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Although genome-wide association studies (GWASs) have successfully identified thousands of risk vari-
ants for human complex diseases, understanding the biological function and molecular mechanisms of
the associated SNPs involved in complex diseases is challenging. Here we developed a framework named
integrative multi-omics network-based approach (IMNA), aiming to identify potential key genes in reg-
ulatory networks by integrating molecular interactions across multiple biological scales, including GWAS
signals, gene expression-based signatures, chromatin interactions and protein interactions from the net-
work topology. We applied this approach to breast cancer, and prioritized key genes involved in regula-
tory networks. We also developed an abnormal gene expression score (AGES) signature based on the gene
expression deviation of the top 20 rank-ordered genes in breast cancer. The AGES values are associated
with genetic variants, tumor properties and patient survival outcomes. Among the top 20 genes,
RNASEH2A was identified as a new candidate gene for breast cancer. Thus, our integrative network-
based approach provides a genetic-driven framework to unveil tissue-specific interactions from multiple
biological scales and reveal potential key regulatory genes for breast cancer. This approach can also be
applied in other complex diseases such as ovarian cancer to unravel underlying mechanisms and help
for developing therapeutic targets.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Genome-wide association studies (GWASs) have identified
thousands of risk single nucleotide polymorphisms (SNPs) for
human complex diseases [1–3]. However, understanding the bio-
logical function and molecular mechanisms of the associated SNPs
involved in complex diseases is challenging. Breast cancer repre-
sents a typical example of such status quo. Breast cancer is one
of the most common diagnosed cancers and leading causes of
cancer-related death in females [4]. GWASs have identified over
7000 SNPs for breast cancer based on the results collected from
the NHGRI GWAS Catalog (release on 2020-08-26) [1] and pub-
lished GWASs [5,6]. Most of these SNPs are located within non-
coding genomic regions and their functions need to be interpreted.
The genetic information flow from genome to traits goes through
various intermediate molecular layers, including genome, epigen-
ome, transcriptome, proteome, and metabolome. Different type
of molecules works together as an interactive system to affect bio-
logical processes [7,8]. Therefore, integration of multiple omics
data might offer an unprecedented opportunity to illuminate the
complex pathogenesis [9]. For example, Zhang et al. used datasets
from multiple biological scales to construct regulatory networks
and identified TYROBP as a key gene in late-onset Alzheimer’s dis-
ease [10]. Therefore, integrating GWASs findings with multiple lay-
ers of functional data might provide new insight into the complex
pathogenesis of breast cancer.

There are increasing evidence showing that genetic variants can
perturb the regulatory network and consequently contribute to the
changing of traits [11,12]. Incorporating multi-omic data into net-
work analyses has the advantage of constructing regulatory net-
works by combining biological signals from different scales [11–
14], and therefore can enhance the understanding of the molecular
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mechanisms underlying the pathophysiology of diseases. Several
previous studies have constructed regulatory networks to unravel
potential mechanisms for complex diseases by using integrative
approaches. For example, Jang et al. [15] used the chromatin inter-
actome and protein interactome for combinatorial regulatory vari-
ants to find driving genes in breast and liver cancers. Hsiao et al.
[16] performed a network analysis on the gene level and the gene
set level. However, these studies didn’t consider the prior informa-
tion of GWASs signals. Castro et al. [17] created a TF-driven gene
regulatory network for breast cancer by combining GWASs vari-
ants and eQTLs. Although these studies have proved the effective-
ness of integrative network-based models for identification of new
driver genes or biological pathways, no studies have constructed a
full-scale network by using molecular interactions across multiple
biological scales to provide systemic insight into breast cancer.

Therefore, in this study, we developed a framework named inte-
grative multi-omics network-based approach (IMNA) to capture
genetic-driven regulatory networks and predict key regulatory
genes for breast cancer. We combined the interactions and func-
tional relationship data from multiple biological scales, including
GWASs, eQTLs, epigenomic elements, transcriptome, protein inter-
actome and chromatin long-range interactions. We also developed
an abnormal gene expression score (AGES) signature based on the
gene expression deviation of the top ranked-order candidate genes
and found that the AGES signature was correlated with genomic
variants and clinical properties in breast cancer patients. Moreover,
we identified RNASEH2A as a novel breast cancer-associated gene.
Our method will benefit further investigation of molecular patho-
genic mechanisms in diseases.
2. Method

