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Abstract

Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting over 230 million people worldwide.

Additionally to theirmajor impact onhumanhealth, they arealsomodels of choice in evolutionarybiology. Theseparasitic flatworms

are unique among the common hermaphroditic trematodes as they have separate sexes. This so-called “evolutionary scandal”

displays a female heterogametic genetic sex-determination system (ZZ males and ZW females), as well as a pronounced adult sexual

dimorphism. These phenotypic differences are determined by a shared set of genes in both sexes, potentially leading to intralocus

sexual conflicts. To resolve these conflicts in sexually selected traits, molecular mechanisms such as sex-biased gene expression could

occur, but parent-of-origin gene expression also provides an alternative. In this work we investigated the latter mechanism, that is,

genes expressed preferentially from either the maternal or the paternal allele, in Schistosoma mansoni species. To this end, tran-

scriptomes from male and female hybrid adults obtained by strain crosses were sequenced. Strain-specific single nucleotide poly-

morphism (SNP) markers allowed us to discriminate the parental origin, while reciprocal crosses helped to differentiate parental

expression from strain-specific expression. We identified genes containing SNPs expressed in a parent-of-origin manner consistent

with paternal and maternal imprints. Although the majority of the SNPs was identified in mitochondrial and Z-specific loci, the

remainingSNPs found in maleand female transcriptomeswere situated in genes that have the potential toexplain sexual differences

in schistosome parasites. Furthermore, we identified and validated four new Z-specific scaffolds.

Key words: parent-of-origin gene expression, sexual dimorphism, intralocus sexual conflict, male–female coevolution,

Schistosoma mansoni.

Introduction

Schistosomiasis, also known as bilharzia, is a highly prevalent

tropical disease affecting over 200 million people worldwide

(Engels et al. 2002). It mainly occurs in developing countries

and ranks second in term of parasite morbidity and mortality

after malaria (King 2010). This chronic infection is caused by

different species of the Schistosoma genus, blood flukes, with

a complex lifecycle involving two obligatory hosts.

Schistosoma mansoni responsible of intestinal schistosomiasis

uses Biomphalaria genus as mollusk intermediate host, and

humans or rodents as vertebrate definitive hosts. In the ver-

tebrate host, males and females form monogamous couples,

and sexually reproduce (Beltran and Boissier 2008). The pro-

duced eggs are released out of the host via the feces and, in

contact with freshwater, hatch to liberate free-swimming lar-

vae called miracidium. These miracidia actively search and in-

fect their intermediate hosts, transform into two successive

intramolluskan stages (i.e., sporocysts), which produce by

asexual multiplication thousands of vertebrate-infecting larvae

(i.e., cercaria).

Besides the medical importance of this parasite for human

health, it is also a very interesting model in terms of evolu-

tionary biology due to its original sexual features. Among the

18,000–24,000 hermaphroditic species recorded in
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Trematodes, only the Schistosomatidae family (�100 species)

has evolved separate sexes and has thus been qualified as an

“evolutionary scandal” by Claude Combes in 1991 (Combes

1991). This gonochorism is accompanied by a pronounced

dimorphism between sexes (Basch 1990; Loker and Brant

2006). These differences between males and females exist

on different scales ranging from a molecular, to a behavioral

level, and have been documented in several studies (see Mon�e

and Boissier 2004 for review). Larval stages are morphologi-

cally indistinguishable and one striking difference at the adult

stage is the worm musculature (muscular adult male vs. a thin

adult female), as well as the presence of a gynaecophorous

canal, and a large oral sucker in males allowing them to carry

and shelter their female mating partner (Beltran and Boissier

2008, 2009). Sexes are genetically determined during egg

fertilization with a ZZ/ZW chromosomal system where females

are heterogametic (Grossman et al. 1981). In S. mansoni,

females have a W chromosome characterized by large pseu-

doautosomal regions as well as W-specific sequences almost

entirely composed of heterochromatic satellite-type repeats

(Lepesant et al. 2012; Protasio et al. 2012). No W-specific

protein-coding genes were identified so far (Criscione et al.

