
Synchronized Renal Blood Flow Dynamics Mapped with
Wavelet Analysis of Laser Speckle Flowmetry Data
Alexey R. Brazhe1*, Donald J. Marsh2, Niels-Henrik Holstein-Rathlou3, Olga Sosnovtseva3

1 Department of Biophysics, Biological Faculty, Moscow State University, Moscow, Russia, 2 Department of Molecular Pharmacology, Physiology, and Biotechnology,

Brown University, Providence, Rhode Island, United States of America, 3 Department of Biomedical Sciences, Panum Institute, University of Copenhagen, Copenhagen,

Denmark

Abstract

Full-field laser speckle microscopy provides real-time imaging of superficial blood flow rate. Here we apply continuous
wavelet transform to time series of speckle-estimated blood flow from each pixel of the images to map synchronous
patterns in instantaneous frequency and phase on the surface of rat kidneys. The regulatory mechanism in the renal
microcirculation generates oscillations in arterial blood flow at several characteristic frequencies. Our approach to laser
speckle image processing allows detection of frequency and phase entrainments, visualization of their patterns, and
estimation of the extent of synchronization in renal cortex dynamics.
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Introduction

Laser speckle imaging complements other blood flow measure-

ment techniques, such as laser Doppler flowmetry [1] and

magnetic resonance imaging [2] and allows to measure local

blood flow distribution with a relatively high spatial-temporal

resolution and does so without the need for emission scanning [3].

Laser speckle imaging instrumentation can also be made radically

low-cost, allowing for wide educational or mobile applications [4].

Speckle is an interference pattern produced by coherent (laser)

light scattering on a rough surface. The intensity of speckle

patterns fluctuates if the illuminated object contains individual

moving scatterers such as blood cells. These fluctuations blur the

speckles, leading to a reduction of the local speckle contrast, with

the contrast value inversely proportional to the flow speed. These

principles form the basis of laser speckle flowmetry (LSF) [3,5].

Speckle imaging techniques have been used to monitor blood

flow velocity in a number of tissues [6]. This method has been

applied to the retina [7], skin [8], mesenteric microcirculation [9],

and during focal ischaemia and cortical spreading depression

(CSD) in the brain [10]. Most studies address steady state tissue

blood perfusion rather than temporal changes associated with

different regulatory mechanisms. The full-field speckle technique

performs imaging of instantaneous blood perfusion in real time

and simultaneously from different points within a field, and is

therefore a promising tool for detecting and measuring synchro-

nous patterns of many operating units involved in local blood flow

regulation.

Nephrons produce oscillations of proximal tubule hydrostatic

pressure, renal tubular flow rate, and chloride concentrations with

a period of 30–50 sec caused by tubulo-glomerular feedback

(TGF) [11,12], a negative feedback mechanism that transmits

signals from a nephron sensing site to the arteriole supplying that

nephron with blood. Changes in the feedback signal induce

changes in cytoplasmic calcium concentration and membrane

electrical potential in smooth muscle cells of the arteriole. The

arterioles are electrically conductive, providing nephrons an

opportunity to interact by exchanging electrical signals, hemody-

namic coupling, or both. To estimate the number of nephrons that

form synchronized clusters, and to assess the factors that modify

cluster size, one needs a method for simultaneous and continuous

measurements of dynamical phenomena in blood flow speed in

many nephrons, a problem set for which laser speckle microscopy

is well suited. We applied this method to detect changes in many

nephrons on the kidney surface of anesthetized rats [13]. Different

oscillatory components in the kidney perfusion have been also

explored by Scully et al. [14].