2.1. Multi-omics datasets used in this study

The GWAS datasets for breast cancer came from the Breast Can-
cer Association Consortium (BCAC). The study design, samples
characteristic, genotyping and quality control within the datasets
have been described previously [18–20]. Briefly, the BCAC com-
prised 52,675 cases and 49,436 controls from 52 studies, including
41 European ancestry, 9 Asian ancestry and 2 African-American
ancestry studies [18,19]. The samples were genotyped using a cus-
tom Illumina Infinium iSelect array (iCOGS) comprising 211,155
SNPs and imputed to 2.5 million SNPs by IMPUTE2 [21] with the
1000 Genomes Project March 2012 release as the reference.

The multiple functional genomic data included cis-eQTLs, cis-
mQTLs, chromosome long-range interactions and epigenomic reg-
ulatory annotations in relevant tissues/cells. The cis-eQTLs data in
breast tissues came from the Genotype-Tissue Expression (GTEx)
[22]and the Cancer Genome Atlas (TCGA) [23] database. Cis-
mQTLs dataset was obtained from Pancan-meQTL (http://bioinfo.
life.hust.edu.cn/Pancan-meQTL/) [24]. Chromatin interactions
were extracted from 4D genome (http://4dgenome.research.chop.
edu/) using the disease-related cell lines (MCF7 and GM12878)
[25]. The Assay for Transposase-Accessible Chromatin followed
by sequencing (ATAC-seq) and 15-state chromatin states were
used for epigenomic regulatory annotation. ATAC-seq datasets
from 5 cell types (HCC1806, MDA-MB-231, MCF-7, ZR-75-1,
T47D) were downloaded from Cistrome Data Browser [26]
(http://cistrome.org/db) (Supplementary Table 1). 15-state chro-
matin states of 3 cell types (breast vHMEC, breast myoepithelial
cells and HMEC mammary epithelial cell) were downloaded from
the Roadmap Epigenomics project. We merged ‘‘Enhancer”, ‘‘Genic
enhancer” and ‘‘Bivalent enhancer” into one type of regulatory ele-
ment to simplify the interpretation of regulatory elements.
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We collected 6 expression-based prognostic and predictive
gene sets including MammaPrint, PAM50, OncotypeDX, Wang-76,
Zhang-15, and Cell cycle from previous publications (Supplemen-
tary Table 2, Fig. 1c) [27–32]. These gene sets are independent of
anatomical markers and could reveal molecular characteristics of
breast cancer and contribute to breast cancer prognosis, diagnosis,
and therapeutics [33,34].

Gene expression profiles for breast cancer were derived from
the GEO (the Gene Expression Omnibus) database, including
GSE37751 (n = 108), GSE3744 (n = 47), GSE86374 (n = 159),
GSE21422 (n = 19), GSE70947 (n = 296), GSE29044 (n = 109) and
GSE14999 (n = 129). We selected these datasets by searching the
GEO database using keywords as ‘‘breast cancer”, organisms as
Homo sapiens, study type as ‘‘Expression profiling by array”. Data-
sets containing breast tumors and adjacent normal breast tissue
samples with total sample size more than 100 and the number of
controls more than 30 at a single platform were included. Datasets
for one or several specific molecular subtypes were not included in
our analysis. With the above process, GSE37751, GSE86374,
GSE70947, GSE29044 and GSE14999 were chosen. We also
included GSE27562 which contained human blood samples.
GSE3744 and GSE21422 were used to investigate gene expression
profiles between early-stage tumor samples and late-stage tumors
by Zhang et al. [35], we also included these two datasets in our
analyses. In addition to the above-mentioned microarray data,
RNA-seq data of breast tumor samples and controls (GSE115577
and TCGA BRCA dataset) were also included.

