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Abstract: The role of Langerhans cells (LCs) in vitiligo pathogenesis remains unclear, with published
studies reporting contradictory results regarding the quantity of LCs and no data on the features of
LCs in vitiligo. Here, we aimed to analyze the presence, density, and morphological features of LCs
in the epidermis of patients with vitiligo. Skin biopsies were stained for LCs using anti-CD1a/anti-
langerin antibodies and analyzed by immunocytochemistry with light and electron microscopy.
Compared with healthy controls, we detected significantly increased numbers of epidermal LCs
in lesional skin from vitiligo in the progressive state. These LCs exhibited striking morphological
alterations, including an elevated number of dendrites, with increased length and more branches
than dendrites from controls. Ultrastructure examination via immuno-electron microscopy revealed
markedly reduced Birbeck granules (BGs) and shorter BG rods in LCs from progressive vitiligo, with
higher expression of langerin. Additionally, expression of S100B, the activity biomarker of vitiligo,
was increased in these LCs. This work provides new insight on the cellular composition of LCs in
vitiliginous skin, revealing altered morphology and increased LC numbers, with elevated S100B
expression. Our data suggest LCs might play a critical role in vitiligo pathogenesis and thus may
represent a novel therapeutic target for this disease.

Keywords: Langerhans cells; vitiligo; leukoderma; Birbeck granule; S100B

1. Introduction

The skin is the largest organ in the human body, and it plays a critical role in protecting
from environmental assaults. As such, the skin contains an intricate network of immune
cells that function to defend against pathogen invasion and protect the body from foreign
substances [1]. Critically, however, an imbalance in immune homeostasis may lead to a
disease state.

Vitiligo is an acquired pigmentary disease, characterized by white spots on the skin
that arise due to the absence of functional melanocytes in the epidermis. It is the most
common disorder of pigmentation, affecting 1–2% of the world’s population [2,3]. Notably,
however, despite its prevalence and the fact that vitiligo has been known for thousands
of years, the cause is still unclear [3]. Many hypotheses have been proposed, including
autoimmune, genetic, melanocytorrhagy, and neural etiologies, but no single model has
been able to explain the full disease spectrum, and the pathogenesis of vitiligo remains
puzzling [4].

Recently, it has been suggested that disruption of immune homeostasis is involved
in vitiligo pathogenesis, although more studies are needed to test this hypothesis [5].
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Clinically, doctors have noted that depigmented skin from patients with vitiligo does
not develop contact dermatitis in response to sensitization with dinitrofluorobenzene
(DNFB) [6,7], although pigmented skin from vitiligo patients responded normally. These
findings suggest that the immune response is disrupted in depigmented vitiligo skin.

Langerhans cells (LCs) are skin-resident antigen-presenting cells that are characterized by
CD1a and CD207/langerin expression, as dendritically shaped cells located in the epidermis.
LCs play an important role in local defense and the establishment of immune responses [8,9].
Within the epidermis, LCs are positioned in the suprabasal layer and communicate with
keratinocytes and melanocytes [10]. Epidermal LCs have been proposed to contribute to
vitiligo, although their exact role remains unclear. In particular, a number of studies have
reported contradictory results regarding the quantity of epidermal LCs in vitiligo, and there
are no published data describing their features in vitiliginous skin [11–13].

S100 calcium-binding protein B (S100B), a member of S100 protein family, is synthe-
sized and secreted by astrocytes, melanocytes, and LCs [14,15]. S100B levels are positively
associated with age, as well as neurodegenerative [16], neuroinflammatory [15], and vari-
ous skin inflammatory diseases [17]. Recently, S100B has also been suggested to act as a
potent biomarker for vitiligo activity [18–21].