The classical concept of synchronization [15,16] considers the

interaction of two or more oscillators, each with their own sources

of energy, the coupling causing an adjustment of the time scales in

the form of frequency and phase entrainments. Local coupling

typically produces waves or pulses that propagate across the

interacting units [17]. Phenomena associated with global coupling

structure are global synchronization and various forms of

clustering in which the ensemble splits into subgroups of

synchronized oscillators, but such that each subgroup maintains

its own dynamics [18]. Synchronization theory has been widely

applied to the analysis of multivariate biological signals. Rosen-

blum et al. [19] discussed how the phases and frequencies can be

estimated from time series and techniques for detection and
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quantification of synchronization from biomedical data. Wavelet-

based tools to study the dynamics of biological processes have been

widely applied [20].

Experimental studies of nephron synchronization have thus far

been limited to measurements on pairs or triplets of nephrons [21–

23]. We have previously used the laser speckle technique to

measure nephron blood flow on the kidney surface of aneshetized

rats [13], but not all nephrons in the field could be sampled, so

that not all clusters could be identified. Here we develop a more

extensive sampling technique, making it possible to study local and

global interactions between rhythmic processes, using the kidney

to illustrate the patterns and clusters of frequency and phase

entrainments.

Results

Fourier-based analysis
To determine whether the TGF rhythm could be detected in

our LSF data we first applied Fourier analysis to image series

obtained from the ventral surface of a rat’s kidney. Non-renal

tissue was masked, as described in Methods section. Representa-

tive results are summarized in Figure 1.

We applied fast Fourier transform (FFT) to the LSF temporal

signals (normalized to the signal standard deviation) from each

pixel, squared the result, and clipped the spectra to a frequency

range around the TGF band. The mean power spectrum averaged

over all the pixels in the kidney showed a pronounced peak near

0.02 Hz, indicating the presence of oscillations with similar

frequencies in many regions of the kidney surface (Figure 1D).

To facilitate spatial analysis we downsampled each frame from the

original 7606568 pixels to 3806284 pixels as described in

Methods section. This procedure had the additional benefit of

enhancing the signal-to-noise ratio because of the spatial

smoothing prior to resizing. The average Fourier power spectrum

for the spatially resized data, shown in Figure 1D with a black line,

shows an even stronger and more detailed peak around 0.02 Hz.

All subsequent analyses of the LSF data were done on the spatially

resized recordings.

A map of the base 10 logarithm of the peak amplitude of the

power spectrum within the TGF band is shown in Figure 1B. The

map was calculated from LSF time series in each pixel of the

spatially downsampled images. The resulting image shows uneven

distribution of the peak amplitudes. A similar mapping, this time

using the locations of the TGF peak, is shown in Figure 1C.

Domains with similar frequencies immediately stand out as areas

with the same color. Areas with the highest peak power (B) are also

the most uniform in frequency (C).

Because of the normalization, the values in Figure 1 B are given

in units of the variance of the signal and thus reflect the signal-to-

noise ratio with respect to TGF oscillations. This allowed us to set

empirical thresholds to separate pixels with a reliable TGF rhythm

from others. Threshold was determined in a Monte-Carlo

Figure 1. Fourier representation of the TGF oscillations. (A) Time-averaged LSF image of a rat kidney. Blue regions are masked and excluded
from analysis. (B) Fourier power spectra averaged over all the non-masked pixels of the original (gray) and spatially downsampled (black) data. (C)
Location of the main Fourier peak in the TGF band mapped across a kidney surface. (D) Log peak intensities of Fourier power spectrum mapped
across the kidney surface. Time series from each pixel were normalized to their standard deviation.
doi:10.1371/journal.pone.0105879.g001
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simulation as the 95% percentile of the base 10 logarithm of the

maximum value in a Fourier power spectrum of 106 random white

noise signals. We did the same mapping as in Figure 1 B for 5

other kidney preparations and found that substantial and

continuous areas displayed significant TGF oscillations in most,

but not all preparations (Figure 2). The preparation under number

3 in Figure 2 is the same as in Figure 1. Only pixels with

significantly high Fourier power in the TGF band were used in the

wavelet-based analysis of frequency and phase synchronization.