The genomic variants, mRNA expression, clinical information
for TCGA Breast Invasive Carcinoma (TCGA-BRCA) dataset were
downloaded from cBioPortal [37]. Samples with missing clinical
information and male samples were removed before analyses.
2.2. Construction of SNP-gene bipartite network

2.2.1. Construction of SNP-gene mapping pairs
To capture disease-associated SNP-gene mapping pairs, we

extracted SNPs with their GWASs P-values < 5 � 10�5 from white
populations. We excluded SNPs located in the extended MHC
region (chr6: 25–35 Mb). For the SNPs located in the gene-body
regions, we annotated these SNPs and corresponding genes as
SNP-gene mapping pairs. For the other SNPs, their target genes
were assigned through multiple aspects, including cis-eQTLs, cis-
mQTLs, promoter-enhancer interactions, and regulatory elements
annotation. The significant threshold for cis-eQTL was set as P-
value < 0.05 after multiple-testing corrections by Benjamini and
Hochberg (BH) procedure. The collection of statistically significant
cis-meQTLs pairs for breast cancer has been included in the analy-
sis. For chromatin interactions, chromatin states and ATAC-seq
peaks were firstly used to get the enhancer region information
and annotate the interacting regions. Then we collected the inter-
action pairs for which there were SNPs located in enhancer in one
locus that was paired to a gene promoter in the other locus. All of
the above results were merged together to obtain the final SNP-
gene mapping pairs. To investigate the function of the target genes,
we used clusterProfiler R package [38] to perform gene sets enrich-
ment analysis in KEGG gene sets.
2.2.2. Construction of SNP-gene bipartite network
We constructed a bipartite network based on the SNP-gene

mapping pairs as edges connecting SNP and gene nodes. To analyze
the structure of the bipartite, we calculated the degree centrality of
each SNP and gene node by using NetworkX package Version 2.1
(http://networkx.github.io/) in python. In the bipartite, the degree
centrality for a node v is defined in Eq. 1, where the sets U are SNP
nodes with n nodes and the sets V are gene nodes with m nodes,
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Fig. 1. An overview of the integrative genomics network-based approach. a) Extraction of SNPs from GWASs and annotation SNPs by multiple tissue-specific functional omics
datasets. b) Construction of SNP-gene bipartite with SNP-gene mapping pairs and calculation of degree centrality for each gene node based on the network topology. c)
Construction of functional interaction network. Gene nodes in the networks are extracted from the bipartite. Key genes in weighted molecular networks are captured by using
enrichment analysis. d) Identification of key genes in the network. Scores of each gene from multiple biological networks are combined to get composite scores. The
importance of genes is evaluated by the order of their composite scores.
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deg(v) is the degree of a node v. The degree of the node v is the
total number of edges linking to in the opposite node set.

d vð Þ ¼ degðvÞ
m

; for v 2 U ð1Þ

d vð Þ ¼ degðvÞ
n

; for v 2 V ð1Þ

The degree centralities for all genes in the bipartite network are
normalized to 1–2 (Eq. (2)).

Normalized score ¼ d vð Þ �minðVÞ
maxðVÞ �minðVÞ

þ 1 ð2Þ
2828
where maxðVÞ is the max value of degree centrality in the gene set V
and minðVÞ is the minimum degree centrality.
2.3. Construction of functional interaction network based on SNP-gene
bipartite network

We constructed two types of functional interaction networks
based on PPI and GIANT network [14]. A total of 11,255,250 known
protein-protein interactions (PPIs) for human were derived from
the STRING database [39]. To reduce the complexity of network
structure and improve calculation speed, we set the threshold of
interaction as confidence score over 0.4, which is the default
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threshold of the STRING database. The confidence score of interac-
tions was used as weights of edges in the PPI network. The GIANT
networks identify tissue-specific interactions by using a Bayesian
framework to integrate heterogeneous public data [14]. For each
tissue, only edges with evidence supporting a tissue-specific func-
tional interaction were included in the network (https://hb.
flatironinstitute.org/). A total of 10,857,540 interactions from the
mammary gland tissue were used in our analysis. Similarly, the
confidence scores of the tissue-specific functional interaction were
also used as weights of edges in the GIANT networks. The SNP-gene
bipartite provided topological and GWAS signal-driven informa-
tion on SNP-gene directly regulatory relationships. We extracted
subnetworks from the PPI and GIANT networks that only contain
genes in the bipartite and their directly connected genes.

2.4. Identification of key drivers

We evaluated the regulatory relationships between genes by
considering three types of regulatory networks. The information
from networks was incorporated to improve the coverage of func-
tional association between genes. We performed key driver analy-
sis (KDA) to identify key driver genes [40–42]. The above
mentioned 6 expression-based prognostic and predictive gene sets
(MammaPrint, PAM50, OncotypeDX, Wang-76, Zhang-15, and Cell
cycle) were firstly collected. For each gene, we extracted 1-layer
neighborhoods directly connected with it in the PPI or GIANT net-
work as the subnetwork. Fisher’s exact test was used to test
whether genes in this subnetwork were enriched in these 6 gene
sets. The background included all genes in the 6 gene sets. The
enrichment P-values were -log10 transformed and normalized to
a scale of 0 to 1 using the min–max normalization method. For
each gene, the normalized value was set as the enrichment score.
For a given network, each gene has 6 enrichment scores in the cur-
rent study for breast cancer.