In this study, to investigate the role of LCs in vitiligo pathogenesis, we assessed the
number and morphology of LCs in the epidermis of vitiliginous skin. Compared with
healthy controls, we found that lesional skin from patients with vitiligo in the progressive
state contains a marked increase in the quantity of epidermal LCs, and these show an
altered morphology, with significant increases in the number of dendrites and dendrite
length, fewer Birbeck granules (BGs), and shorter BGs rods expressing elevated levels of
langerin. Furthermore, LCs from these patients show increased expression of S100B. Thus,
our work provides new insight on the cellular composition of LCs in vitiliginous skin and
suggests that these cells may play a role in disease pathogenesis.

2. Materials and Methods
2.1. Human Skin Specimens

Lesional skin biopsy specimens from patients with confirmed non-segmental vitiligo
and in the progressive state (n = 8), patients with non-segmental vitiligo in the stable
state (n = 10), patients with rhododendrol-induced leukoderma (RDIL) in the progressive
state (n = 13) (Table 1), and samples from corresponding sites of healthy control subjects
(n = 5: 2 from forehead, 1 from back of hand, 1 from abdomen, and 1 from neck) were used
in this study. Progressive state was defined as the development of new lesions or extension
of preexisting lesions in 6 months, and stable state was defined as no increase in size of
existing lesions and absence of new lesions in 6 months. Patients with past treatments
(systemic PUVA, excimer light, tarcolimus, systemic or topical steroid, etc.) were not
included in this study. Written informed consent was obtained from all participants prior
to study inclusion. The study was approved by the ethics committee of the Osaka City
University Faculty of Medicine (No. 4152) and Osaka University Faculty of Medicine in
Japan (No. 10339).
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Table 1. Clinical characteristics of patients.

Patient
No. Sex Age (y) Duration (y) Type Lesion Site Activity

1 F 49 2 Non-segmental
vitiligo Back of hand Stable

2 M 79 7 Non-segmental
vitiligo Forehead Progressive

3 F 69 1 RDIL * Forehead Progressive

4 F 55 10 Non-segmental
vitiligo Abdomen Progressive

5 F 66 0.4 RDIL Back of hand Progressive

6 F 63 4 Non-segmental
vitiligo Lumbar Stable

7 F 74 0.6 RDIL Forehead Progressive
8 F 63 1 RDIL Abdomen Progressive
9 F 38 0.5 RDIL Neck Progressive

10 F 59 0.8 RDIL Back of hand Progressive

11 M 80 0.5 Non-segmental
vitiligo Forehead Progressive

12 F 70 6 Non-segmental
vitiligo Chin Stable

13 F 43 3 Non-segmental
vitiligo Neck Stable

14 F 66 8 Non-segmental
vitiligo Chest Stable

15 F 59 3 Non-segmental
vitiligo Arm Stable

16 F 60 4 Non-segmental
vitiligo Leg Progressive

17 F 64 5 Non-segmental
vitiligo Shoulder Stable

18 M 15 1 Non-segmental
vitiligo Face Progressive

19 F 84 1 RDIL Neck Progressive

20 M 35 5 Non-segmental
vitiligo Chest Progressive

21 F 42 0.3 RDIL Face Progressive
22 F 48 0.5 RDIL Neck Progressive

23 M 48 4 Non-segmental
vitiligo Face Stable

24 M 58 3 Non-segmental
vitiligo Wrist Stable

25 M 36 5 Non-segmental
vitiligo Abdomen Progressive

26 F 35 0.5 RDIL Back of hand Progressive
27 F 71 1 RDIL Neck Progressive
28 F 67 0.3 RDIL Forehead Progressive

29 F 38 3 Non-segmental
vitiligo Forehead Progressive

30 F 66 1 RDIL Abdomen Progressive

31 F 77 3 Non-segmental
vitiligo Back of hand Stable

* RDIL: rhododendrol-induced leukoderma.