Wavelet-based analysis
Because the Fourier analysis showed periodic behavior in the

LSF data, we sought ways to elicit possible patterns of spatial

synchronization across the kidney surface. To this end we used the

continuous wavelet transform (CWT). We applied the transform to

the normalized time series from each pixel, and then determined

whether spatial or temporal patterns emerged in the distribution of

dominant rhythm frequencies and instantaneous phases.

A normalized LSF signal and its corresponding wavelet

spectrogram from an example pixel location on a kidney surface

(marked with in yellow in Figure 3A) are shown in the upper and

middle panels of Figure 3B.

The middle panel of Figure 3B also illustrates the automated

identification of the dominant rhythm from the wavelet spectro-

gram. This was done as follows: we identified local maxima of

instantaneous wavelet power spectra for each time point and then

found and labeled contiguous ‘‘ridges’’ of such local maxima

(shown as blue and red lines). Each ridge was assigned with a score

defined as a product of the ridge time span and the averaged

wavelet power skimmed by the ridge. The dominant frequency at

a given time point was then defined as the frequency of the

‘‘winner’’ ridge (shown in red) with the highest score at the given

time point. We will use the terms dominant wavelet ridge and

dominant rhythm interchangeably.

Besides wavelet spectrograms, we calculated wavelet phase-

grams of the signal defined for a complex-valued wavelet

coefficients W (f ,t) at time t and frequency f as:

W(f ,t)~ tan{1 =W (f ,t)

<W (f ,t)
: ð1Þ

This resulted in a 2D array of wrapped phase values from {p
to p (Figure 3B, lower panel). Instantaneous phase values

corresponding to the dominant rhythm were extracted as phase

values at the frequency of the dominant ridge, defined above.

A pixel-to-pixel mapping of time-averaged frequencies of the

dominant rhythms is shown in Figure 3C. The distribution of

dominant frequencies across the kidney surface is comparable to

the one obtained from Fourier mapping (Figure 1C. Pixels with

similar average frequencies of dominant rhythms tended to

aggregate in spatially contiguous areas (Figures 3 C, 4 A.)

Moreover, temporal swings of the instantaneous frequencies of

dominant rhythms occurred in groups of neighboring pixels in a

coordinated manner, which is illustrated in Figure 4 B. Thus, the

wavelet rhythm mapping suggests that pixels with close frequencies

are not randomly scattered across the kidney surface but are

organized in locally linked areas.

Phase dynamics
We next analyzed the spatio-temporal behavior of the wavelet

phase maps defined in (1). Spatial organization of the wavelet

phase dynamics displayed collective modes. An example of phase

dynamics is given in Figure 5A. Every 4th frame is shown for the

frames from 925 to 1081 (2.5 minutes) of the same recording as

shown in Figure 4. This timespan roughly encompasses four

periods of the TGF rhythm, and each row approximately

represents one period. The frames in each column of the figure

repeat with regard to the previous row, indicating stability of

spatial organization of the phase lags during this time interval. It is

therefore apparent that phase dynamics is cooperative in the

synchronized regions and is organized in near-concentric spatial

patterns.

The level of spatio-temporal correlation between phase

dynamics in individual pixels can be tested with singular value

decomposition (SVD) [24,25] which provides empirical normal

modes of the observed data. The more dynamics of the data can

be captured by the first few empirical normal modes, the more

Figure 2. Mapping intensity of TGF oscillations in 6 animals. Grayscale images show LSF frames, pseudo-colors represent the log peak power
of the Fourier spectrum in the TGF band ( lg P)=10. Time series from each pixel were normalized to their standard deviation. Areas where the
( lg P)=10 value was lower than 95%-confidence interval, estimated from Monte-Carlo simulations, are transparent.
doi:10.1371/journal.pone.0105879.g002
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organized is the dynamics [26,27]. During approximately the same

time interval as shown in Figure 5A, (900 to 1100 seconds), the

first two spatial eigenmodes explained about 45% of observed

variance. Their corresponding weights when plotted one vs the

other displayed a clear oscillatory behavior, indicating a repeated

switching between the two modes, while the next two modes

described another 15% of observed variance together and also

showed a coupled dynamics of phase trajectories (Figure 5B).