To incorporate with the GWAS signals (i.e., the SNP-gene bipar-
tite network), we defined a signature score for each gene as shown
in Eq. (3):

SSðg;GÞ ¼
PSn

Si ðES g;Sið Þ � D gð ÞÞ
n

; for s 2 S; g 2 G ð3Þ

where SSðg;GÞ is the signature score for gene g in a given network (PPI
or GIANT); ESðg;SiÞ is the enrichment score for gene g in the gene set
i; n is the total number of gene sets (here equals to 6 for breast can-
cer). D gð Þ is the normalized degree centralities for gene g in the SNP-
gene bipartite network. If a gene did not exist in the bipartite net-
work, its gene weight D gð Þ was set to 1. Again, the signature scores
were normalized to a scale of 0 to 1.

Lastly, we combined the signature scores for each gene from
different networks (e.g., PPI or GIANT). For a gene, the average of
signature scores from different networks was combined and nor-
malized to get a final score as Eq. (4):

CS gð Þ ¼
PGn

Gi SS g;Gið Þ
N

; for s 2 S; g 2 G ð4Þ

where CSðgÞ is the composite score of gene g, N is the number of net-
works. In this study, N equaled to 2 (refers to the PPI and GIANT net-
work). The composite score across networks was indicated as the
numerical value of genes (0–1). Composite scores were ranked
according to values and provided a criterion for determining the
significance of genes in biological mechanisms for a given disease.

2.5. Gene expression profiling and heat maps

Limma package (Version 3.30.13) [43,44] in R was used to
detect differentially expressed genes between tumor and normal
2829
samples. P-values were adjusted for multiple-testing by the BH
procedure. For plotting heat maps, hierarchical clustering was per-
formed in R to cluster samples on the gene expression profiles by
centroid.
2.6. Survival analysis and Kaplan-Meier plots

The survival analysis for utilization of multiple gene expression
signatures was performed using the TCGA-BRCA dataset. We devel-
oped an abnormal gene expression score (AGES) for each sample i
as Eq. (5):

AGESi ¼ Ci � l
r

ð5Þ

where Ci represents the counts of genes whose expression in sam-
ple i was above the third quartile or below the first quartile of the
expression values in all samples. l is the mean value, and r is
the standard deviation. Here we only included genes with the top
20 composite scores in AGES. The individuals were divided into
two groups of high (above the third quartile) and low (below the
first quartile) according to the AGES. Univariate survival analyses
between two groups were calculated by using Kaplan-Meier curves
and the log-rank test in R. The P-values were determined by using
the log-rank test, and the significance threshold was set as P-
value < 0.05.
3. Result

3.1. Identification of disease-associated gene nodes in SNP-gene
bipartite network

We integrated GWASs results with multiple functional omics
data, including cis-eQTLs, cis-mQTLs, chromatin interactions, chro-
matin states and ATAC-seq, to construct SNP-gene pairs (Fig. 1a).
After annotation, we obtained 7,500 SNP-gene mapping pairs,
including 6,647 SNPs and 274 protein-coding genes. To investigate
the functional mapping structure between disease-associated SNPs
and genes, we constructed the mapping pairs as a bipartite net-
work. About 0.037% of SNPs were connected with at least one gene
(6,647 in total 18,134,195 SNPs). Meanwhile, 1.35% of protein-
coding genes were mapped to at least one SNP (274 in total
20,345 genes).

In order to find the contribution of the GWAS signal-driven
genes to biological mechanisms, we performed pathway enrich-
ment analysis for these genes by using canonical pathways from
KEGG (Figure Supplementary Fig. 1). The top-ranked pathways
included cancer-related pathways, such as gastric cancer, thyroid
cancer, acute myeloid leukemia, pancreatic cancer, and breast can-
cer. We also found several signaling pathways, such as MAPK sig-
naling pathway, TGF-beta signaling pathway and WNT signaling
pathway, as well as cellular processes pathways, like cell cycle
pathway and homologous recombination.

