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The development and function of the central nervous system rely on the microtubule
(MT) and actin cytoskeletons and their respective effectors. Although the structural
role of the cytoskeleton has long been acknowledged in neuronal morphology and
activity, it was recently recognized to play the role of a signaling platform. Following this
recognition, research into Microtubule Associated Proteins (MAPs) diversified. Indeed,
historically, structural MAPs—including MAP1B, MAP2, Tau, and MAP6 (also known
as STOP);—were identified and described as MT-binding and -stabilizing proteins.
Extensive data obtained over the last 20 years indicated that these structural MAPs
could also contribute to a variety of other molecular roles. Among multi-role MAPs,
MAP6 provides a striking example illustrating the diverse molecular and cellular
properties of MAPs and showing how their functional versatility contributes to the
central nervous system. In this review, in addition to MAP6’s effect on microtubules,
we describe its impact on the actin cytoskeleton, on neuroreceptor homeostasis, and its
involvement in signaling pathways governing neuron development and maturation. We
also discuss its roles in synaptic plasticity, brain connectivity, and cognitive abilities, as
well as the potential relationships between the integrated brain functions of MAP6 and
its molecular activities. In parallel, the Collapsin Response Mediator Proteins (CRMPs)
are presented as examples of how other proteins, not initially identified as MAPs, fall
into the broader MAP family. These proteins bind MTs as well as exhibiting molecular
and cellular properties very similar to MAP6. Finally, we briefly summarize the multiple
similarities between other classical structural MAPs and MAP6 or CRMPs. In summary,
this review revisits the molecular properties and the cellular and neuronal roles of the
classical MAPs, broadening our definition of what constitutes a MAP.

Keywords: microtubule, microtubule-associated-proteins, actin, neuron, synapse, psychiatric disease, cognition

INTRODUCTION

Microtubule-Associated Proteins (MAPs) were discovered in the context of the study of
microtubule (MT) stability in neurons during the 1970s (Weingarten et al., 1975; Sloboda
et al., 1976). Indeed, in neurons, MTs composed of α- and β-tubulin heterodimers
forming 25 nm wide hollow tubes can either exhibit dynamic properties with phases of
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polymerization/depolymerization (Mitchison and Kirschner,
1984), or be particularly stable with a slow tubulin turnover
(Okabe and Hirokawa, 1990; Li and Black, 1996). In testimony
to their stability, neuronal MTs can resist conditions usually
causing MT depolymerization, such as exposure to tubulin
poison (nocodazole) or to cold temperatures (Webb andWilson,
1980; Brady et al., 1984; Baas and Black, 1990). The search for the
neuronal effectors leading to this stability has long been a focus
of research. Various factors were shown to modulate neuronal
MT stability, including: (1) the nature of tubulin isotypes,
(2) post-translational tubulin modifications, and (3) binding of
MAPs (Baas et al., 2016).

The nature of tubulin isotypes was clearly demonstrated in
mice, where α and β tubulin are each coded by eight genes
(Findeisen et al., 2014; Hausrat et al., 2020). The different
isoforms combine to produce MTs with distinct dynamic
parameters. For example, the βIII/βII tubulin MT isoform
displays antagonist effects on dynamicity/stability (Panda et al.,
1994; Pamula et al., 2016; Vemu et al., 2016; Ti et al., 2018).

Post-translational modifications of tubulin—including
tyrosination, polyamination, polyglutamylation, and
acetylation—were shown to modulate MT stability by altering
their dynamic properties (Moutin et al., 2020), resistance to
cold exposure (Song et al., 2013), sensitivity to severing enzymes
(Lacroix et al., 2010; Valenstein and Roll-Mecak, 2016), and
flexibility (Portran et al., 2017; Xu et al., 2017). Finally, the
so-called structural MAPs which bind throughout the MT
lattice also influence MT stabilization. As indicated above,
these structural MAPs were first discovered in the 1970s, when
they were found to be associated with purified brain tubulin
preparations. The group includes MAP1, MAP2, MAP4, Tau,
and MAP6 (also known as STOP; Cleveland et al., 1977; Herzog
and Weber, 1978; Huber and Matus, 1984; Margolis et al., 1986;
Job et al., 1987; Chapin and Bulinski, 1994). Other members
were identified more recently: DCX, MAP7, and MAP9 (Gleeson
et al., 1999; Yadav et al., 2014; Monroy et al., 2020).

Since the initial discovery of these MAPs based on their
ability to bind and stabilize MTs, studies have increasingly
pointed toward a wide array of other cellular functions (Dehmelt
and Halpain, 2005; Morris et al., 2011; Dent and Baas, 2014;
Bodakuntla et al., 2019). Thus, structural MAPs have been
shown to: regulate actin cytoskeleton dynamics; be amenable to
post-translational modifications which target them to membrane
compartments; interact with a huge number of partners which
are then involved in neuroreceptor homeostasis and signaling
cascades. These additional abilities stem from molecular features
including actin-binding domains, stretches of cysteine residues
for palmitoylation-driven membrane association, and Proline-
Rich-Domain (PRDs) to mediate binding to SH3-containing
signaling proteins.

In this review, we will present results obtained over almost
40 years of research on MAP6 proteins to illustrate the wide
range of MT-dependent and -independent molecular properties
that MAPs can exhibit. Using the Collapsin Response Mediator
Proteins (CRMPs) as an example, we will show how other
proteins not initially identified as MAPs also fulfill molecular
and cellular functions initially attributed to the classical

structural MAPs. We will also discuss the multiple cellular and
physiological roles of MAPs in neurons and in the central
nervous system. The review will, in particular, illustrate the
crucial implication of MAPs in neuronal plasticity and cognition
in accordance with their dysfunctions in neuropsychiatric
diseases. Overall, we aim at demonstrating that the initial
definition of classical MAPs (i.e., MT binding and stabilization)
should now encompass the MT-dependent and -independent
functions of these proteins.

MAP6 PROTEIN IS A MULTI-FUNCTIONAL
PROTEIN

Like the other structural MAPs, MAP6 protein was initially
identified thanks to its ability to interact with tubulin/MTs.
Subsequent studies identified a large number of MAP6 partners
related to various cellular functions including neuroreceptor
homeostasis, endocytosis, nuclear function, and signaling
pathways. The different partners are summarized in Figure 1,
and further details are provided in Supplementary Table 1.
In the following sections, the contribution of each MAP6
sub-domain to itsmolecular, cellular, and physiological functions
are detailed. A summary of MAP6 domains and their roles is
presented in Figure 2.

MAP6 Binds and Stabilizes Microtubules
Discovery of MAP6 as a Microtubule (MT)-Associated
Protein
The exceptional stability of brain-extracted MTs when exposed
to cold was first described almost half a century ago (Brinkley
and Cartwright, 1975; Lee et al., 1975; Webb and Wilson, 1980).
Subsequent work led to the identification of several polypeptides
that co-purify with cold-stable MTs (Job et al., 1981, 1982;
Margolis and Rauch, 1981; Pabion et al., 1984) and are retained
on calmodulin-affinity columns (Job et al., 1982; Pirollet et al.,
1983). The unique ability of these polypeptides to confer cold
stability on MTs led Job and collaborators to call them STOP
proteins, for Stable-Tubule-Only Polypeptides (they were later
renamed MAP6 proteins). The MT stabilization properties of
MAP6 are Ca2+-calmodulin sensitive (Job et al., 1981; Pirollet
et al., 1983, 1992a,b) and the 145-kDa STOP isoform from the
rat brain was shown to confer a super-stable state on MTs, in a
dose-dependent manner (Job et al., 1987).