Thus, dynamics of the phase lags displayed a concentric wave-like

patterns on the kidney surface. This observation was corroborated

by the oscillatory switching between the two eigen-modes of the

Figure 3. CWT-based identification of the instantaneous frequency and phase of the dominant rhythm for an example pixel in a
LSF data (the same preparations as in Figure 1). (A) time-averaged LSF frame. (B) Top, blood flow signal extracted from the yellow mark in (A)
and normalized to its standard deviation; middle: wavelet spectrogram of the normalized signal, ridges of wavelet modulus maxima (blue) and the
dominant ridge (red); bottom: time-frequency representation of the wavelet phase, the dominant rhythm is show with the red line (same as above).
(C) Map of the mean frequencies of the main rhythm, identified in each pixel of the kidney image.
doi:10.1371/journal.pone.0105879.g003

Figure 4. Collective changes in the dominant rhythm frequency (preparation 4 shown in Figure 2). (A) Map of time-averaged
frequencies of the dominant rhythm across the kidney surface. (B) Time dynamics of the dominant rhythm frequency in each pixel within square
areas in (A), after re-ordering to a 1D line. Frequency is shown as color. Changes in frequency tend to coincide in populations of pixels.
doi:10.1371/journal.pone.0105879.g004
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phase-lag movies. These results suggest a high level of correlation

in the dynamics of phase in a large population of pixels.

It was interesting to test if this collective phase behaviour was

present at other moments of time and whether it was common in

other experiments. Figure 5 C shows how the fraction of variance

explained by the first four eigenmodes defined for a sliding 250 s-

wide window of (&5 periods of TGF) changes at each moment of

time for the 6 preparations shown in Figure 2. On average, the

first four modes explained 65.6% of variance in the data. In 99%

of time this value stayed between 45.2% and 89.5% with half of

the data above 66.6% variance explained (Figure 2 D).

In experimental studies, where time series are of limited length

and noisy, one quantifies the degree of interrelation between two

signals k and l by means of phase coherence (PC) index [15,19,28],

also termed as synchronization index:

ckl~DSei(wk{wl )TD , ð2Þ

where S:T denotes averaging in time, i~
ffiffiffiffiffiffiffiffi
{1
p

, and wk is the

unwrapped (monotonically increasing) phase of the signal k. The

Figure 5. Organized spatial phase dynamics. (A) Phase maps for a short time interval (the same preparation as in Figure 4), every 4th frame is
shown. Wrapped phase is color-coded from {p to p. Each row of 10 frames roughly corresponds to one period of TGF oscillation. Maps in each
column tend to reproduce their phase pattern for 4 periods. (B) First four empirical spatial eigenmodes (PC1–PC4) for the time period from 900 to
1100 seconds and the corresponding paired phase plots, displaying how coefficients for the pairs of modes change with time in relation to another
mode. Clear oscillatory behaviour is seen for the first two eigenmodes, which correspond to concentric phase wave-like pattern. (inset) Cumulative
fraction of variance explained by the first 20 modes; first two modes capture around 45% of the variation in the data. (C) Dynamics of the fraction of
variance explained by the first 4 modes in moving 250 s-wide time windows for the 6 experiments shown in Figure 2. (D) boxplots that summarize
the values shown in (C), phase delays are highly spatially organized over the whole experiment.
doi:10.1371/journal.pone.0105879.g005
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index is close to 1 in the case of the pairwise phase locking and

zero otherwise.

This synchronization measure is defined for two signals while

imaging aplication necessitates quantification of spatial interrela-

tions among many signals in areas of pixels. Total pairwise pixel-

to-pixel calculation of the PC index was computationally

inconvenient due to the large number of pixels in our images.