We incorporated all SNP-gene mapping pairs into a bipartite
network with two types of nodes as SNPs and genes, and edges
for SNP-gene functional mapping pairs (Fig. 1b). To investigate
the relevance between the bipartite topology structure and regula-
tory function of nodes, we calculated the degree centrality for each
gene and SNP in the bipartite network (Supplementary Tables 3
and 4). Genes with higher degree centrality values connected with
more nodes in SNP sets. Likewise, SNPs with high degree centrality
values connected with numerous genes. These results suggested
that degree centrality coincided with the genetic variant-disease
association and reflected potential genetic perturbation to genes
in the mechanism of disease.
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3.2. Subnetworks and key genes of biological tissue-Specific networks

To reveal key genes based on disease-associated information
and further investigate regulatory mechanisms of those genes in
diseases, we constructed two types of tissue-specific gene interac-
tion networks for those genes in the bipartite network and per-
formed KDA on these networks (Fig. 1c). For each network, we
identified key genes of which the neighbor-genes were enriched
in the gene expression-based signatures. The full list of KDA results
for genes in the two types of networks are in Supplementary
Table 5. We calculated a composite score for each gene based on
the PPI and GIANT networks to provide a quantitative evidence
to evaluate the importance of regulatory function (Fig. 1d). The full
list of composite scores are provided in Supplementary Table 5 and
the top 20 genes are summarized in Table 1.

To assure the robustness of our method, we performed IMNA by
using the subsets of gene expression-based signatures as follows:
For a total of 6 gene sets, one gene set was removed at each time
and the remaining 5 gene sets were used to perform analysis. Jac-
card index was used to evaluate the similarity of the top 20 genes
between different conditions. We found the relatively high similar-
ity (Jaccard index >0.48) between the pairwise comparison of all
conditions (Figure Supplementary Fig. 2a). We also detected the
same trend (Jaccard index >0.42) for the similarity of the top 100
genes (Figure Supplementary Fig. 2b).

3.3. Identification of the effects of top key genes for breast cancer

We further examined the expression levels and genomic varia-
tions of the top 20 ranked-order genes to investigate the perfor-
mance of these genes in the pathogenesis of breast cancer.
Compared with normal samples, these 20 genes showed signifi-
cantly abnormal expression levels in breast tumor samples, as well
as peripheral blood mononuclear cells (PBMCs) from breast cancer
patients (adjust P-value < 0.05 in at least 3 datasets, Fig. 2a, Supple-
mentary Table 6). The expression levels of these 20 genes were
progressively changed during disease progression (Fig. 2b). The
range of genetic alteration frequencies (including copy-number
alterations (CNA) and mutation frequency) of these 20 genes were
between 0.9% and 21% in breast cancer (Fig. 2c). Among these 20
genes, 9 genes have been identified as cancer driver genes in breast
cancer and/or multiple other tumors according to the COSMIC
database (http://cancer.sanger.ac.uk/cosmic), including CDKN2A,
CCND1, MYC, ESR1, CHEK2, BRCA2, STAT3, SEPT9 and EP300. More-
over, in the top 20 genes, CCND1, MYC, ESR1 and BRCA2 were found
in the KEGG breast cancer pathway. In addition to the breast cancer
pathway, some of the top 20 genes were found in other breast
cancer-related pathways. For example, 2 genes are in the MAPK
signaling pathway (MYC and JUND), 3 in the PI3K-Akt pathway
(CDKN2A, CCND1 and CHEK2), and 3 in the p53 pathway (MYC,
CCND1 and PPP2R1B).

Furthermore, to investigate the overall impact of the 20 ranked-
order genes expression levels on breast cancer outcomes, we calcu-
lated the AGES to represent the abnormal expression levels of the
20 genes in samples and evaluated the relevance of the AGES val-
ues to tumorigenesis and clinical survival. We found that the AGES
value was significantly positively correlated with CNA fraction
(Pearson correlation, P-value = 1.40 � 10�15, r = 0.25, Fig. 3a) in
the TCGA-BRCA dataset. The AGES was associated with several
tumor clinical characteristics by investigating the clinical informa-
tion in the TCGA-BRCA dataset. More breast cancer tumors with
ER-negative and triple-negative showed significantly higher AGES
values (Chi-squared test, P-value < 0.05, Fig. 3b-c). We also evalu-
ated the relevance between the AGES values and breast patient
survival outcomes. Categorizing patients in the first tercile into
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the low group and the third tercile into the high group separately,
the low group had better significant disease-free survival and dis-
tant metastasis-free survival outcomes compared to the high group
(P < 0.05, Fig. 3d-f). These results indicate that the AGES signature
may contribute to breast cancer clinical properties, and might be
an effective marker of patient survival.
3.4. Identification of novel breast cancer-associated genes