Molecular Cloning of MAP6 and Identification of
MAP6 Isoforms
Bosc et al. (1996) first cloned MAP6 cDNA by immuno-
screening of a DNA expression library with MAP6 monoclonal
antibodies (Pirollet et al., 1989). These experiments provided
clear identification of MAP6 and made further studies to gather
specific information on the protein possible. MAP6 isoforms
are restricted to vertebrates, where they are expressed in several
tissues (Pirollet et al., 1989; Bosc et al., 2001). In mice, a
single four-exon gene, Map6 (formerly Mtap6), produces several
isoforms of MAP6 proteins as a result of RNA splicing and the
use of alternative promoters (Bosc et al., 1996; Denarier et al.,
1998a; Aguezzoul et al., 2003). Murine neurons express MAP6-E
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FIGURE 1 | MAP6 protein and its interactors. All the known MAP6 interactors (see Supplementary Table 1) are presented and grouped based on their functions.

FIGURE 2 | MAP6 domains and functions. Schematic representation of MAP6, color-coded arrows indicate the different domains identified so far: the N-terminal
domain shared with MAP6d1 protein (violet box); the three palmitoylation sites (red bars); the proline-rich domain involved in transduction of Semaphorin 3A signals
(black box); the three microtubule-stabilizing Mn modules (orange boxes); the tandem repeats corresponding to microtubule-stabilizing Mc modules (dark gray
boxes); the C-terminal repeats (light gray boxes). Below the representation, the corresponding roles of these domains are indicated, covering molecular and cellular
roles, and tissues and integrated functions.
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(MAP6-Early, formerly E-STOP, apparent MW 79 kDa) from
early developmental stages to adulthood at constant expression
levels, whereas expression of the longest isoform MAP6-N
(MAP6-Neuronal, formerly N-STOP, apparent MW 120 kDa)
increases between birth and adulthood (up to 10-fold higher
expression than MAP6-E in adults) (Guillaud et al., 1998;
Galiano et al., 2004; Tortosa et al., 2017). These two variants
can be found associated with MTs in neurons and stabilize
neuronal MTs when exposed to cold or nocodazole (Pirollet
et al., 1989; Margolis et al., 1990; Bosc et al., 1996; Guillaud
et al., 1998; Andrieux et al., 2002). Glial cells also express
some MAP6 isoforms, with MAP6-O (apparent MW 89 kDa)
found in oligodendrocytes, where they provide resistance to both
cold and nocodazole. In contrast, astrocytes express MAP6-A
(apparent MW 66 kDa), which only provides cold resistance
(Galiano et al., 2004). Like MAP6-A, the ubiquitous MAP6-F
isoform (apparent MW 42 kDa) provides only cold resistance
(Denarier et al., 1998b).

Identification of MAP6 MT-Binding Domains and
Their Role in MT Stabilization
The identification of 12 calmodulin-binding domains on
MAP6-N revealed the existence of three domains that partially
overlap some of the calmodulin-binding motifs. These three
domains are known as Mn modules (Mn1–3, Figure 2)
and stabilize MTs against both cold and nocodazole-induced
depolymerization (Bosc et al., 2001). Mn1 and Mn2 modules
were shown to reproduce the function of full-length MAP6-N
with regard to MT stabilization, both in vitro and in cellulo
(Bosc et al., 2001; Lefevre et al., 2013). Thus, these modules
may stabilize MTs exposed to cold and nocodazole by forming
bridges with adjacent tubulin heterodimers either between
protofilaments, or longitudinally within the same protofilament
(Lefevre et al., 2013).

In addition to its Mn modules, MAP6-N contains central
repeats, or Mc modules, each of which encompass a calmodulin-
binding domain (Figure 2). As indicated above, MAP6 proteins
are found only in vertebrates, but Mc modules are further
restricted. Thus, these domains have only been identified in
mammals and are absent from MAP6 homologs expressed in
fish, frogs, lizards or birds (Bosc et al., 2001, 2003). Among
mammals, the number of Mc modules varies depending on the
species and/or individual (4–6 in non-inbred rats, 3–6 in mice
depending on the strain, and only 1 in higher primates) (Bosc
et al., 2003). Mc modules have been shown to be responsible for
conferring cold-stability ofMTs in cells, even though they display
no MT-binding capacity at physiological temperatures (Denarier
et al., 1998b; Delphin et al., 2012). In vitro studies demonstrated
that cold temperatures induce conformational changes in the Mc
modules which allow them to interact with MTs (Delphin et al.,
2012). Thus, Mc modules behave like cold sensors, stabilizing
MTs when temperatures drop, for example during hibernation
or torpor.

The high abundance of calmodulin-binding domains
overlapping the Mn and Mc modules in MAP6 hints that
MAP6 binding to MTs is likely to be tightly regulated in cells.
Indeed, it was shown in vitro that Ca2+-Calmodulin (CaM)

binding to MAP6 occurs in an unusual manner (Bouvier
et al., 2003) and prevents MAP6 binding to MTs (Lefevre
et al., 2013). MAP6/MTs interaction is also prevented by
phosphorylation of MAP6 by CAMKII and favors MAP6/F-actin
interaction in neurons (Baratier et al., 2006). Based on the
available experimental data and as proposed by Ramkumar
and collaborators (Ramkumar et al., 2018), the regulation of
MAP6 by Ca2+-CaM in dendritic spines might follow this
sequence: upon synaptic activity, the Ca2+-CaM complex forms,
detaches MAP6 from adjacent MTs and activates CAMKII (Fink
and Meyer, 2002). When Ca2+ level decreases, CaM is released
from MAP6 allowing its phosphorylation by CAMKII. Then
phosphorylated MAP6 is unable to re-associate with MTs but
rather binds and stabilizes the synaptic F-actin (Baratier et al.,
2006; Peris et al., 2018).

Recently, in cell-free systems, recombinant MAP6-N was
shown to exert some stabilizing effects on MT dynamics by
promoting rescue (Cuveillier et al., 2020), although the precise
contribution of the various MAP6-N MT-binding domains
(Mn and/or Mc modules) remains to be clarified. Indeed, the
specific role of MAP6-related MT stabilization in developing
neurons remains unclear. For example, MT-dependent
parameters of neuronal differentiation and morphology
(e.g., neurite elongation and branching, axonal polarization)
are not dramatically altered in neurons expressing reduced
MAP6 levels. Indeed, MAP6 deficient neurons exhibited only
moderate morphological defects with a slight increase of the
axonal length and a decreased spine density (Andrieux et al.,
2002, 2006; Peris et al., 2018; Boulan et al., 2020), as well as a
reduced growth cone size and an increased dendrite branching
(Schwenk et al., 2014; Qiang et al., 2018). Those defects are
not striking possibly due to compensatory mechanisms by
other MAPs. Indeed, double-KO neurons for Tau/MAP1B
or MAP2/MAP1B display stronger alterations of neuronal
differentiation (Takei et al., 2000; Teng et al., 2001) than
single KO neurons (Harada et al., 1994; Takei et al., 1997;
Gonzalez-Billault et al., 2001). In this respect, an increased
expression of Tau has been observed when MAP6 expression
is knocked-down even though Tau and MAP6 role in MT
stabilization are not similar in neurons (Qiang et al., 2018). In
developing neurons, MAP6 was found enriched in the proximal
part of the future axon (Tortosa et al., 2017) and a recent
proteomic analysis pointed out MAP6 as a specific component
of the AIS (Hamdan et al., 2020). MAP6-N localization in the
proximal part of axons has been shown to be protective toward
the formation of axonal varicosities induced by mechanical
stress (Gu et al., 2017). Still, the exact relationships between
MAP6-dependent MT stabilization, axonal polarization and AIS
functions remains elusive.