Instead, for each pixel we calculated the PC index between phase

dynamics in this pixel and all other pixels in a neighborhood of this

pixel and averaged the resulting PC indices. This produced a

mapping of how synchronized each pixel in the kidney was with

regard to its neighborhood and whether its phase dynamics was

supported by neighboring pixels. The size of the neighborhood

was chosen to match nephron density on the kidney surface. In our

setup, median nephron-to-nephron spacing on the kidney surface

was approximately 13.5 pixels with s~10:1 pixels, as estimated

from Delauney triangulation of the star vessel positions visualized

as described in [13]. The resulting local coherence maps for a 8-

pixel neighborhood are shown in Figure 6. In most of the

experiments we were able to observe substantial areas of locally

synchronized TGF oscillations. Even though in some preparations

(e.g. number 2) the Fourier-derived masks labeled only relatively

small areas as having significant TGF oscillations, these areas

varied in their local phase coherence from low to very high. In

some preparations (e.g. 3) almost the whole surface of the kidney

was locally synchronized, while in other (for example 2 and 5)

there were islets of high local synchronization surrounded by less

synchronized periphery.

We next tried to find clusters of the coherent phase dynamics to

uncover spatial ordering of the areas of synchronized TFG blood

flow oscillations. Noting that local maxima of the local coherence

maps mark pixels which are most coherent with their neighbor-

hood and thus can serve as potential cluster centers. PC indices

can thus be computed for phase dynamics in any pixel k of a

recording and each pixel m from the set of local maxima from the

corresponding local coherence map. Cluster affiliation of the pixel

k is then chosen with such tentative cluster center m that

maximizes their PC index ckm. To allow for some pixels not to

belong to any clusters, we labeled a pixel k unclustered if it didn’t

have ckmw0:5 with any cluster center m. The results of such

clustering approach are shown in Figure 7. It becomes evident

that areas with high local coherence segregate into relatively

contiguous clusters of synchronization whereas areas with low

local coherence tend to be unclustered (shown in gray). The

number of clusters and their contiguity varied from preparation to

preparation, but the qualitative picture of kidney clustering

remained similar. With white squares in Figure 6 approximately

matching nephron to nephron spacing, it is clear that clusters e.g.

in preparation 3 could embrace several or many nephrons and in

general were larger than single surface nephrons.

Discussion

Previously we performed modeling studies of the spatial

dynamics of a nephro-vascular network consisting of individual

nephrons connected via a tree-like vascular branching structure

[29,30]. Postnov et al. demonstrated that the nearest nephrons in a

binary tree structure are synchronized in-phase due to a vascular

propagated electrical coupling; the next few branching levels

display a formation of phase-shifted patterns due to hemodynamic

Figure 6. Local coherence maps for the preparations shown in Figure 2. Areas of highly locally coherent dynamics can be seen in all
preparations, even in the one where only small fraction of the kidney surface showed significant TGF peak in Fourier spectrum. White square in the
lower left corner show the span of the neighborhood area.
doi:10.1371/journal.pone.0105879.g006

Figure 7. Clusters of coherent pixels. Taking peaks of local
coherence maps as tentative cluster centers, each pixel was affiliated
according to the center it was most coherent with. Different clusters are
shown in different colors. If phase coherence of a pixel was less then 0.5
with any of the cluster centers, it was considered unclustered (shown as
gray).
doi:10.1371/journal.pone.0105879.g007
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coupling and distantly located areas show asynchronous behavior

[30]. Marsh et al. examined how the network structure affects

nephron synchronization: the symmetric model achieved synchro-

nization of all functional units while 1% variation in nephron

length caused extensive desynchronization, although synchroniza-

tion was maintained in small nephron clusters [29]. The effects of

variation in vascular anatomy remain to be studied.