To verify the associations between the top 20 genes and breast
cancer, we used various databases to assess functions in breast
cancer through text mining of published articles and integrating
disease databases (Table 2), including PolySearch2 (http://poly-
search.cs.ualberta.ca/polysearch), COREMINE (https://
www.coremine.com/medical/) and MalaCards (https://
www.malacards.org/). The top 20 genes have been linked to breast
cancer or neoplasm by using at least one of the tools. We noticed
that RNASEH2A (ribonuclease H2 subunit A) was not previously
verified as breast cancer-related gene. We further evaluated
whether its expression level was related to tumorigenesis and clin-
ical survival. We found that RNASEH2A expression levels were sig-
nificantly up-regulated in breast cancer samples compared to
normal tissues (adjusted P-value < 0.05, Fig. 4a). Univariate sur-
vival analyses revealed that low RNASEH2A mRNA expression
was significantly associated with better overall and relapse-free
survival (P = 1.3 � 10�5 and P < 1.0 � 10�16, Fig. 4b-c) in KM-
plotter [45]. Co-expression analysis was performed for RNASEH2A
with the most well-evaluated cell proliferation markers, including
MKI67, PCNA, MCM2, MCM3, MCM4, MCM5, MCM6 and MCM7) [46],
by using the breast cancer samples in TCGA (n = 1100). We
observed that these genes were positively co-expressed with each
other, and RNASEH2A had positive correlations with the other 8
genes (rho � 0.3, P-value < 0.01) (Figure Supplementary Fig. 3).
3.5. Application of the method to ovarian cancer

To evaluate the reliability of IMNA, we applied our method to
ovarian cancer. The GWAS summary dataset was derived from
the Ovarian Cancer Association Consortium (OCAC), which com-
prised 18,174 cases with epithelial ovarian cancer and 26,134 con-
trols of European ancestry from 43 studies [47,48]. The multiple
functional data included cis-eQTLs, chromosome long-range inter-
actions and epigenomic regulatory annotations, since mQTLs data
was not available yet. After the similar procedures as breast cancer,
we obtained 5,386 SNP-gene mapping pairs, including 4,419 SNPs
and 149 protein-coding gene, and constructed the SNP-gene bipar-
tite network. KEGG pathway enrichment analysis was perfomred
for investigating the GWAS signal-driven genes to biological mech-
anisms (Figure Supplementary Fig. 4 Supplementary Fig. 4a).

We collected 6 expression-based ovarian cancer-related gene
sets from the published studies [49–54]. To construct regulatory
networks, 11,255,250 PPI interactions were derived from STRING
and 6,4594,988 edges from ovary tissue of GIANT were used. In
the weighted regulatory networks, we performed KDA to identify
key genes. The full list of gene composite scores was listed in Sup-
plementary Table 7. CDK6 and MLLT10 have been identified as can-
cer driver genes according to the COSMIC database. By manually
checking in the PubMed, 7 of the top 20 genes were reported to
be relevant to ovarian cancer, including MAPT [55], BECN1 [56],
PRC1 [57], CBX1 [58], CDK6 [59], WWOX [60], and PNPO [61]. We
performed KEGG pathway enrichment analysis for the top 100
genes (Figure Supplementary Fig. 4b), and found that the top-
ranked pathways included the cell cycle pathway, several cancer-
related pathways (renal cell carcinoma, proteoglycans in cancer
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Table 1
Top 20 key genes in breast cancer based on composite scores by considering criteria from 3 types of network.