MAP6 Belongs to a Family of Proteins
Although most structural MAPs exhibit repeated MT-binding
motifs, the repeated motifs in MAP6—its Mn and Mc
modules—are unique, and share no homology with MT-binding
domains found in Tau or MAP1B (Bosc et al., 1996). However,
bioinformatic analysis of the MAP6 sequence has revealed three
proteins that share homology in MAP6 functional domains.
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The first one is MAP6d1, for MAP6-domain-containing
protein 1 (formerly SL21 for 21-kDa STOP-like protein).
MAP6d1 is expressed at high levels in the brain and shares
two major similarities with MAP6: 80% sequence homology in
its N-terminal domain, and 72% sequence homology with the
Mn3module of MAP6 (Bosc et al., 2001; Gory-Fauré et al., 2006).
Since the N-terminal domain of both proteins contains the main
calmodulin-binding site (Bosc et al., 2001), its functional role
might be important.

The original MAP6 family was enlarged following the
discovery of homologs of SAXO proteins (SAXO1 and
SAXO2 in mammals, formerly named FAM154A and FAM154B,
respectively). These proteins were originally identified in the
protozoan Trypanosoma brucei and in ciliated/flagellated cells
(Dacheux et al., 2012). Like neuronal MTs, cilia and flagella
are characterized by a high level of MT stability displaying
resistance to cold- and nocodazole-induced depolymerization.
The human isoform hSAXO1 is ubiquitously expressed and
specifically associates with centrioles, basal bodies and cilia
(Dacheux et al., 2015). Little is known about SAXO2 beyond the
fact that its expression appears to be enriched in ciliated cells.

SAXO proteins share homologies with the Mn modules
of MAP6/MAP6d1, and their N-terminal sequence, although
distinct, is also rich in cysteines (Dacheux et al., 2012).
Interestingly, 80% of hSAXO1 consists of 12 tandemMnmodules
that, like the equivalent modules in MAP6 and MAP6d1, are
involved in MT binding and cold stabilization. The high number
of Mn modules is important since hSAXO1 overexpression
results in an increased primary cilia length in RPE1 cells, through
a mechanism requiring the Mn modules (Dacheux et al., 2015).

MAP6 Is a Microtubule Inner Protein (MIP)
Cryo-EM experiments revealed neuronal MTs to contain visible
intraluminal densities (Burton, 1984; Garvalov et al., 2006;
Atherton et al., 2018). These densities correspond toMicrotubule
Inner Proteins (MIPs), the molecular identity of which was
totally unknown until MAP6 was identified as a MIP (Cuveillier
et al., 2020). The capacity of MAP6 to enter the lumen
of MTs was demonstrated using cell-free systems in which
MTs were copolymerized with MAP6, yielding MTs with
regularly spaced intraluminal densities.When usingMTs derived
from murine MAP6 KO neurons, a net reduction in the
numbers of intraluminal densities was observed. The presence
of MAP6 inside MTs would explain, in part, the extremely
slow turnover of MAP6 on neuronal microtubules described by
Tortosa et al. (2017). Strikingly, intraluminal MAP6 induced
MT coiling in vitro, leading to the formation of helical MTs
with a highly conserved pitch and width associated with a
specific tubulin compaction state in the MT lattice. This coiling
pattern requires the Mn and Mc modules, as well as the first 35
N-terminal residues.

In neurons, the functions of such stable helical
MAP6-containing MTs remains to be determined. By occupying
a greater width, helical MTs could influence the spatial
organization of the MT network, help determine neurite or
axonal width, or confer resistance to compressive loads, such
as those encountered during development. The unhabitual

tubulin compaction state of helical MTs could also be a mean to
specifically recruit a set of proteins such as molecular motors.

From an evolutionary point of view, it will be interesting
to discover when did the ability of mammalian neuronal
MAP6 to behave as a MIP emerge? In other words, does the
MAP6 ancestor SAXO in Trypanosoma (Dacheux et al., 2012)
behave as a MIP only, as a MAP only, or does it exhibit
both properties?

MAP6 Associates With Actin
The first indication that MAP6 can bind to actin was obtained
when CaMKII-phosphorylated MAP6 was found to be unable
to bind MTs, but that it binds actin in vitro and in the growth
cones of neurons (Baratier et al., 2006). More recently, the central
Mc modules of MAP6 were shown to bind actin and to induce
specific rearrangements—leading to straightening and bundling
of actin filaments (Peris et al., 2018). Moreover, MAP6-mediated
stabilization of synaptic actin following synaptic activation was
shown to be crucial for maintaining mature dendritic spines,
the postsynaptic compartments of synapses (Peris et al., 2018).
Other effects of MAP6 on the dynamic parameters of actin,
such as nucleation, remain to be investigated, as does the
possibility that MAP6 mediates cross-linking between actin and
MT networks in neurons. MAP6 may also indirectly influence
the actin cytoskeleton through an effect on signaling cascades as
it has been shown to interact with the small GTPase protein Rac2
(Figure 1; Capala et al., 2015). Several MAP6 partners have also
been shown to interact with actin (Supplementary Table 1), such
as spinophilin (Grossman et al., 2004) or α-synuclein (Oliveira
da Silva and Liz, 2020). These interactions support specific actin-
related cellular functions for MAP6 and its partners.

MAP6 Associates With Membranes and
Neuroreceptors
MAP6 and Membranous Compartments
The N-terminal domains of MAP6 and MAP6d1 contain a
stretch of cysteines with C5, C10, and C11 residues (Figure 2).
These positions have been shown to be palmitoylated by a
subset of palmitoylating enzymes containing a DHHC motif.
The proteins are then targeted to the Golgi apparatus or the
plasma membrane (Gory-Fauré et al., 2006, 2014). In addition,
MAP6 interacts directly with ankyrin repeats present in the
palmitoylating enzymes zDHHC13 and zDHHC17 (Lemonidis
et al., 2015). During neuronal development, palmitoylated forms
of MAP6 were identified on the Golgi and on secretory vesicles,
and depalmitoylation by α/β hydrolase-domain-containing
17 proteins (ABHD17 proteins) induced MAP6 relocalization
to MTs in the proximal part of the axon (Tortosa et al., 2017).
In neurons, non-centrosomal MT nucleation is crucial, and
through its interactions with MTs as well as with the Golgi
apparatus or Golgi outposts which are nucleation sites for
non-centrosomal MTs (Sanders and Kaverina, 2015; Valenzuela
et al., 2020; Yang andWildonger, 2020), MAP6 might contribute
to such events.

MAP6 and MAP6d1 proteins were also shown to localize
to mitochondria. This localization involved their N-terminal
domain, but not palmitoylation (Gory-Fauré et al., 2014).
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Finally, indirect evidence links MAP6 to lysosomes: KIF5B
(Kinesin 1 heavy-chain) preferentially binds to MAP6-positive
MTs (Tortosa et al., 2017) and lysosomal transport—which is
dependent on KIF5B and on TMEM106B, a MAP6 partner
(Figure 1)—is perturbed when MAP6 expression is impaired
(Schwenk et al., 2014).

Overall, these results show that MAP6’s association with
membranous compartments plays important roles in establishing
and maintaining neuronal morphology. The several endocytosis-
related proteins such as Varp, dynamin 1 or endophilin 1 (Craft
et al., 2008; Vikhreva et al., 2009) which have been found to
interact with MAP6 (Supplementary Table 1) suggests that the
roles played by MAP6 in intracellular organelle trafficking still
holds many secrets.

MAP6 and Calcium Channels
Proteomic analysis of the nano-environment of calcium channels
(Cav2.1, Cav2.2, Cav2.3, CavBeta3, CavBeta4) revealed the
presence of MAP6 (Müller et al., 2010; Figure 1). More recently,
MAP6, through its Mn3 module, was found to associate with
Tctex1 (Brocard et al., 2017), a dynein light chain interacting with
Cav2.2/N-type calcium channels (Lai et al., 2005). In conjunction
with Tctex1, MAP6 is involved in sorting and trafficking
Cav2.2 channels, as shown by impaired calcium signaling in
MAP6 KO neurons (Brocard et al., 2017).