2.2. Human Fluorescent Immunohistochemistry Staining

Skin tissue samples were fixed in 10% formaldehyde and embedded in paraffin.
These were sliced into 5 µm sections, deparaffinized, dehydrated, and heat-incubated with
antigen retrieval solution (Target Retrieval Solution, PH9; Dako, Agilent, Santa Clara, CA,
USA) for approximately 15 min. After blocking with horse serum (Vector Laboratories,
Marion, Burlingame, CA, USA), sections were incubated with primary antibodies specific
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for CD1a (1:100 dilution, #M357101, Dako, Santa Clara, CA, USA), Melan-A (1:100 Dilution,
#ab731, Abcam, Cambridge, UK), and S100B (1:100 Dilution, #HPA015768, Sigma-Aldrich,
St. Louis, MO, USA) overnight at 4 ◦C and then incubated with a secondary antibody for
1 h (1:500 dilution; anti-mouse IgG1 AlexFluor 488 for CD1a, anti-mouse IgG2b AlexFluor
555 or anti-mouse IgG2b AlexFluor 647 (pseudocolor white) for Melan-A, anti-rabbit IgG
AlexFluor 555 for S100B; Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) [22].
Sections were counterstained with Hoechst 33342 at a 1:500 dilution (Invitrogen, Carlsbad,
CA, USA), and stained sections were visualized using a Biozero 8100 confocal microscope
(Keyence Corporation, Osaka, Japan).

2.3. Human Pre-Embedding Immuno-Electron Microscopy

Pre-embedding immuno-electron microscopy was performed as detailed previously [23],
with slight modification. Briefly, finely minced pieces of skin tissue were fixed in 4%
paraformaldehyde for 2 h at room temperature, followed by embedding in optimal cutting
temperature (OCT) compound. Frozen samples were cut into 10 µm sections and permeabi-
lized in phosphate buffer (PB), containing 0.25% saponin for 30 min. Sections were blocked
for 30 min in PB, containing 0.1% saponin, 10% bovine serum albumin, 10% normal goat
serum, and 0.1% cold water fish skin gelatin, and exposed overnight to rabbit anti-langerin
primary antibodies (#13650, Cell Signaling Technology, Danvers, MA, USA) in blocking
solution. Specimens were then incubated with colloidal gold-conjugated goat anti-rabbit
IgG (1.4 nm diameter, #2003, Nanoprobes, Yaphank, NY, USA) in blocking solution for 2 h,
and the signal was intensified with the GoldEnhance EM kit (#2113, Nanoprobes, Yaphank,
NY, USA) for 4 min at room temperature. The specimens were post-fixed in 1% OsO4,
containing 1.5% potassium ferrocyanide, and then dehydrated in a series of graded ethanol
solutions and embedded in epoxy resin. Ultrathin sections were collected and stained
with uranyl acetate and lead citrate, and images were acquired with a Hitachi H7650
electron microscope, equipped with an Advanced Microscopy Techniques charge-coupled
device-based camera system.

2.4. Quantitative and Morphometric Analyses

All immunohistochemistry-stained sections were photographed in 5 non-contiguous
random grids under high-power magnification fields (400×). The quantitative and morpho-
metric analyses were performed using Image J software (version 1.53j, National Institutes of
Health, Bethesda, MD, USA). CD1a-positive cells and all the Hoechst 33342-positive cells in
epidermis were automatically counted with Image J software by establishing a color density
threshold [24]. Then, the average ratio of LCs to the total epidermal cells were calculated. The
number of dendrites or BGs in LCs were counted using the “Multi-point Tool”, and the length
of dendrites or BGs were measured using the “Straight Tool” in ImageJ.

In all immunoelectron microscopy sections, 10 LCs in 10 non-contiguous fields were
photographed. Then, the number of BGs in LCs were counted using the “Multi-point Tool”,
the length of BGs was measured using the “Straight Tool”, and the number of Langerin
colloids in LCs were quantified automatically in ImageJ.