We devised a framework to analyse rhythmic activity and

synchronization patterns in laser speckle flow imaging data or in

general in any time-lapse imaging data with rhythmic temporal

components. In the rat kidney data we analyzed the TGF-driven

oscillations in superficial blood flow. We mapped TGF rhythms

across the whole kidney surface and identified areas of spatially

synchronized TGF oscillations. Approximately 2/3 to 3/4 of a

kidney’s nephrons are of a structure and length similar to those

found on the surface, and it seems reasonable to assume all of

nephrons of this group will have similar patterns of interaction and

synchronization. The remaining nephrons are longer, the length

variation is not normally distributed, and there have been no

measurements of their dynamics. Speculation at this point is

unwarranted.

Fourier analysis of the dynamical LSF imaging data confirmed

the existence of blood flow oscillations in the TGF sub-band

(Figure 1). We incorporated the Fourier-based analysis in the

pipeline of our method to define areas with significant TGF

oscillations in the LSF data (Figure 2). Once significant pixels are

identified, we perform CWT on the LSF time courses in each

significant pixel and obtain instantaneous frequency and wrapped

phase values (Figure 3). As suggested by Figure 3 C and Figure 4

average TGF frequencies tended to make spatial clusters, and

changes in instantaneous frequencies were coordinated among

neighboring pixels. This led us to a more detailed analysis of phase

relationships between different pixels.

Visual inspection of the calculated phase movies immediately

suggested spatial structuring in the phase lags between the pixels.

Changes in the wrapped phase appeared as nearly-concentric

phase lag patterns (Figure 5 A). This was supported by SVD

analysis of the phase data: first two empirical eigenmodes could

explain about half of the variation in the data, and the alternation

between their corresponding weights indicated oscillatory behavior

(Figure 5 B). These two images show relatively short excerpts from

the original recording. Spatial correlation at other times and in

other preparations was illustrated by plotting the ratio of variance

in the data explained by the first four SVD components within a

sliding 250 s window. Though this measure could drift over time,

it remained relatively stable and didn’t differ much from animal to

animal, including recordings where the area with significant TGF

oscillations was scarse (e.g. recording 2).

With further analysis of the phase coherence index, an

established measure of synchronization, we showed that the

kidney surface varied with regard to how well a given pixel was

synchronized with its neighborhood (Figure 6). We then used

locations of peak local synchronization as seeds for a clustering

algorithm and obtained cluster maps of mutually synchronized

areas (Figure 7). It is clear that clusters tend to be spatially dense

and structured, except for the experiment 6, where cluster

affiliations appeared more intermixed than in the other recordings.

Physiologically, both spatial phase lags between pixels and

clustered organization of the synchronized areas could be

important to avoid macroscopic blood pressure oscillations,

resulting from synchronized blood flow oscillations in the majority

of nephrons. Currently we report a framework to analyze

synchronization phenomena in the kidney blood flow, and it calls

for future studies targeted at the ways to enhance or destroy the

synchronization between the nephrons, whether chronically or

acutely.

Methods

Ethics
All experimental protocols were approved by the Danish

National Animal Experiments Inspectorate.

Laser speckle flowmetry imaging
Experiments were performed on male Long Evans rats, body

weight 275–325 g, purchased from Taconic (Lille Skensved,

Denmark). The animals were anesthetized with sevoflurane. The

experimental protocol is described in detail in Ref. [13]. We used 6

animals in this study, in each one recording was made. Figures 2, 5

(C,D), 6,7 thus encompass all data and illustrate the variability

range among different animals.

Physical principles and the algorithm for laser speckle contrast

(LSC) and flowmetry imaging are reviewed e.g. in Ref. [31]. In

short, laser light, illuminating a rough surface creates a stochastic

interference pattern, termed speckles. Moving scatterers, such as

red blood cells in the vessels, blur the speckle pattern integrated by

a camera over a finite exposure time. The degree of this blurring is

described by the speckle contrast k:

k~
sI

SIT
, ð3Þ

where sI is standard deviation of the speckle intensity and S:T
denotes averaging. The standard deviation and mean can be

computed over space or time, providing better temporal or spatial

resolution, respectively. Because of integration by the camera, flow

speed of the scattering particles is inversely proportional to the

characteristic decay time tc of the light intensity autocorrelation

function: the faster the particles move, the smaller the tc. Speckle

contrast value in turn is related to the ratio between the exposure

time T and correlation time tc:

k2!
e{2xz2x{1

2x2
, ð4Þ

where x~T=tc. Equation 4 forms the basis of the relative blood

flow measurement in laser speckle flowmetry instrumentations.