MAP6 and Neuroreceptors
Even if MTs are only transiently present in both pre- and
post-synaptic compartments of synapses (axonal boutons and
dendritic spines), MAP6 was consistently identified in synaptic
proteomes, suggesting MT-independent roles (Peng et al., 2004;
Baratier et al., 2006; Cheng et al., 2006; Collins et al., 2006;
Munton et al., 2007; Weingarten et al., 2014). In a study
related to subicular neurons from the hippocampus, MAP6 was
associated with the receptors Neuropilin1, Plexin D1, and
VEGFR2—which together make up the tripartite Semaphorin 3E
receptor (Deloulme et al., 2015; Figure 1).

MAP6 Is Involved in Signaling Cascades
In addition to its associations with subcellular compartments
and receptors, MAP6 protein contains proline-rich domains
(PRD), which are involved in the binding of SH3-domain-
containing proteins (Figure 1 and Supplementary Table 1).
Binding of Intersectin 1, cSrc, PLC-γ, or PI3K have all been
described (Morderer et al., 2012; Deloulme et al., 2015). One of
the PRD domains in MAP6 is essential to the Semaphorin 3E
signaling cascade (Deloulme et al., 2015), driving the formation
of the fornix, an axonal tract which requires Semaphorin
3E signaling.

Although some interactions with kinases and
phosphatases have been reported (Figure 1), almost
nothing is known about how MAP6’s functions are
regulated by phosphorylation enzymes, with the exception
of CaMKII. MAP6-N protein contains four CaMKII
phosphorylation sites located within its calmodulin/MT-
binding domains. These domains can be phosphorylated
in vitro and in vivo. Phosphorylation induces MAP6 to
detach from MTs and delocalize to actin within

growth cones or dendritic spines (Baratier et al., 2006;
Peris et al., 2018).

Finally, MAP6 was shown to associate with the highly brain-
enriched BCH (Cdc42GAP Homology)-domain-containing
protein Bmcc1/Prune2 (Figure 1) which negatively regulates the
actin cytoskeleton regulator RhoA (Soh and Low, 2008). This
association promotes the emergence of membrane protrusions
(Arama et al., 2012). However, the relationship between a direct
or indirect effect on the cytoskeleton is not clear.

Physio-pathological Roles of MAP6 in the
Central Nervous System
As neuronal MAPs, especially MAP6, were thought to be strong
MT stabilizers, its deletion in mice was expected to be lethal due
to major MT-breakdown in neurons. But in fact, MAP6 KOmice
(also known as STOP KO mice) are viable, with an apparently
normal brain organization (Andrieux et al., 2002). However,
these mice display a wide range of biological and behavioral
impairments reminiscent of symptoms displayed by patients
suffering from psychiatric disorders, especially schizophrenia, as
detailed below.

MAP6 KO Mice as a Model for the Study of
Schizophrenia
MAP6 KO mice show hyperactivity, fragmentation of normal
activity, anxiety-like behavior, social withdrawal, and impaired
maternal behavior leading to the death of pups (Andrieux
et al., 2002). These defects are associated with altered synapse-
functioning, particularly during synaptic plasticity events when
the synapses need to adapt their reactivity. These alterations
lead, for example, to strong deficits in potentiation or depression
of the synaptic responses. These biological and behavioral
defects were shown to respond to long-term treatment with
antipsychotics, the gold standard in schizophrenia treatment,
thus positioning MAP6 KO mice as a useful model for the study
of the physiopathology of this disease (Andrieux et al., 2002).

Schizophrenia is a chronic debilitating neurodevelopmental
disorder that affects approximately 1% of the population
worldwide; the first symptoms emerge during adolescence
and early adulthood. It is characterized by a combination
of positive (auditory and visual hallucination), negative
(social withdrawal, anxiety), and cognitive symptoms
(impaired memory, decision-making difficulties; Joseph
et al., 2015). Following our seminal 2002 article (Andrieux
et al., 2002), numerous studies were performed and their
findings reinforced the validity of the MAP6 KO model
for the study of schizophrenia. Indeed, MAP6 KO mice
fulfill the three—construct/face/predictive—criteria for
the validity of an animal model (Belzung and Lemoine,
2011; Jones et al., 2011) with similar underlying molecular
defects/phenotypes/pharmacological responses, respectively
(Delotterie et al., 2010; Volle et al., 2013; Deloulme et al., 2015;
Bouet et al., 2021).

In further support of the validity of this model, subsequent
studies revealed defects in MAP6 expression in humans
presenting developmental delay, corpus callosum dysgenesis,
autistic or schizophrenic symptoms (Shimizu et al., 2006;
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Choi et al., 2009; Martins-de-Souza et al., 2009; Xiao et al., 2015;
Coumans et al., 2016; Wei et al., 2016a,b; Chen et al., 2021).

MAP6 Roles in Neurotransmission and Impact on
Behavior
In tight correlation with the hyper-dopaminergia observed in
schizophrenic patients (Carlsson et al., 2000; Kapur, 2003),
MAP6 KO mice present increased dopamine overflow in the
mesolimbic pathway. This system plays a significant role in
mediating pleasure and rewarding experiences (Brun et al., 2005;
Bouvrais-Veret et al., 2007, 2008). Schizophrenia also presents
positive symptoms, and MAP6 KO mice exhibited increased
locomotor activity (Andrieux et al., 2002; Brun et al., 2005;
Fradley et al., 2005; Bouvrais-Veret et al., 2007) associated
with hypersensitivity to novelty or to the psychostimulant
amphetamine (Brun et al., 2005; Bégou et al., 2007; Bouvrais-
Veret et al., 2008), along with extensive disruption of sleep
patterns (Profitt et al., 2016). All these processes crucially depend
on dopaminergic neurotransmission.

Negative symptoms in schizophrenia are mediated by
alterations in both the glutamatergic and serotoninergic (5-
HT) neurotransmission systems (Aghajanian and Marek, 2000;
Carlsson et al., 2000). MAP6 KO mice exhibited abnormal
glutamatergic neurotransmission with altered synaptic plasticity
in the hippocampus, leading to totally defective Long-Term
Potentiation (LTP) and Long-Term Depression (LTD), as
measured by electrophysiology techniques (Andrieux et al.,
2002). These defects are related to a smaller presynaptic vesicle
pool (Andrieux et al., 2002), a decreased level of glutamate and
the glutamate precursor glutamine in the forebrain (Brenner
et al., 2007), as well as decreased mRNA levels of the glutamate
transporter-1, Vglut1 (Eastwood et al., 2007). MAP6 KOmice are
thus characterized by an overall hypo-glutamatergia.

If we now focus on serotoninergic neurotransmission,
serotonin biosynthesis and expression of the serotonin (5-HT)
receptors are highly perturbed in MAP6 KO mice, with a
70% increase in 5HT-1A expression in the raphe nuclei for
example (Fournet et al., 2010), as well as half reduction of
serotonin (5-HT) in the substantia nigra, the ventral tegmental
area and the hippocampus (Fournet et al., 2012b). In addition,
the levels of serotonin transporters (SERT) recapturing the
serotonin (5-HT) released into the synaptic cleft is very severely
affected in MAP6 KO mice with a decreased expression ranging
from 30% to 90% in some brain areas whereas the expression
increase up to 120% in other brain regions (Fournet et al.,
2010). MAP6 KO mice thus display an extreme imbalance in
serotoninergic transmission.

Finally, sensory-motor gating is also altered in MAP6 KO
mice (Fradley et al., 2005; Volle et al., 2013). This effect might
be linked to perturbed dopamine-, glutamate-, and serotonin-
mediated neurotransmission, but could also be related to
activation of opioid mu receptors (Quednow et al., 2008) which
is altered in MAP6 KO mice (Charlet et al., 2010).