2.5. Statistical Analysis

Data are presented as the mean ± standard deviation (SD). Comparisons were per-
formed using Kruskal–Wallis and Mann–Whitney U tests, and correction for multiple
comparisons used Bonferroni (Microsoft Excel, version 16.0, Microsoft Corp., Redmond,
WA, USA); p-values < 0.05 were considered statistically significant.

3. Results
3.1. Epidermal LCs Are Increased in Lesional Skin from Progressive Vitiligo Relative to
Normal Skin

Previous studies investigating the quantity of LCs in vitiligo-affected skin have re-
ported contradictory results, with some observing a reduction in the percentage of epider-
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mal LCs [13] and others reporting an increase in epidermal LCs [11,12]. To resolve this
issue and determine whether there are changes in LC numbers in the epidermis of patients
with vitiligo, we obtained formalin-fixed paraffin-embedded tissue from eight lesional skin
samples of non-segmental vitiligo in the progressive state, ten lesional skin samples of
non-segmental vitiligo in the stable state, and five normal skin samples. We then visualized
LCs by fluorescence immunohistochemistry staining with anti-CD1a antibodies (shown in
green); melanocytes were visualized by staining with anti-Melan-A antibodies (shown in
red) (Figure 1). As expected, we observed a disappearance of melanocytes and epidermal
pigment granules in tissue from both progressive and stable vitiligo (Figure 1). In contrast,
we detected increased LC staining in the epidermis of progressive vitiligo samples, as
compared with both normal skin and stable vitiligo (Figure 1). These results indicate an
increase in epidermal LCs in lesional skin from progressive vitiligo, suggesting that LCs
may be involved in disease progression.
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Figure 1. Epidermal Langerhans cells (LCs) are increased in lesional skin from progressive vitiligo relative to stable vitiligo
and normal skin. Skin sections from healthy controls (n = 5), non-segmental vitiligo in the progressive state (Progressive
Vitiligo, n = 8), and non-segmental vitiligo in the stable state (Stable Vitiligo, n = 10) were stained with anti-CD1a (green)
and anti-Melan-A (red) antibodies. Nuclei were stained in blue with Hoechst 33342. Representative images are shown, and
the corresponding bright-field microscopy images are displayed in the upper panels. Scale bar: 100 µm.

3.2. Increased Number of Dendrites with Increased Length Detected in LCs of Lesional Skin from
Progressive Vitiligo

Because an increase in epidermal LCs was observed in progressive vitiligo rather than
stable vitiligo, we mainly focused the remainder of our investigation on LCs in progressive
vitiligo. In addition, it was recently shown that RDIL, a novel pigmentary disorder that is
associated with the disappearance of melanocytes and appearance of white patches on the
skin, has phenotypic as well as pathophysiological similarity to vitiligo [25,26]. Therefore,
we also investigated LCs in 13 biopsies from progressive RDIL.

Fluorescence immunohistochemistry staining with anti-CD1a antibodies (shown in
green) of samples from progressive vitiligo, progressive RDIL, and normal skin revealed
that LCs in the epidermis of both progressive vitiligo and RDIL are greatly increased
relative to normal skin, and that these cells are large and polygonal in shape, with more
dendrites/branches and longer dendrites, compared with healthy controls (Figure 2a).
We then quantified the number of total LCs, dendrites per LC, and length of dendrites in
these stained sections. We found that in healthy controls, epidermal LCs constitute 3%
of the cell population in the epidermis. However, a significant increase of approximately
2.5–3 times that amount is observed in the epidermis of progressive vitiligo (about 8%)
and RDIL (about 7%) (Figure 2b). In addition, the number of dendrites per LC (Figure 2c)
and dendrite length (Figure 2d) are significantly increased in progressive vitiligo and
progressive RDIL relative to normal tissue.
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Figure 2. Increased number of LCs, dendrites per LC, and dendrite length in lesional skin from progressive vitiligo and
progressive rhododendrol-induced leukoderma (RDIL). (a) Skin sections from healthy controls (n = 5), non-segmental
vitiligo in the progressive state (Progressive Vitiligo, n = 8), and RDIL in the progressive state (RDIL, n = 13) were stained
with anti-CD1a antibodies (green). Nuclei were stained in blue with Hoechst 33342. Representative images are shown, with
higher-magnification images corresponding to the area surrounded by the red rectangles in left panels shown at right. Scale
bar: 50 µm. Quantification of LCs (percentage of total cells in epidermis) (b), number of dendrites per LC (c), and length of
dendrites (d) in LCs. Data in (b–d) are shown as the means ± standard deviation (SD). *** p < 0.01.

