results, and the fact that the current

method can easily be extended to include different types of variables, we envisage an extension

of our approach that applies to different clinical populations other than cancer patients in

more diverse environments.

Limitations

There are a few limitations that call for future work. First, our dataset consists of patient rec-

ords of a single hospital (SNUH) in Seoul. Despite our efforts to do a fair evaluation of our

model’s generalizability, we cannot rule out the possibility that our dataset has some character-

istics that other datasets do not possess. Therefore, it is our future work to test and improve

the model based on the generalizability of our approach on more diverse, external datasets.

Second, our method does not provide procedures to configure windows used for creating

feature vectors and target values. While our current settings for these windows are determined

Fig 8. Performance of AKI stage classification by several models trained with the full data and subsets. (a) precision, (b) recall, and (c) F-measure.

I1: an interval between 2004/1/1 and 2007/11/31, I2: an interval between 2007/12/1 and 2011/10/31, and I3: an interval between 2011/11/1 and 2015/9/

30. LIN: linear regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient descent, RAF: random forest,

and MRS: multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g008
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based on the variable type and data availability, applying our method to different datasets may

require adding new windows, or updating the current settings, in which case users need to

provide the number and length of windows used for each variable. It would be helpful to have

a principled way for configuring windows.

Third, while our approach considers previous CT scans when creating temporal features by

including the number of CT scans, the number of CT scans alone is not sufficient. It would

provide much more information for predicting AKI to include the type and dose/volume of

contrast medium used for each CT scan, as the nephrotoxicity of one contrast medium might

be greater than that of another, and more importantly, the volume of contrast medium may

change over the course of treatment. Alternatively, the anatomic region explored by the CT

scan could provide an approximate information on the volume of contrast medium used.

Unfortunately, both of these information were not available since all related information are

maintained separately from the EMR systems that are accessible for research purposes.

Fourth, variables with missing rates greater than 40% were excluded since they can intro-

duce substantial errors that can adversely affect the model performance. However, this also led

to the removal of several variables relevant to AKI prediction, which could have resulted in the

loss of predictive power.

Fifth, while KDIGO includes urine output and the initiation of RRT as a criteria for AKI

staging, they are not used in our criteria due to the lack of those data. More accurate evalua-

tion of AKI staging would be possible if these two variables can be considered along with SCr

values.

Fig 9. Performance of AKI occurrence classification by several models trained with the full data and subsets. (a) precision, (b) recall, and (c) F-

measure. I1: an interval between 2004/1/1 and 2007/11/31, I2: an interval between 2007/12/1 and 2011/10/31, and I3: an interval between 2011/11/1

and 2015/9/30. LIN: linear regression, RID: ridge regression, LAS: lasso, LAR: least-angle regression (LARS), SGD: stochastic gradient descent, RAF:

random forest, and MRS: multivariate adaptive regression splines (MARS).

https://doi.org/10.1371/journal.pone.0199839.g009
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Sixth, although we provide an assessment of the overall predictive performance of our

model, the validity of the variables used by the model remains open to further studies; how dif-

ferent variables interact with each other, and affect the accuracy of AKI prediction in a variety

of environments will need to be investigated.

Related works

Several studies have been conducted for the task of predicting acute kidney injury (AKI). One

line of research toward this end has focused on investigating promising biomarkers or employ-

ing existing risk models for the prediction and detection of AKI. Haase et al. [19] performed

meta-analysis of observational studies to investigate the diagnostic and prognostic power of

neutrophil gelatinaseassociated lipocalin (NGAL) as an early biomarker of AKI. Kane-Gill

et al. [15] examined what risk factors for AKI are important in elderly patients, and performed

regression analyses to see how the significance of risk factors changes in different age groups.

Parikh et al. [18] investigated the performance of interleukin-18 (IL-18) as a predictive bio-

marker for AKI following cardiac surgery. Murugan and Kellum [9] discussed the role of

biomarkers for early diagnosis and better prognosis of AKI, and an improved classification

system that incorporates novel biomarkers as damage criteria. De Geus et al. [29] and Lameire

et al. [30] provided a detailed review of the performance of various biomarkers for the predic-

tion and detection of AKI. Chang et al. [31] studied whether two risk scores for predicting

mortality in bypass surgery (STS and ACEF) can be used for AKI prediction after mitral valve

repair.

In recent years, machine learning techniques have been increasingly used for AKI predic-

tion. Tirunagari et al. [17] proposed two approaches to detect AKI for patients who are not

under constant monitoring condition, such as an ICU; while the focus of [17] is to detect

AKI, the one based on the Gaussian process regression can also be used for predicting AKI.

In [10] and [11], machine learning algorithms, such as logistic regression, are applied to

electronic health record data of pediatric patients obtained from the first 12 hours of ICU

stay in order to predict AKI development in the first 72 hours of ICU admission. Kate et al.

[12] proposed machine learning models for older adults to predict, at 24 hours from admis-

sion, whether a patient will develop AKI later during a hospital stay. Cruz et al. [13] devel-

oped a Bayesian network based-model for predicting the risk of developing AKI, which they

applied to ICU patient data. Using classification and regression tree (CART), Schneider

et al. [14] developed a decision tree for late AKI prediction with the burn patient data

obtained from the first 48 hours after admission. Liu et al. [32] proposed a risk model for

surgery-related AKI based on preoperative risk factors by utilizing stepwise multivariate

logistic regression.

Conclusion

In this paper, we present our method for predicting acute kidney disease (AKI) from irregular

and heterogeneous clinical data. Our contributions are threefold. First, we present a model for

AKI prediction that relaxes the constraints of existing prediction models, and thus has a better

applicability. Second, we present a detailed explanation of our method. In particular, we delin-

eate how we preprocess the heterogeneous and irregular data, how we create feature vectors,

and how we structure our proposed framework for AKI prediction. Third, we provide exten-

sive empirical evidences for the performance of our approach using the dataset of 21,022 can-

cer patients. Our method achieves 0.7892 precision, 0.7506 recall, and 0.7576 F-measure in

predicting whether a patient will develop AKI during the next 14 days.
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