Key gene Gene name ScorePPI ScoreGIANT Composite score

CCND1 Cyclin D1 1.000 0.579 1.000
CDKN2A Cyclin dependent kinase inhibitor 2A 0.735 0.768 0.952
MYC MYC proto-oncogene, bhlh transcription factor 0.728 0.708 0.910
ESR1 Estrogen receptor 1 0.760 0.430 0.754
XRCC5 X-ray repair cross complementing 5 0.184 1.000 0.750
CHEK2 Checkpoint kinase 2 0.606 0.534 0.722
XRCC6 X-ray repair cross complementing 6 0.352 0.697 0.664
EXO1 Exonuclease 1 0.399 0.648 0.663
RNASEH2A Ribonuclease H2 subunit A 0.346 0.644 0.627
BRCA2 BRCA2 DNA repair associated 0.286 0.632 0.581
ADSL Adenylosuccinate lyase 0.000 0.847 0.536
PPP2R1B Protein phosphatase 2 scaffold subunit Abeta 0.380 0.344 0.459
JUND Jund proto-oncogene, AP-1 transcription factor subunit 0.277 0.437 0.452
PES1 Pescadillo ribosomal biogenesis factor 1 0.113 0.589 0.445
PSAT1 Phosphoserine aminotransferase 1 0.064 0.625 0.436
ADCY3 Adenylate cyclase 3 0.134 0.551 0.434
SEPT9 Septin 9 0.041 0.633 0.426
STAT3 Signal transducer and activator of transcription 3 0.389 0.277 0.422
HDGF Heparin binding growth factor 0.000 0.658 0.417
EP300 E1A binding protein p300 0.431 0.218 0.411

Footnotes: PPI: protein–protein interaction.

Fig. 2. The top 20 rank-ordered genes are correlated with breast cancer, disease pathogenesis and genetic variants. The top 20 genes are differentially expressed between
breast cancer samples and normal samples. The top 20 gene expression levels in a) various datasets. b) breast ductal carcinoma in situ (DCIS) and invasive ductal carcinomas
(IDCs) (GSE21422). Samples were clustered by gene expression levels of the 20 genes by centroid. c) Genetic alternation frequencies of the top 20 genes in TCGA-BRCA patient
samples.
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and small cell lung cancer), and important signaling pathways
(PI3K-Akt signaling pathway, VEGF signaling pathway and chemo-
2831
kine signaling pathway). These results indicated that our method
can also apply to other types of complex diseases.



Fig. 3. The relevance of the AGES values to tumorigenesis, clinical characteristics and clinical survival. a) AGES values are significantly positively correlated with linear copy-
number alterations (CNA). b,c) The AGES values are associated with tumor clinical characteristics. Significant P-values are determined by Chi-squared test (P < 0.01). b) ER-
negative. c) Triple-negative. d,e,f) Kaplan-Meier survival curves showed that the AGES are predictive of survival outcomes for breast cancer. d) disease-free survival in TCGA-
BRCA dataset. e) distant metastasis-free survival in GSE11121. f) distant metastasis-free survival in GSE20685.

Table 2
In Silico Validation for the top 20 ranked genes for breast cancer.

Gene PolySearch2 (Z
Score)

COREMINE (Statistical
significance)

MalaCards
(Score)

CCND1 49.43 5.12 � 10�5 86.94
CDKN2A 4.59 7.97 � 10�4 33.58
MYC 26.82 1.59 � 10�4 72.97
ESR1 30.11 3.78 � 10�6 1165.88
XRCC5 13.23 1.51 � 10�2 –
CHEK2 14.01 1.30 � 10�4 1461.53
XRCC6 – 1.43 � 10�2 –
EXO1 1.23 0.135 –
RNASEH2A 4.71 0.502 –
BRCA2 11.95 3.39 � 10�6 1500.88
ADSL 2.69 0.350 –
PPP2R1B 5.42 2.44 � 10�2 –
JUND – 7.16 � 10�2 –
PES1 2.39 1.83 � 10�2 –
PSAT1 1.45 1.14 � 10�2 –
ADCY3 8.19 0.335 –
SEPT9 – 0.193 –
STAT3 20.75 3.05 � 10�4 42.45
HDGF – 0.232 –
EP300 1.82 1.72 � 10�3 50.25

Footnotes: - indicates that the value is not available.
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4. Discussion