In summary, basal neurotransmission for all the major
neurotransmitters is strongly perturbed in MAP6 KO mice.
Strikingly, serotoninergic neurons—the longest and most
extensively branched neurons in the brain—display very

severe morphological defects, suggesting complementary
roles of MAP6 in these neurons. These roles may
include MT stabilization, modulation of serotonin
neuroreceptors/transporters, and involvement in signaling
cascades.

MAP6 Roles in Synaptic Plasticity
In terms of cognitive symptoms, MAP6 KO mice exhibit
severe defects in both short-and long-term hippocampal synaptic
plasticity. Indeed, glutamatergic hippocampal neurons in the
CA1 region display severely defective Post-Tetanus Potentiation
(PTP), and, as indicated above, cannot support LTP and LTD
(Andrieux et al., 2002). Synaptic deficits exist in the presynaptic
compartment, the axonal bouton, where a two-fold decrease
in synaptic vesicles is reported (Andrieux et al., 2002) with
a possible glutamate-release defect due to the absence of
interaction between MAP6 and the SNARE protein SNAP25
(Figure 1). One can speculate on the formation of a transient
complex between MAP6 and SNAP25 at the plasma membrane,
in the presynaptic release zone, as the membrane targeting of
both proteins is induced by similar palmitoylating enzymes
(Greaves and Chamberlain, 2011; Gory-Fauré et al., 2014). In
addition, the absence of MAP6 induces a general decrease in
spine density which is related to altered actin dynamics in
dendritic spines (Peris et al., 2018). MAP6 could also contribute
to the entry of MTs into the synaptic compartments, and their
residence time, thus influencing synaptic strength. Overall, these
synaptic defects are most probably a consequence of MAP6’s
involvement in signaling cascades, receptor homeostasis, and
cytoskeleton regulation.

MAP6 Roles in Neuroanatomy
Although the first rough anatomical study of MAP6 KO mice
revealed no obvious defects in brain anatomy (Andrieux et al.,
2002), subsequent detailed studies showed that MAP6 KO mice
have a reduced brain volume associated with an increased
ventricular volume and a reduced cerebellum and thalamus size
(Powell et al., 2007; Deloulme et al., 2015). Through the use of
brain imaging techniques, MAP6 KOmice were found to exhibit
a decrease in myelinated tract volumes (e.g., in the internal
capsule and cerebellar peduncle) as well as a strong decrease in
cortico-spinal tract fasciculation (Deloulme et al., 2015; Gimenez
et al., 2017). A very intriguing structural defect is the absence
of an important component of the limbic system in MAP6 KO
mice—the post-commissural part of the fornix (Deloulme et al.,
2015). The fornix is a tract that emerges from the subiculum,
the most inferior component of the hippocampal formation of
both hemispheres and extends to the mammillary bodies, within
the hypothalamus. As part of the Papez circuit, the lack of the
fornix leads to a dis-connectivity between the hippocampus and
the hypothalamus and certainly contributes to the behavioral
defects observed in MAP6 KO mice. During the formation of
the fornix, Semaphorin 3E is an attractive guidance molecule for
subicular neurons (Chauvet et al., 2007) as it binds to its tripartite
receptor (Neuropilin 1/PlexinD1/VEGFR2) to induce activation
of downstream signaling cascades involving SH3-containing
proteins. Interestingly, the impaired fornix formation observed
in MAP6 KO mice is not dependent on MAP6’s MT-binding
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domains; rather it is driven by the interaction of MAP6 PRD
domains with key SH3-domain-containing proteins, including
Intersectin 1, PI3K, and Src (Figure 1; Deloulme et al., 2015).
The axonal tract defects identified in MAP6 KO mice correlate
to a striking extent with anomalies identified on brain images
from patients with schizophrenia (McCarley et al., 1999; De Peri
et al., 2012; Shepherd et al., 2012; Bopp et al., 2017), including
alteration of the fornix or of the cortico-spinal tract (Douaud
et al., 2007; Kendi et al., 2008; Fitzsimmons et al., 2009; Luck et al.,
2010; Davidson et al., 2012; Lee et al., 2013).

MAP6 Role in Neurogenesis
MAP6 is highly expressed in the olfactory bulb and the
hippocampus (Couégnas et al., 2007; Richard et al., 2009),
two regions where adult neurogenesis is known to occur.
Several studies investigated adult neurogenesis in MAP6 KO
mice. Benardais et al. (2010) reported an increased number of
proliferating cells in the olfactory epithelium with increased
apoptosis, whereas Fournet et al. (2010) discovered decreased
cell proliferation in the hippocampus. At the molecular level,
how MAP6 regulates neurogenesis remains a completely
open question, although it is possible that MAP6 through its
binding to the retinoic receptors RAR-beta and RAR-gamma
(Figure 1) can modulate their functions known to be active
during neurogenesis (Jacobs et al., 2006; Maden, 2007;
Mishra et al., 2018).

MAP6 KO Mice Deficits and Therapeutic Approaches
As the defects observed in MAP6 KO mice are reminiscent
of schizophrenia symptoms, the gold standard treatments for
psychiatric diseases were the most obvious approach to try in an
attempt to alleviate MAP6 KO deficiencies. Alternatively, new
pharmacological approaches targeting the neuro-cytoskeleton
represent promising avenues of investigation.

Classical treatments of psychiatric diseases. In accordance
with their defects in almost all neuro-transmission systems,
the defects observed in MAP6 KO mice are sensitive to
neuroactive molecules. Thus, long-term treatments with both
typical antipsychotics, such as haloperidol (Haldol) (dopamine
antagonist), and atypical antipsychotics, such as risperidone
(Risperdal) or clozapine (dopamine and serotonin antagonists),
alleviate behavioral defects in MAP6 KO mice (Andrieux et al.,
2002; Bégou et al., 2008; Delotterie et al., 2010). Moreover,
clozapine improves alterations to synaptic plasticity (Delotterie
et al., 2010) via its known positive effect on glutamatergic
synapses (Fukuyama et al., 2019). Similarly, treatment of
MAP6 KO mice with anti-depressants such as fluoxetine/Prozac
(a Selective Serotonin Reuptake Inhibitor, gold standard
treatment for depression) alleviated anxiety-like behavior and
cognitive defects (Fournet et al., 2012a). The depressive-like
behavior of MAP6 KO mice and their impaired hippocampal
neurogenesis were alleviated by the use of electroconvulsive
stimulation (ECS) (Jonckheere et al., 2018). ECS is the animal
equivalent of Electroconvulsive Therapy (ECT), which remains
a very powerful and useful treatment for major depression.

Cytoskeleton-related drugs represent a new pharmacological
approach to psychiatric disorders. MAP6 KO mice were the first
animal model to establish a link between cytoskeleton defects and

the cognitive impairment characteristics of psychiatric disorders,
in particular schizophrenia (Andrieux et al., 2002). Subsequently,
other cytoskeletal components including actin and tubulin
themselves, as well as CRMP1, CRMP2, MAP2, MAP1B, and
LIM kinases were also linked to psychiatric disorders (see below
and for review: Benitez-King et al., 2007; Gardiner et al., 2011;
Zhao et al., 2015; Marchisella et al., 2016; Lasser et al., 2018). In
addition, proteins that were initially identified as risk factors for
mental illnesses, such as DISC1 (Disrupted In Schizophrenia) or
dysbindin, were later shown to interact with MTs, MAPs, and
actin (Morris et al., 2003; Hayashi et al., 2005; Talbot et al., 2006;
Taya et al., 2007; Shimizu et al., 2008; Marley and von Zastrow,
2010; Bader et al., 2012).