2009). Thus, in spite of the observed sexual dimorphism at the

adult stage, males and females share a common set of protein-

coding genes. There are 782 genes specific to the Z chromo-

some andare thus found twice in theZZ males and only once in

the ZW females. Studies on ZW female heterogametic systems

frequently report a lack ofdosagecompensation that equalizes

Z-linked transcript levels in males and females (Graves 2016). It

is also thecase inS. mansoniadultswhereZ-linkedexpression is

reduced relative to autosomal expression in females but not in

males (Vicoso and Bachtrog 2011). However, it is not known

whether specific genes may be escaping the dosage compen-

sation mechanism in schistosome males, therefore being po-

tentially responsible for male-biased gene expression and

accentuating phenotypic differences between sexes. If selec-

tion for a particular trait at a particular locus favors different

alleles in males versus females (i.e., sexual antagonism), one

would expect to find a mechanism to resolve these intralocus

sexual conflicts. Gonochoric species usually “solve” these con-

flicts throughsex-biasedexpressionof the sexually antagonistic

genes (Ingleby et al. 2015; Lipinska et al. 2015). In schisto-

somes, sex-biased gene expression was intensively studied at

the whole transcriptome level (Fitzpatrick et al. 2005, 2008;

Anderson et al. 2015; Lu et al. 2016; Picard et al. 2016), but

other molecular mechanisms such as parent-of-origin gene ex-

pression have never been investigated.

In diploid gonochoric organisms, sexual reproduction leads

to the presence of two copies of each gene in each somatic

cell of an individual, one inherited from the mother (i.e.,

matrigenes) and the other from the father (i.e., patrigenes).

Usually both copies of a gene cooperate and are expressed at

equal levels allowing compensation of the function in case of

deleterious mutation, but in some cases gene expression is

restricted to one of the parental alleles leading to paternally

versus maternally preferential or exclusive gene expression

(aka parent-of-origin gene expression, or genomic imprinting)

(Reik and Walter 2001). Different theories have been pro-

posed to explain the evolution of genomic imprinting and

the effects of such gene expression in the offspring. The sex-

ual antagonism (Day and Bonduriansky 2004; Bonduriansky

2007; Patten et al. 2014) or maternal–offspring coadaptation

(Wolf and Hager 2006) theories suggest that genomic im-

printing has the potential to modify resemblance of an indi-

vidual to its parents (Patten et al. 2014). The sexual

antagonism theory proposes that as fathers and mothers

have passed the filter of sex-specific selection (alleles success-

fully transmitted to progeny), it is thus more likely that male

offspring will benefit from paternally expressed alleles for

male traits, whereas female offspring will benefit from mater-

nally expressed alleles for female traits (Day and Bonduriansky

2004). It is therefore predicted that phenotypic traits benefit-

ing males or females, as for example muscular bodies for

males, would be preferentially expressed from the paternal

alleles. In schistosomes we therefore expect paternal genes

coding for growth enhancers or muscle development to be

preferentially expressed in males, and maternal expression in

females for traits under sexually antagonistic selection.

On the basis of the maternal–offspring coadaptation the-

ory, maternal alleles may be selected for imprinted expression

to provide the greatest combined fitness between the mother

and progeny (Wolf and Hager 2006). Therefore in organisms

providing maternal investment (e.g., most mammals) we ex-

pect maternal expression in both sexes for genes involved in

maternal–offspring interactions and more specifically mater-

nal care. In schistosome species, it has been proposed that

prezygotic paternal investment (transport of the female to the

oviposition site, female maturation, and feeding) is higher

than maternal investment (Beltran and Boissier 2008).

Therefore, paternal expression in both sexes may be expected.

The evolutionary roles of parent-of-origin expression nev-

ertheless remain controversial and the patterns predicted by

those models may be very contrasted but also non-exclusive.