Although GWASs have identified thousands of diseases suscep-
tibility variants, the causal genes and their molecular functional
mechanisms are largely unknown [62]. Network-based approaches
are helpful to understand the mechanisms of complex diseases and
capture genetic variants perturbation in the gene regulatory net-
work [8,63]. We applied IMNA by combining tissue-specific regula-
tory networks from diverse biological scales, including GWAS
2832
signals, cis-eQTLs, cis-meQTLs, long-range interactions and epige-
nomic regulatory annotations, multi-gene predictive and prognos-
tic signatures and regulatory networks to identify key genes
supported by genetic and biological processes. The concentration
of functional disease-associated SNPs on genes reflects the impor-
tance of gene regulatory roles in diseases. Predictive and prognos-
tic signatures provide intrinsic molecular characteristics of breast
cancer based on gene expression analysis [64]. The identified key
genes derived from multiple tissue-specific regulatory networks
can regulate other disease-associated genes and influence disease
susceptibility. We used the AGES signature to present the correla-
tions between the expression levels of the top 20 genes and several
tumor characteristics, which demonstrates the utility of the AGES
signature for genetic variants, tumor properties and patient sur-
vival. We also applied this method for ovarian cancer to demon-
strate the effectiveness of this pipeline on other types of diseases.

This approach used integrative multi-omics methods that ben-
efited the research of complex diseases. First, we derived func-
tional data to reveal the mapping between SNPs and genes in
different respects (cis-eQTLs, cis-mQTLs, long-range interactions,
chromatin states and ATAC-seq) from diseases-related tissues or
cell types. Second, knowledge-driven signatures revealed molecu-
lar characteristics of breast cancer from the gene expression level.
Intrinsic subtyping, prognostic and predictive signatures of breast
cancer based on gene expression profiling have been found for cor-
relation with molecular subtypes, including proliferation, progno-
sis, and therapeutic response [33,34,64,65]. Third, since biological
molecules interact within and across multiple biological levels,
we constructed disease networks from genomic, transcriptomic
and proteomics scales based on data-driven gene sets and identi-
fied the key genes [8,11]. The network models could provide a rel-
atively complete understanding of biological interactions
[12,13,33,66]. Therefore, our integrative network-based approach



Fig. 4. The expression level of RNASEH2A related to patient outcome in breast cancer. a) Box plots show increased expression of RNASEH2A in breast tumor samples in 7
independent studies. b, c) Kaplan-Meier survival analyses show the differences in overall survival (OS) and relapse-free survival (RFS) between breast cancer patients with
high or low RNASEH2A mRNA levels. P-values are calculated by using the log-rank analysis.
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unveiled the biological mechanism of diseases from different
scales. Gene expression profiles and survival analyses verified the
ability of key genes for prognosis in breast cancer.

Besides the known breast cancer genes, our study also identi-
fied a potential new regulator, RNASEH2A, for breast cancer. RNA-
SEH2A encodes the main catalytic subunit of ribonuclease H2
(RNase H2), which mediates the removal of lagging-strand Okazaki
fragment RNA primers from the DNA:RNA duplex during DNA
replication and degrades the RNA of RNA:DNA hybrids [67]. RNA-
SEH2A is frequently overexpressed in a variety of cancers, including
breast, bladder, brain, prostate, seminomas, and leukemia [68].
RNASEH2A could promote DNA replication and cancer cell prolifer-
ation, and may regulate signaling pathways responsible for cell
proliferation and apoptosis [68–70].

Although we have discussed the advantages of IMNA, there are
still limitations in our work. First, as a GWASs-based method, other
potential important genes without genetic support could be
missed in our method. Second, this method constructed models
by using genetics and molecular data from static biological sys-
tems. Due to the lack of dynamic biological data in disease pro-
cesses, we could not present the dynamics of network to
investigate the disease development currently. Third, our method
incorporates breast cancer-related signatures information as prior
knowledge to construct network. The results might be influenced
by selections of prior knowledge inputs compared with other
methods which ignored pathway information. However, disease-
related gene sets are more stable in different datasets/platforms
2833
compared to individual genes or variants [8,71]. The information
we captured might have better generalization capability. Finally,
we used molecular interactions from multiple diverse datasets in
different biological scales. Since different molecular subtypes for
many datasets (e.g., eQTL) are not available currently, we only
applied the model for overall breast cancer. If datasets for different
molecular subtypes are available in future, the method can be used
to characterize key regulator genes for different molecular
subtypes.

In conclusion, we utilized IMNA to interpret the GWAS signals of
breast cancer and highlight key genes in the diseases-associated
regulatory networks. Our findings provide a global perspective to
understand the molecular underpinnings in pathogenesis of breast
cancer, and point out candidate therapeutic targets. IMNA can also
apply to other complex diseases to unveil underlying mechanisms
and help for investigating therapeutic targets.

URLs. IMNA, an integrative genomics network-based approach,
https://github.com/xjtugenetics/IMNA.
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