To acquire laser speckle flowmetry data we used the Moor FLPI

laser speckle camera from Moor Instruments (Millwey, Axminster,

UK). Moor FLPI measures tissue perfusion by performing

intensity statistics analysis on images of tissue, illuminated with a

50 mW 785 nm laser light and acquired by a CCD video camera.

Because we were interested in the slow dynamics (TGF rhythm),

we chose to increase spatial resolution at the cost of acquisition

speed by using the temporal analysis mode available in the Moor

FLPI system. Using this mode, in each experiment we typically

recorded 2000–2500 images with high resolution and at relatively

low speed (1 frame/sec).

Frame pre-processing
LSF frame sequences were processed offline using custom

software written in the Python programming language with the use

of SciPy [32] and Matplotlib [33] open source libraries. The

custom software is described in [34] and is distributed under the

GNU General Public License.
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Frames captured by the camera had the size 5686760 pixels

and were too large for pixel-wise analysis for our purposes. To

reduce data size and to suppress pixel noise we applied a low-pass

filter to each frame by convolution with a Gauss kernel (s~3
pixels) and then downsampled to 2846380 pixel images. Spatial

smoothing by low-pass filtering was necessary to avoid aliasing

artifacts after downsampling.

Though the camera has been staged so as to maximize the area

occupied by the kidney, the frame contained small areas in the

corners that were outside the kidney, and because the peritoneum

covering the kidney was purposely left intact, an occasional area of

fat remained within the image field. Areas outside the kidney or

obscured with interfering objects were discarded from the analysis

by image masking. Noting that irrelevant areas have low signal

amplitude and constitute only a small portion of the frame, the

following procedure was used to mask unwanted areas out. First 20

frames from the acquired frame sequence were time-averaged to

produce a mean frame. Only pixels with intensity higher than 0.15

quantile of overall pixel intensity distribution in the mean frame

were chosen for analysis. A threshold at 0.15 quantile is an

empirical value that resulted in satisfactory kidney masks for the

data set.

After spatial downsampling, the LSD time series in each pixel

were normalized to their standard deviation. Normalization was

done after subtraction of the time-averaged frame from all frames

in the downsampled LSF frame sequence.

Continuous wavelet transform
Time-frequency analysis was performed with continuous

wavelet transform (CWT) [35]. In brief, the CWT allows one to

follow the temporal variation of the magnitude, phase and

frequency of the various spectral components in non-stationary

time series. The continuous wavelet-transform of a signal x(t) at

scale a and time t is given by:

W (a,t)
x ~

1ffiffiffi
a
p
ð?

{?
x(u)y�

u{t

a

� �
du: ð5Þ

where y is a ‘‘mother’’ wavelet function. This function should be

soliton-like with zero average, and the wavelet transform is

obtained by a convolution of the signal with dilated and translated

copies of the ‘‘mother’’ wavelet. We used Morlet wavelet, which is

a plane wave, modulated with a Gaussian, as the ‘‘mother’’

wavelet:

y0(g)~p{1=4ei2pf0 e{g2=2 ð6Þ

where f0 is the central frequency of the wavelet. We used f0~1:5
to allow for a balance between time and frequency resolution.

CWT decomposition was done only in the time domain, i.e. for

normalized LSF time series in each pixel. An in-house open-sourse

software Swan (http://cell.biophys.msu.ru/static/swan/) was used

to perform CWT. After CWT decomposition we extracted

instantaneous frequency and phase values from the wavelet

spectrogram DWxD2 as described and illustrated in the Results

section.
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