Indeed, most of the studies have been carried in plants, mam-

mals and some insects such as coccids and bees (da Rocha

and Ferguson-Smith 2004; Ferguson-Smith 2011; Macdonald

2012; Kocher et al. 2015) and support an alternative, but not

exclusive conjecture: The kinship theory (Moore and Haig

1991; Haig 2000), which links parent-of-origin gene expres-

sion not to sexual, but more generally to parental conflicts. It

assumes that parental genomes are not functionally equiv-

alent and do not have the same reproductive interests. In a

polyandrous mating system, maternal alleles tend to preserve

mother and progeny by a restriction of resources, while the

paternal genome favors growth of offspring. An interesting

example for such a “battle of sexes” was shown by the pa-

ternal expression of the insulin-like growth factor 2 (IGF2)

inducing growth, while the maternal expression of its
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antagonist receptor (IGF2R) tends to reduce growth in mam-

mals (Wilkins and Haig 2003). The kinship model therefore

predicts that maternal expression will be favored if a gene has

a positive effect when maternally expressed but a negative

effect when paternally derived and vice versa for paternal

expression. Therefore, we would expect paternal expression

in both sexes for genes involved in extraction of maternal

resources by offspring. Schistosomes are oviparous organisms

that shed hundreds of eggs daily per female, and resource is

already present in the egg before fertilization (maternal allo-

cation of energy) but once released the subsequent develop-

ment is independent of parental resources. The expression

patterns will therefore depend on the phenotypic effect of

the genes.

Differences in gene expression according to parental origin

in schistosomes may be important to identify candidates for

sex-specific phenotypes. To this end, we screened male and

female transcriptomes in reciprocal hybrids of S. mansoni for

parent-of-origin expressed genes, considering both known

sex-linked and autosomal genes. This approach relied on

strain-specific single nucleotide polymorphic (SNP) markers

allowing us to identify the potential allelic expression profile

of each transcript, while reciprocal crosses allowed us to dis-

criminate parent-of-origin effects from strain-of-origin effects.

We show that most SNPs detected in genes with monoallelic

expression are located in mitochondrial and Z-specific loci, thus

validating our experimental design and analysis pipeline. We

also identified a number of SNPs with preferential expression

from one parental allele in the transcriptome of male and fe-

male schistosomes, suggestingpaternalandmaternal imprints.

As the genes concerned by these parent-of-origin type SNPs

are closely related to development and sex-specific functions,

we suggest that parent-of-origin gene expression needs to be

explored in depth because it may be used to resolve intralocus

sexual conflicts underlying sexual dimorphism in this species.

Finally, we discuss our results in regard to current knowledge

on schistosome parasites life-history traits and the evolutionary

theories supporting imprinting in other organisms.

Materials and Methods

Parasite Origin, Crossing Protocol, and Sequencing

Hybrid adult parasites were obtained by reciprocally crossing

two different geographic isolates of the S. mansoni species:

The Guadeloupian strain GH2 and the Brazilian strain BRE. We

performed biological duplicates of two independent crosses,

F1 male and female hybrids (GH2 mother � BRE father) and

the reciprocal male and female crosses (BRE mother � GH2

father) as shown in figure 1 and table 1. Each cross was

performed in mouse (Mus musculus) definitive hosts, by using

Biomphalaria mollusks that were individually exposed to a

single miracidium of the BRE or GH2 strain (releasing either

male or female clonal populations of BRE or GH2 cercariae).

The resulting hybrid miracidiae were individually used to infect

mollusks, and adult worms were recovered after mouse uni-

sexual infestation (fig. 1a). Total RNA was extracted from the

eight samples separately (fig. 1b) and global sequencing was

performed on four lanes (double multiplexing) using paired-

end (2 � 125 nt) Hiseq Illumina technology.

Total RNA Isolation

For each sex and cross, experiments were performed in two

biological replicates. RNA extractions were performed alter-

natively from 20 adult males or 100 adult females. Briefly,

parasites were ground in liquid nitrogen and solubilized in

TRIzol (Thermo Fisher Scientific). Total RNA was then

extracted by adding chloroform. PureLink RNA Mini kit

(Ambion) was used for further purification following the man-

ufacturer’s protocol. Total RNA was eluted in 30ml RNAsecure

(Ambion) and incubated at 65 �C for 10 min. Samples were

then treated with TURBO DNase (TURBO DNA-free, Ambion)

and the reaction was stopped by cooling down on ice for

2 min. RNA was finally purified on a column (RNeasy mini

kit, QIAGEN) and eluted in 30ml RNase-free water. Quality

and concentration were assessed by spectrophotometry

with the Agilent 2100 Bioanalyzer system. Further details

are available at Environmental and Evolutionary Epigenetics

Webpage (http://methdb.univ-perp.fr/epievo/; last accessed

February 16, 2018).