3.3. Decreased BGs and Shorter BG Rods with Elevated Langerin Expression Detected in LCs of
Progressive Vitiligo

We next investigated the ultrastructural features of the LCs in samples from pro-
gressive vitiligo using immuno-transmission electron microscopy (TEM). In total, three
samples from progressive vitiligo and three samples from healthy controls were stained
with anti-langerin (CD207) antibodies and subjected to immuno-electron microscopy anal-
yses. We chose to stain for langerin as this is another specific marker for LCs and a crucial
component of BGs, a unique rod-shaped organelle found in LCs [27].

In immuno-TEM images, cells with hallmark features of LCs, including a cleaved
or folded nucleus, clear cytoplasm devoid of tonofilaments or desmosomes, absence of
melanosomes or pre-melanosomes, and with small (30–50 nm) dark dots indicating gold-
labeled langerin staining were selected for our analyses (Figure 3a). In samples from
healthy controls, numerous BGs with typical features, including an elongated rod or tennis
racket-resembling shape, a laminar structure, and surface accumulation of langerin, were
observed in the cytoplasm of LCs (Figure 3a). Remarkably, however, in samples from
progressive vitiligo, it was difficult to find typical BGs; in some areas of the cytoplasm,
langerin accumulation could be detected, but BG morphology was clearly abnormal.
In particular, the rods were notably shorter and surface accumulation of langerin was
massively increased compared with what is observed in typical BGs from control samples
(Figure 3a,b). Further, quantitative analyses reveal a significant reduction in both total
BGs per LC (Figure 3c) and BG rod length (Figure 3d), as well as a significant increase in
langerin expression (Figure 3e) in epidermal LCs from progressive vitiligo.
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Figure 3. Immuno-transmission electron microscopy (TEM) reveals altered Birbeck granule (BG) morphology in epidermal
LCs from progressive vitiligo. Skin sections from healthy controls (n = 3) and non-segmental vitiligo in a progressive state
(Progressive Vitiligo, n = 3) were stained with anti-langerin antibodies, and immuno-TEM was performed. (a) Represen-
tative TEM images are shown; areas framed in white rectangles are enlarged in right panels. Small black dots represent
30–50 nm sized colloidal gold (enhanced from 1.4 nm nanogold) particles labeling langerin. Scale bar: 1 µm. (b) Representa-
tive high-power TEM images of BGs in healthy controls and progressive vitiligo. Scale bar: 200 nm. Quantification of BGs
per LC (c), rod length of BGs (d), and langerin colloids per LC (e) in progressive vitiligo and healthy controls. Data in (c–e)
are shown as means ± SD. *** p < 0.01.