In this context, cytoskeleton-related drugs have been
investigated to determine their ability to influence biological and
behavioral defects in MAP6 KO mice. Firstly, chronic exposure
of MAP6 KO mice to Epothilone D (EpoD), a modulator of
MT dynamics known to stabilize MTs in vitro (Chou et al.,
1998; Kolman, 2004), leads to behavioral changes (improved
maternal behavior, and concomitant pup survival), and improves
short-term memory, associated with restoration of synaptic
plasticity (LTP) in the hippocampus (Andrieux et al., 2006;
Fournet et al., 2012a), as well as restoring neuronal transport
deficits (Daoust et al., 2014). Second, a small peptide motif
called NAP—present in Activity-Dependent Neuroprotective
Protein (ADNP), which is dysregulated in schizophrenia and
in autism (Gozes, 2011; Hacohen-Kleiman et al., 2018; Van
Dijck et al., 2019)—partially alleviates cognitive impairments in
MAP6 heterozygous mice (Merenlender-Wagner et al., 2010;
Volle et al., 2013). NAP directly interacts with tubulin (Divinski
et al., 2004) and also promotes MT growth and stability by its
interaction with MT plus-end binding proteins of EB family
(+TIPs proteins) (Gozes and Divinski, 2007; Oz et al., 2014). In
addition, NAP has been shown to bind to Tau (Ivashko-Pachima
et al., 2019) and to enhance its binding to MTs in cells (Ivashko-
Pachima et al., 2017; Ivashko-Pachima and Gozes, 2019). Thus,
NAP protective activity involves MT dynamics modulation via
direct binding to tubulin and interaction with MT-associated
proteins (Oz et al., 2014; Ivashko-Pachima et al., 2017). However,
NAP’s effects in MAP6 KO mice might not be exclusively
related to its MT-related properties as chronic NAP treatment
restores normal levels of Beclin1 mRNA in MAP6-deficient mice
(Merenlender-Wagner et al., 2014). Beclin1 is a key regulator of
autophagy and its expression is strongly decreased in brains from
patients with schizophrenia (Merenlender-Wagner et al., 2015).

Overall, these studies with EpoD and NAP highlight
MAP6-mediated MT stabilization as an important feature
for synaptic plasticity and behavior. The results presented
also suggest that the cytoskeleton might be a relevant
target for drug development to treat psychiatric disorders
including schizophrenia.

Is MAP6 Present in Cilia and Linked to Schizophrenia
Phenotypes?
MAP6 was the first neuronal MIP to be identified (Cuveillier
et al., 2020). MIPs were originally described in the MT doublet
of motile cilia and flagella axonemes (Kirima and Oiwa, 2018;
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Owa et al., 2019), where MTs needed to be highly stable
to support the strong deformations required to produce a
beating motion. The question of whether MAP6 also localizes
to non-motile (primary) cilia or to motile cilia within the
brain remains open. Future studies assessing these possibilities
may provide additional molecular explanations for some of the
cognitive impairments observed in MAP6 KO mice. Indeed,
ciliopathies can lead to brain malformation and/or mental
retardation (Reiter and Leroux, 2017). More precisely, primary
cilia which act as signaling platforms participating in Sonic
hedgehog or Wnt signaling pathways for example (Lee and
Gleeson, 2010) have been shown to modulate neurotransmission
through dopamine receptors expressed on their surface (Domire
et al., 2011; Iwanaga et al., 2011; Leaf and Von Zastrow, 2015).
Interestingly, Inversin and APT1—both MAP6 partners—have
been shown to be part of the Wnt pathway (Supplementary
Table 1). More directly, a reduced number of primary cilia
was observed in the olfactory neuroepithelium in patients with
schizophrenia (Muñoz-Estrada et al., 2018) and DISC1 was
shown to be necessary for the formation of neuronal cilia (Marley
and von Zastrow, 2010; Wang and Brandon, 2011). It would be
interesting to investigate a possible role forMAP6 acting as aMIP
in controlling the number and integrity of neuronal primary cilia.

CRMPs: FROM SIGNALING PATHWAYS TO
CYTOSKELETON FUNCTIONS

Research on the structural MAPs revealed over time that their
functions are not restricted to MT regulation. Simultaneously,
other proteins that were first identified in signaling cascades,
for example, were subsequently found to belong to the family
of structural MAPs. Collapsin Response Mediator Proteins
(CRMPs) are a perfect example of such proteins. Indeed, in
addition to their well-known roles in signal transduction and
neuronal physiology, we will summarize how, since the 1990s,
CRMPs have been documented to play roles in regulating the
cytoskeleton and especially in MT dynamics.

CRMP Proteins as Signaling Proteins
Originally discovered in C. elegans and named ULIP (UNC-
33 like phosphoprotein), members of the CRMP family are
involved in neuronal connectivity for sensory and motor
neurons (Brenner, 1974; Hedgecock et al., 1985). These
proteins originated from various genes and were subsequently
renamed Collapsin Response Mediator Proteins (CRMPs) due
to their involvement in Semaphorin 3A guidance molecule
signaling (Collapsin was the original name of Semaphorin 3A;
Goshima et al., 1995).

CRMPs are substrates for a large number of kinases, and
high levels of phosphorylation have been reported, mostly
in the C-terminal domain (Cole et al., 2004, 2006; Zheng
et al., 2018); CRMP phosphorylation has been extensively
studied in the context of the axonal guidance signaling pathway
induced by Semaphorin 3A. Several kinases involved in this
signaling pathway phosphorylate CRMPs. First, Cdk5 acts as
the priming kinase, phosphorylating CRMP1, 2, 4, and 5 in
response to a Semaphorin 3A-signal in vitro and in vivo

(Brown et al., 2004; Uchida et al., 2005). This phosphorylation is
required for subsequent phosphorylation of CRMPs by GSK3β,
shown to be a key factor in modulating CRMPs’ interaction
with the cytoskeleton (Uchida et al., 2005; Yoshimura et al.,
2005). Thus, the Semaphorin 3A-induced phosphorylation of
CRMP2 by Cdk5 and GSK3β blocks its capacity to bind tubulin
and MTs (Uchida et al., 2005; Yoshimura et al., 2005). This lack
of interaction leads to cytoskeleton breakdown and the resulting
collapse of the growth cone, as the functional consequences of
Semaphorin 3A signaling.

Semaphorin 3A-stimulation of the growth of dendritic spines
also involves CRMP1 phosphorylation by Cdk5, blocking its
interaction with actin (Yamashita et al., 2011; Yao et al., 2016).

Phosphorylation events on CRMPs, thus regulate the proteins’
capacity to interact with the cytoskeleton while also modulating
their interaction with other partners, such as RhoA (Alabed et al.,
2007), the guidance cue co-receptor PlexinA1 (Deo et al., 2004),
or the ion channels Cav2.2 (Brittain et al., 2009), and Nav1.7
(Dustrude et al., 2016).

At the same time, the C-terminal part of CRMP2 shares
similarities with Tau PRD domains (Hensley and Kursula, 2016),
opening up the possibility that CRMPs can bind to SH3-domain-
containing proteins.

CRMPs Bind and Stabilize Microtubules
From the time of their discovery in 1985, CRMPs were linked
to MTs since mutations induced an over-abundance of MTs
in axonal shafts (Hedgecock et al., 1985). It was therefore
proposed that CRMP could modulate axonal outgrowth by
stabilizing the cytoskeleton (Hedgecock et al., 1985). More recent
work has indicated that all CRMPs bind tubulin both in vitro
and in vivo (Fukata et al., 2002a; Lin et al., 2011; Khazaei
et al., 2014), although the interaction between CRMP2 and
MTs has been the focus of this particular study. Indeed,
for CRMP2, its interaction with MTs was recently found to
involve two distinct domains: the N-terminal domain, which
is essential for binding to soluble tubulin, thus promoting
MT polymerization; and the C-terminal region, which interacts
with and stabilizes polymerized microtubules (Niwa et al.,
2017). Although the ability to bind MTs is shared by all
CRMPs, the MT-stabilizing capacity reported for CRMP2 is only
shared by CRMP1 and CRMP4 (Lin et al., 2011). In contrast,
CRMP5 does not influence MT dynamics (Brot et al., 2010), and
CRMP3 was shown to inhibit MT polymerization (Aylsworth
et al., 2009). The role of CRMP2 in MT assembly was found to
be crucial for neurite formation and axon development (Fukata
et al., 2002b) whereas CRMP4-dependent MT organizations
contribute to growth-cone dynamics (progression, pausing, and
retraction) as well as to axon elongation and regeneration
(Khazaei et al., 2014).