Illumina Libraries Construction and High-Throughput
Sequencing

cDNA library construction and sequencing were performed at

the sequencing facilityofMontpellierGenomiX (MGX, France).

The TruSeq stranded mRNA library construction kit (Illumina

Inc., USA) was used according to the manufacturer’s recom-

mendations on 300 ng of total RNA per condition. Briefly, poly-

A RNAs were purified using oligo-d(T) magnetic beads. The

poly-Aþ RNAs were fragmented and reverse transcribed using

random hexamers, Super Script II (Life Technologies, ref.

18064-014) and Actinomycin D. During the second-strand

generation step, dUTP substitued dTTP to prevent the second

strand tobeusedasamatrixduring thefinal PCRamplification.

Double-stranded cDNAs were adenylated at their 30-ends be-

fore ligation was performed using Illumina’s indexed adapters.

Ligated cDNAs were amplified following 15 cycles PCR and

PCR products were purified using AMPure XP Beads

(Beckman Coulter Genomics, ref.A63881). The quantitative

and qualitative analysis of the library was carried on

Agilent_DNA 1000 chip and qPCR (Applied Biosystems 7500,

SYBR Green). The sequencing was performed on a HiSeq2500

in paired-end 2x125nt mode. RNA-Seq reads are available at

the NCBI-SRA under the BioProject accession number

PRJNA378178.
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RNA-Seq Data Processing

Quality Control

Quality control and initial cleaning of the reads was performed

with the filter by quality program (version 1.0.0) based on

FASTX-toolkit (Blankenberg et al. 2010). Reads with less

than 90% of bases with Phred quality score inferior or equal

to 30 were discarded (probability of 1 incorrect base call out

of 1,000, and a base call accuracy of 99, 9%). Adaptors used

for sequencing were removed using the cutadapt program

version 1.6 (Martin 2011).

Mapping of the Reads against the Reference Genome

Each sample’s paired-end sequencing reads were indepen-

dently mapped (i.e., unique reads) to the S. mansoni’s reference

genome version 5.2 (Berriman et al. 2009; Protasio et al. 2012)

using TopHat2 software (Kim et al. 2013). The alignment was

performed in single reads with intron length parameter set be-

tween 20 and 50,00bp. We authorized one mismatch in the

anchor region of spliced alignment, applied a microexon search

because of the presence of microexon genes in schistosome

genomes (DeMarco et al. 2010), and used the very sensitive

Bowtie2 option (Langmead et al. 2009). The GTF annotation file

(S. mansoni sex-specific transcriptome) produced in a previous

work (Picard et al. 2016) served as the reference (http://ihpe.u-

niv-perp.fr/acces-aux-donnees/; last accessed February 16,

2018). In order to avoid false positives in SNP calling, we filtered

PCR duplicates by eliminating exact reads found more than

eight times (option “Tolerated Duplicates”¼ four) using

“Remduplicates” (Althammer et al. 2011).

Parent-of-Origin Gene Identification

The approach is based on the analysis of the frequency of SNP

markers presenting allelic imbalance within the transcriptomic

Table 1

F1 and Mirror Individuals from Two Reciprocal Crosses

F1 Male F1 Female F1-Mirror Male F1-Mirror Female

Biological duplicates $ GH2 � # BRE $ GH2 � # BRE $ BRE � # GH2 $ BRE � # GH2

$ GH2 � # BRE $ GH2 � # BRE $ BRE � # GH2 $ BRE � # GH2

FIG. 1.—(a) Crossing protocol example for Cross 1 and (b) samples used for RNA-sequencing. (a) Mollusks releasing clonal populations of male BRE (ZZ)

and female GH2 (ZW) cercariae were used to infect M. musculus definitive hosts and produce F1 eggs releasing hybrid miracidiae. These male or female

miracidiae were used to infect mollusks and produce male of female cercariae. Unisexual infection of M. musculus allowed us to recover after 7 weeks, male

and female hybrid adult worms. Notice that Cross 2 (male GH2 x female BRE), which is not presented in this figure, was performed the same way.

Parent-of-Origin-Dependent Gene Expression GBE
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data of the hybrids. The identity of the base can then be used

to distinguish allelic origin, and the reciprocal cross helps to

discriminate parent-of origin from strain-of-origin biases in

allelic expression (fig. 1).