3.4. Increased Expression Level of S100B in Epidermal LCs from Progressive Vitiligo

Recently, S100B was suggested as a potential disease activity maker in non-segmental
vitiligo [18,28]. In these studies, it was proposed that S100B is released from damaged
melanocytes [18,28]. However, the S100B protein is normally present in the epidermis in
LCs, and in fact, it is also routinely used as a marker for LCs. Here, to determine whether
S100B expression is elevated in LCs from vitiligo, we analyzed sections from eight lesional
skin samples of non-segmental vitiligo in a progressive state, ten non-segmental vitiligo in
a stable state, and five healthy controls using four-color fluorescent immunohistochemistry
to stain for melanocytes (white), LCs (green), S100B (red), and nuclei (blue) (Figure 4a).
Consistent with our results in Figure 1, we observed the disappearance of melanocytes and
epidermal pigment granules both in progressive vitiligo and stable vitiligo, with more LCs
detected in the epidermis of progressive vitiligo, compared with normal skin and stable
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vitiligo (Figure 4b). In addition, we detected markedly increased S100B expression in the
epidermis of skin from progressive vitiligo, and this was mainly observed in LCs. We
further note that S100B expression level was much higher in LCs of progressive vitiligo than
in LCs from either stable vitiligo or healthy controls (Figure 4c). These results suggest that
the LCs in progressive vitiligo might be distinct not only in their density and morphology,
but also in regard to their cellular function.
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Figure 4. Increased S100B expression level in LCs from the skin of subjects with progressive vitiligo. (a) Skin sections from
healthy control (n = 5), non-segmental vitiligo in a progressive state (Progressive Vitiligo, n = 8), and non-segmental vitiligo
in a stable state (Stable Vitiligo, n = 10) were stained with anti-Melan-A (white), anti-CD1a (green), and anti-S100B (red)
antibodies. Nuclei were stained in blue with Hoechst 33342. Representative images are shown, and the corresponding
bright-field microscopy images are displayed in the upper panels. Scale bar: 100 µm. (b) Quantification of LCs (percentage
of total cells in epidermis); (c) quantification of S100B expression level in LCs (relative fluorescent intensity compared with
healthy control). Data in (b,c) are shown as means ± SD. *** p < 0.01, n.s., no statistical significance.
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4. Discussion

A number of previous studies have investigated LCs in vitiligo and reported con-
tradictory findings. Itoi et al. [11] observed an increase in, as well as activation of, LCs
from progressive non-segmental vitiligo. Studies by Prignano et al. and Seite et al. [12,29]
reported that narrow-band ultraviolet B (NB-UVB) and UVA1 treatment reduced LC
density, redistributed main LCs, and slightly altered morphology of LCs in vitiligo. How-
ever, recently, in a study with 20 vitiligo patients and 10 age- and sex-matched controls,
Shoeib et al. [13] reported a reduction in LC percentage in skin affected by vitiligo and
found no statistical change in LC percentage after NB-UVB therapy. Thus, the quantity and
role of epidermal LCs in vitiligo has remained unclear.

In the current study, we aimed to address this question by analyzing LCs in skin
sections from progressive and stable vitiligo, using confocal and immuno-electron mi-
croscopy to assess cell numbers and morphology, as well as expression of the vitiligo
activity biomarker, S100B. We found that, in comparison with healthy controls and stable
vitiligo, LCs in the epidermis of progressive vitiligo are significantly increased and show
morphological alterations, as evidenced by both by confocal fluorescent microscopy and
immuno-electron microscopy. In addition, these LCs display higher expression of S100B.

Vitiligo is an acquired, chronic skin pigmentary disorder, characterized by progressive
loss of melanin and melanocytes in the epidermis [3]. The precise cause remains unknown,
but an increasing number of observations highlight the important role of cellular immunity
in the pathogenesis of this disease [5,30].

LCs were first identified in 1868 by Paul Langerhans [31]. These cells are derived from
bone marrow and comprise approximately 2–3% of cells within the epidermis of normal
human skin [29]. Epidermal LCs are known to play critical roles in contact hypersensitivity
reactions and other defense mechanisms against skin tumors [32]. In the present study, we
found that LCs make up about 3% of cells within the epidermis of healthy skin, whereas in
progressive vitiligo, we observe a significant increase in these cells in epidermal tissue, with
LCs comprising about 8% of the total cell population. These data suggest that LC-mediated
cellular immunity may be critical for the progression of vitiligo.