CRMPs Associate With Actin
Of all the isoforms, only CRMP3 presents weaker or no
interaction with actin (Tan et al., 2015). All other CRMPs have
an actin-binding site located at their C-terminal end, adjoining
their MT-binding site. This actin-binding site was initially
characterized in CRMP4 and promotes the formation of F-actin
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both in vitro and in vivo (Rosslenbroich et al., 2005; Khazaei
et al., 2014; Cha et al., 2016). In neurons, through their action
on the actin cytoskeleton, CRMP4 and CRMP5 contribute to
neurite outgrowth and growth-cone remodeling (Khazaei et al.,
2014; Gong et al., 2016), and CRMP4’s actin-binding capacity
also contributes to dendrite maturation in hippocampal neurons
(Cha et al., 2016). The effects of CRMP1 and CRMP2 on actin
dynamics are more indirect, as interactions with VASP family
proteins or the Sra-1 / WAVE1 complex are required for these
proteins to influence axon formation and growth (Kawano et al.,
2005; Yu-Kemp and Brieher, 2016; Yu-Kemp et al., 2017).

CRMPs Associate With Membranes and
Neuroreceptors
The role of CRMPs in vesicular trafficking and plasmamembrane
targeting of several transmembrane proteins is well-documented.
Thus, CRMP2 is known to bind to the vesicle-associated
proteins Slp1 and Rab27 allowing anterograde transport of
BDNF receptor TrkB (Arimura et al., 2009). It also binds to
the endocytic adaptor Eps15, the ubiquitin ligase Nedd4.2, and
to α-adaptin which regulates clathrin-dependent endocytosis
of the cellular adhesion molecule L1 and the sodium channel
Nav1.7 (Nishimura et al., 2003; Kawano et al., 2005; Dustrude
et al., 2016). CRMP1 modulates Na+ currents by interacting
with Nav1.7 (Yamane et al., 2017) whereas, like MAP6, CRMP2,
and CRMP3 respectively interact with voltage-gated Cav2.2/N-
type and L-type channels (Brittain et al., 2009; Chi et al., 2009;
Quach et al., 2013). CRMP4 is involved in vesicular trafficking
through mechanisms involving binding to the SH3 domains of
the scaffolding protein Intersectin 1 (Quinn et al., 2003)—which
is also a MAP6 partner (Figure 1).

Despite the early discovery of the involvement of CRMPs
in the Semaphorin 3A signaling pathway (Goshima et al.,
1995), little is known about direct interactions between CRMPs
and the numerous semaphorin receptors represented by the
Neuropilin and Plexin families. CRMP1, 2, 3, and 4 complexes
with Plexin-A1 have been reported following over-expression of
the different isoforms in the COS7 cell line (Deo et al., 2004), and
associations with the mono-oxygenases MICALs have also been
described (Schmidt et al., 2008). In addition, CRMP2 was shown
to interact with Plexin-A2 and A3 in the Nogo and Semaphorin
3A signaling pathways, respectively (Sekine et al., 2019;
Jiang et al., 2020).

Physio-pathological Roles of CRMPs in the
Central Nervous System
As part of their regulation of neuronal development and
plasticity, CRMPs are involved in many neurodevelopmental
processes including neural progenitor proliferation (Charrier
et al., 2006), neuronal migration (Yamashita et al., 2006),
and neuronal morphogenesis with both axonal and dendritic
maturation influences. The study of CRMP1, CRMP2, and
CRMP4 KO neurons revealed morphological defects, especially
in dendritic development and branching, but also in migration
and positioning (Yamashita et al., 2006, 2007; Niisato et al.,
2012). These phenotypes are more severe in double KO
neurons, whether the combination is CRMP1 and CRMP4, or

CRMP2 and CRMP4 (Tan et al., 2015; Yamazaki et al., 2020).
In vivo, KO of any CRMP (CRMP1, CRMP2, CRMP3, or
CRMP4) leads to robust alteration of dendritic morphogenesis
in several brain regions including the hippocampus and the
cortex (Yamashita et al., 2007; Quach et al., 2008; Niisato
et al., 2012, 2013; Yamashita and Goshima, 2012; Tsutiya
et al., 2015, 2016). CRMP2 is also strongly associated with
axonal specification (Nishimura et al., 2003; Kawano et al.,
2005; Yoshimura et al., 2005; Morita and Sobue, 2009). The
extensive effects of CRMPs on neuronal differentiation are
stronger than those observed for the deletion of classical MAPs.
This enhanced effect might be due to the crucial roles of
CRMPs at the interface between elements of the cytoskeleton
and signaling proteins. Impairment of CRMPs functions also
leads to synaptic-plasticity defects with abnormal LTP (Su
et al., 2007; Quach et al., 2008, 2011; Yamashita et al., 2011),
linked to impaired learning and memory (Su et al., 2007;
Yamashita et al., 2013).

In humans, CRMPs are associated with several psychiatric
disorders, with striking numbers of publications providing
evidence of links between CRMPs and schizophrenia (Nakata
et al., 2003; Nakata and Ujike, 2004; Ujike et al., 2006; Koide
et al., 2010; Hensley et al., 2011; Bader et al., 2012; Lee et al.,
2015; Quach et al., 2015; Toyoshima et al., 2019). For example,
polymorphisms in the genes encoding CRMP1 and CRMP2,
as well as altered hippocampal expression of CRMP2 and
CRMP4 have been reported in patients with schizophrenia
(Edgar et al., 2000; Beasley et al., 2006; Föcking et al., 2011;
Bader et al., 2012). In addition, the abnormal sensory-motor
gating abilities reported in psychiatric patients and described for
MAP6 KO mice (Fradley et al., 2005), were also replicated in
CRMP1 and CRMP3 KO mice (Quach et al., 2008; Yamashita
et al., 2013). Importantly, these defects could be alleviated
through the use of the antipsychotic chlorpromazine (Yamashita
et al., 2013), and CRMP2 and CRMP4 phosphorylation states
were shown to be downregulated by the antipsychotics Clozapine
and Risperidone (Kedracka-Krok et al., 2015).

Which Proteins Can Be Classified as
MAPs?
In summary, the ability of CRMPs to bind MTs, and thus
promote their polymerization and stabilization, are major
arguments to consider them as members of the wider MAP
family. Moreover, and as indicated above, like other MAPs,
CRMPs can also bind actin and are involved in signaling
cascades. As for conventional MAPs, deletion of CRMPs in
mice does not lead to severe cytoskeleton alterations, but
rather to subtler neurodevelopmental defects and cognitive
dysfunctions similar to those encountered in psychiatric diseases.
The history of protein identification draws attention toward
specific research. In the case of CRMPs, although data
regarding their interactions with MTs have been produced
they have not been extensively investigated in the field of
cytoskeleton research. In particular, they have never been used
in in vitro cell-free systems. Several basic questions thus remain
open, such as: Do CRMPs modulate specific parameters of
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microtubule dynamics? Do they induce MT bundling or simply
MT polymerization?