Selecting Strain-Specific SNPs in the Genomic Data of BRE
and GH2

SNPs in the genome of the BRE and GH2 strains were previ-

ously described (Cl�ement et al. 2013). We used the Freebayes

generated BAM files available at http://methdb.univ-perp.fr/

downloads/, last accessed February 16, 2018 to assess strain-

specific SNPs. We considered informative, any SNP showing

fixed alternative allele frequency (AF 0.9) in one strain, and

absent or having an alternative allele frequency inferior or

equal to 0.1 in the other (AF 0.1) compared with the reference

genome (NMRI strain, Puerto Rican Origin).

SNPs Calling in the Transcriptomic Data

Using SAMtools (Li et al. 2009), we produced mpileup files

with read coverage information and call quality from the

TopHat2 alignment BAM files. We then performed SNPs call-

ing by using VarScan software (version 0.1) on the mpileup

files (Koboldt et al. 2012). The minimum depth at position to

make a call was set to ten reads, the minimum supporting

reads for alternative allele at position were set to two. The

minimum base quality to count a read was set to 15, mini-

mum variant allele frequency threshold was set to 1%, and

the p-value threshold for calling variants was set to 5%. The

number of reads, the number of variant allele, and the alter-

native base identity were visually checked for ten randomly

selected SNPs in each sample with the Integrative Genomics

Viewer (IGV) software (Thorvaldsd�ottir et al. 2013).

Parental Origin of the Transcripts Analysis

In order to discriminate parent-of-origin from strain-of-

origin SNP expression, each sample’s transcriptome vari-

ant files were compared with the previous selected strain-

specific SNPs (BRE or GH2) and that according to variant

positions. We only kept SNPs in the transcriptome for

which we had parental information in order to identify

the origin from which the SNP is expressed. Three catego-

ries were defined based on the expression profiles of the

SNPs. Those with alternative allele frequency between 0%

and 10% or 90% and 100% were defined as monoallelic

(or imprinted). Those with alternative allele frequency be-

tween 10% and 35% or 65% and 90% were defined as

biased (preferential expression), and those with alterna-

tive allele frequency between 35% and 65% were con-

sidered as biallelic (fig. 2). Among these, SNPs were

conserved only if found in the same category in both rep-

licates. We further added mpileup coverage information

to assess whether the SNPs were not detected, or whether

the regions were not transcribed. When coverage infor-

mation indicated reads in the region we considered the

allele similar to the reference genome and set allele fre-

quency to 0% (minimum coverage of ten reads). If the

region was not covered and therefore not transcribed,

we considered position as noninformative.

Comparisons between the Reciprocal Crosses

SNPs with biased and monoallelic expression profiles were

compared between reciprocal crosses. This allowed us to

identify genes potentially expressed in a parent-of-origin man-

ner when reciprocal crosses agreed with each other on

parent-of-origin bias.

FIG. 2.—Detection strategy of parent-of-origin expression: example for Cross 1. Cross 1 was performed using males from the S. mansoni Brazilian strain

(BRE) and females from the Guadeloupian strain (GH2). Each hybrid contains a chromosome from the mother (GH2) and from the father (BRE). The

trancriptomic analysis of hybrid offspring allowed identifying genes 1) expressed in equal proportions between the mother’s (GH2) and father’s (BRE) allele

(i.e., biallelic expression), 2) expressed exclusively from the mother’s (GH2) or father’s (BRE) allele (i.e., monoallelic expression), or 3) expressed preferentially

from the mother’s (GH2) or the father’s (BRE) allele (i.e., biased expression).
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Annotation of the Transcriptome

The transcriptome file (extracted from the GTF reference

[Picard et al. 2016]) was de novo reannotated on the local

server of the laboratory by searching protein databases using

a translated nucleotide query (BlastX) against the nonredun-

dant protein sequence database (nr). The 25 best hits were

then used to search for gene ontology terms using the

Blast2Go program (Conesa et al. 2005). Correspondence be-

tween transcript and current version of genome annotation

was manually checked using IGV software (Thorvaldsd�ottir

et al. 2013).