LCs are characterized by their typical dendritic morphology and the characteristic
“tennis racket-shaped” BGs in their cytoplasm [32]. A number of previous studies have
reported decreased numbers of LCs that exhibit an altered morphology in some squamous
cell carcinomas and basal cells carcinomas (BCCs) of the skin; in particular, these LCs
were mainly round or oval, rather than dendritic [33–36]. The authors postulated that
alterations in LC numbers and morphology in BCC were likely secondary to changes in
the local environment and suggested that they might contribute to the development of
skin tumors [33–36]. In the present study, we noted remarkable morphological changes
in epidermal LCs from progressive vitiligo. Specifically, these cells have more and longer
dendrites, with fewer BGs in their cytoplasm and shorter BG rods.

Normal LCs have been classified into two types; Type 1 LCs are pyramidal in shape
and contain numerous BGs and long-branched dendritic processes and Type 2 LCs are
spherical in shape with fewer BGs and shorter dendritic processes [27]. Here, we found that
LCs in progressive vitiligo are more dendritic, with more branches and longer dendrites.
Thus, to a certain extent, they have features that are similar to Type 1 LCs. However,
LCs from progressive vitiligo have fewer BGs and shorter rods in their BGs. In previous
reports, it was shown that cytokines, growth factors, and keratinocyte-derived hormones
can influence LC phenotype and function [37]. Our data suggest that the altered BGs in
LCs from progressive vitiligo might represent a pathognomonic feature, resulting from the
local environment, and that these LCs might, in turn, contribute to the abnormal immune
response observed in progressive vitiligo.

In addition to the cell surface marker CD1a, langerin is also used as a marker for
identifying LCs via immunohistochemical staining [32]. In the present study, we performed
immuno-electron microscopy with gold-labeled langerin and observed increased accumu-
lation of langerin in BGs within the LCs from progressive vitiligo relative to those from
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healthy controls. Langerin has been proposed to induce BG formation, and expression of
this protein is regulated by transforming growth factor (TGF)-β1, tumor necrosis factor
(TNF)α, and the tissue environment [38,39]. We speculate that in LCs from progressive
vitiligo, increased accumulation of langerin in BGs might result from a disruption in BG
formation or feedback from either the altered BGs or the aberrant tissue environment.

S100B is expressed in dendritic cells and cells with a neurogenic origin, and increased
levels of this protein have been reported in neurological diseases, psoriasis, and other
inflammatory disorders [14,15,17,40]. Recently, S100B was also suggested as a potent
biomarker of activity in progressive vitiligo [18–21]. Furthermore, in a monobenzone-
induced vitiligo mouse model, S100B inhibition was found to alleviate depigmentation in
mouse skin [28]. In these previous reports, melanocytes were thought to be the source of
S100B. However, in the present study, we detected markedly higher S100B expression in
LCs from progressive vitiligo than in LCs from healthy controls or stable vitiligo. The S100B
protein is known to play diverse roles in many cellular processes, including regulation of
protein phosphorylation, cell proliferation and motility, cell cycle progression, transcription,
cell differentiation, and calcium homeostasis [41]. Our data suggest the possibility that
S100B in LCs might also be involved in the activity or progression of vitiligo.

The histopathological and morphological data obtained in this study may help to
answer a number of unresolved questions on the pathogenesis of vitiligo and may suggest
a role for LCs in the progression of this disease. Critically, however, the precise functions of
LCs in progressive vitiligo have yet to be determined, and further studies will be required
to elucidate the mechanisms underlying our observed morphological changes.

5. Conclusions

In conclusion, we find that epidermal LCs in lesional skin from progressive vitiligo
are largely increased in number and display morphological alterations relative to LCs
from stable vitiligo or healthy skin. Furthermore, these LCs show altered BG morphology
and increased expression of S100B. Our data suggest that LCs might play a role in the
pathogenesis of vitiligo and therefore may represent a possible therapeutic target for the
development of new treatments.
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