Our demonstration that CRMPs can be considered
as MAPs could be extended to other proteins like for
example, the Huntingtin protein or α-synuclein. These
two proteins have been actively studied in the context of
neurodegenerative diseases. Indeed, HTT binds to MTs and
actin, is involved in signaling cascades, is palmitoylated by
the same DHCC as MAP6 (Lemonidis et al., 2015), and
interacts with neuroreceptors (for review see Saudou and
Humbert, 2016). Similarly, α-synuclein, a MAP6 partner
(Figure 1), interacts with and nucleates MTs (Cartelli et al.,
2016). α-synuclein also interacts with actin and reduces
F-actin polymerization speed (Sousa et al., 2009; Cartelli et al.,
2016; Oliveira da Silva and Liz, 2020). It also participates
in signaling cascades and neuroreceptor functions (for
review see Emamzadeh, 2016; Bernal-Conde et al., 2019).
In addition to these examples, proteins related to schizophrenia
susceptibility could be mentioned, such as DISC1 (Disrupted
In Schizophrenia) or dysbindin, both of which have been
shown to interact with MTs, MAPs, and actin (Morris et al.,
2003; Hayashi et al., 2005; Talbot et al., 2006; Taya et al.,
2007; Shimizu et al., 2008; Marley and von Zastrow, 2010;
Bader et al., 2012).

COMMON PROPERTIES OF THE
NEURONAL STRUCTURAL MAPs

In this section, we will briefly summarize the properties of the
classical neuronal structural MAPs (Tau, MAP1, and MAP2)
and compare them to those described for MAP6 and CRMPs.
We will focus particularly on properties that are just coming
to light.

All the classical MAPs bind to MTs and induce various
levels of stability (Baas et al., 1994; Bulinski and Bossler, 1994;
Vandecandelaere et al., 1996; Faller et al., 2009; Kadavath
et al., 2015; Qiang et al., 2018). Recent advances in cryo-EM
have made it possible to visualize how Tau binds along
protofilaments at the interface between tubulin dimers (Kellogg
et al., 2018). Elucidating the near-atomic structure of complexes
between the other MAPs and MTs is essential if we wish
to reveal the common and specific mechanisms behind MT
stabilization for each MAP. Interestingly, several classical MAPs
such as MAP1B, MAP2, and Tau, are also able to indirectly
modulate MT dynamics via their interaction with EB proteins
(Kapitein et al., 2011; Tortosa et al., 2013; Sayas et al.,
2015; Ramirez-Rios et al., 2016). Such a possibility regarding
MAP6 and CRMPs has not yet been investigated and could be
of interest.

With regard to the ability of MAP6 to behave as a MIP,
future studies will reveal whether this property is shared by
other structural MAPs. Although some previous works suggested
that Tau binds to the luminal side of MTs (Kar et al.,
2003; Inaba et al., 2019), the answer to this question remains
elusive. Interestingly, actin was very recently discovered inside
the MT lumen (Paul et al., 2020), opening the possibility
that MAPs/MIPs might be involved in the crosstalk between

the two cytoskeletons in the MT lumen like they are in
the cytoplasm.

Like MAP6, the other structural MAPs—Tau, MAP1, and
MAP2—were shown to bind actin (Griffith and Pollard, 1982;
Pedrotti et al., 1994; Ozer and Halpain, 2000; Roger et al., 2004;
Ding et al., 2006) and to regulate synaptic plasticity through
actin-dependent mechanisms (Davidkova and Carroll, 2007;
Tortosa et al., 2011; Benoist et al., 2013; Takei et al., 2015).
Interestingly, Tau was directly shown to co-organize actin and
MT networks in vitro and in the neuronal growth cone (Elie et al.,
2015; Biswas and Kalil, 2018), this ability may be shared by the
other MAPs (Mohan and John, 2015).

In relation to neuroreceptors, like MAP6 (Figure 1), MAP1
and MAP2 proteins interact with the Cav2.2/N-type calcium
channel or with BKCa potassium channels (Davare et al., 1999;
Park et al., 2004; Leenders et al., 2008). In terms of membrane-
association, Tau and MAP2 interact with the membranes of
the Golgi and the endoplasmic reticulum (Farah et al., 2005,
2006), whereas MAP1S was shown to link mitochondria and
autophagosomes to MTs (Xie et al., 2011).

Several other MAPs in addition to MAP6 contain PRD
domains and thus interact with SH3-containing proteins. For
example, Tau and MAP2 bind to various SH3-containing
proteins including the non-receptor tyrosine kinase Src
(MAP6 partner, Figure 1; Lim and Halpain, 2000). Interestingly,
in link with Alzheimer’s disease, a general inhibition of Tau’s
interactions with SH3-domain-containing proteins was shown to
reduce Amyloid β-induced membrane trafficking abnormalities
and neurite degeneration (Rush et al., 2020).

Finally, as with MAP6 deletion, invalidation of other
MAPs in mice did not result in major MT-breakdown or
in lethal neurodevelopmental defects but rather produced
viable mice (Harada et al., 1994; Takei et al., 1997, 2015;
Teng et al., 2001). However, all KO mice display cognitive
dysfunctions similar to those associated with psychiatric
diseases. Thus, Tau KO mice exhibit impaired neurogenesis
(Dioli et al., 2017), hippocampal synaptic plasticity, and
cognitive defects (Ikegami et al., 2000; Lei et al., 2012;
Ahmed et al., 2014; Ma et al., 2014; Regan et al., 2015),
as well as age-dependent brain atrophy associated with loss
of neurons and synapses (Lei et al., 2012). MAP1B-deficient
mice also display abnormal synapse maturation (Tortosa
et al., 2011; Bodaleo et al., 2016), along with synaptic
transmission defects due to deregulation of AMPA receptor
trafficking (Benoist et al., 2013; Palenzuela et al., 2017), and
impaired synaptic plasticity with abnormal LTP (Zervas et al.,
2005). Importantly, MAP1B has been linked to the protein
KIRREL3 which is associated with autism/intellectual disability
(Liu et al., 2015). This protein is associated with the altered
working memory observed in young people with attention-
deficit/hyperactivity disorder (Salatino-Oliveira et al., 2016).
Mutated forms of MAP1B have been linked to intellectual
disability and extensive white-matter deficits in humans
(Walters et al., 2018).

A review of the literature relating to MAPs, in particular,
Tau (which is by far the most extensively studied MAP),
reveals that some MAP features have not yet been reported
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for MAP6 and CRMPs. Firstly, it is quite clear that Tau
is a bona fide nuclear protein (for review see Bukar Maina
et al., 2016) mainly contributing to defending the genome
against cellular stress. As shown in Supplementary Table
1, MAP6 has been shown to interact with various nuclear
receptors and effectors, but nothing is known about its possible
roles in the nucleus. Secondly, Tau is an unstructured protein
that has been shown to promote phase-separation events in
cells, both as part of physiological processes such as axonal
transport and in pathological conditions such as during Tau
aggregation (Hernández-Vega et al., 2017; Wegmann et al., 2018;
Siahaan et al., 2019). How the capacity of Tau to promote
phase separation affects its non-cytoskeleton-related functions
still remains to be determined. As most MAPs including
MAP6 are unstructured proteins, it appears logical that the
ability to contribute to phase separation events will be shared by
many MAPs.

CONCLUSION

Structural MAPs, presented here through the examples
of MAP6 and CRMPs, are highly versatile proteins with
multiple partners and functions, playing major roles in several
brain functions.

The original classification of MAPs was based on their ability
to bind MTs. This binding may contribute to MT stability, but it
might also be crucial to ensure MAPs presence all over the cell
in order to be available to promote signal propagation and/or

to form multi-protein complexes (post-synaptic densities) or
regulate the protein composition of membrane compartments.
In other words, the MT-binding ability of MAPs is probably
required for all their other functions as it is essential to
ensure specific spatial and temporal localization. These dual
abilities of MAPs to stabilize MTs and to use them as a means
to gain access to all regions of the cell for other functions
makes it experimentally impossible to distinguish between their
MT-related and -unrelated functions.
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