Quantitative PCR Validation of Z-Specific Scaffolds

Simple or double copy of genomic DNA was assessed with

male (ZZ) and female (ZW) DNA extracted from adult worms

to verify the Z-specific status of unplaced scaffolds containing

genes with monoallelic paternal expression. DNA of single

adult worms of each sex was extracted as recommended

from the QIAGEN QIAampDNA Micro Kit protocol for isolation

of genomic DNA from tissues. Final elution was performed us-

ing 40ml of buffer AE (10 mM Tris�Cl, 0.5 mM ethylenedi-

aminetetraacetic acid, pH 9.0). Primers were designed using

the online Primer3plus program (Rozen and Skaletsky 2000)

and aligning the primers against S. mansoni’s reference ge-

nome v5.2 to verify for high specificity. We used a known Z-

specific (double copy in ZZ males and single in ZW females) and

an autosomal (double copy in each sex) genomic region as

internal control. Primer efficiencies were assessed with serial

dilutions of genomic DNA in DNAse free water (dilutions 1=4,

1/16, 1/64, and 1/256). Primer efficiency was calculated

using the slope of the standard curve with

efficiency¼�1þ 10 (�1/slope). Quantitative PCR reactions

were carried out in a total volume of 10ml, containing 5ml of

the Takyon 2X reaction mix (Eurogentec), 2ml of 10 mM pri-

mers (forward and reverse), 2ml of DNA template, and 1ml of

nuclease free water. The qPCR program was set for 40 cycles

containing a 10-s denaturation phase at 95 �C, annealing–

extension phase at 59 �C for 20 s and 72 �C for 25 s.

Results

RNA-Seq Data Processing

Between 197 and 320 million reads were produced after RNA

sequencing for each of the eight samples, representing male

and female adult progenies of biological duplicate crosses and

mirror crosses of a Brazilian (BRE) and Guadeloupian (GH2)

strain of S. mansoni (table 2 and fig. 1). After filtering reads

according to their quality Phred score, between 160 and 239

million (�80%) of them were kept for subsequent read map-

ping against S. mansoni’s reference genome v5.2 (Berriman

et al. 2009; Protasio et al. 2012). At least 90% of the filtered

reads were successfully mapped to the reference genome.

Because SNPs frequency reliability was essential to detect

allele-specific transcripts, potential PCR duplicates (�50% of

reads) were removed.

Identification of Parent-of-Origin Expressed Genes

SNPs Discriminating Parents
In this work, we benefited from 708,898 SNPs identified in the

Brazilian (BRE) and Guadeloupian (GH2) strains (Cl�ement et al.

2013). These two inbred strains display low nucleotide diver-

sity within each strain, but a high differentiation level between

Table 2

Number of Sequences Remaining after Each Bioinformatic Steps

Quality Filtering Q30 TopHat2 Mapping PCR Duplicate Removal

Crosses Sex Input Discarded Input Mapped Output

$ GH2 � # BRE M 203,732,076 43,590,513 160,141,563 144,201,576 64,795,806

(90%)

$ GH2 � # BRE M 278,553,568 62,102,488 216,451,080 197,048,330 84,039,096

(91.0%)

$ BRE � # GH2 M 249,198,708 54,496,632 194,702,076 179,194,594 81,242,489

(92.0%)

$ BRE � # GH2 M 237,406,392 52,577,939 184,828,453 169,678,849 79,231,052

(91.8%)

$ GH2 � # BRE F 197,048,594 34,868,591 162,180,003 147,618,963 76,799,603

(91.0%)

$ GH2 � # BRE F 226,038,046 42,007,698 184,030,348 167,729,763 86,451,322

(91.1%)

$ BRE � # GH2 F 231,467,876 57,694,047 173,773,829 159,153,208 80,775,575

(91.6%)

$ BRE � # GH2 F 320,963,252 81,771,733 239,191,519 220,417,355 103,756,971

(92.2%)
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them (mean Fst¼ 0.73) (Cl�ement et al. 2013). We selected

230,425 of those SNPs (32%) that were fixed and discriminant

between the two strains (“private” SNPs) (genome browser

available at http://genome.univ-perp.fr; last accessed February

16, 2018). Among these, 29,796 SNPs (13%) were found

across the transcriptome of the hybrid progenies. The majority

(56%) of these SNPs was situated in exons of known genes

(16,587 exons from 6,612 genes), while 13,209 (44%) were

situated in introns or nonannotated regions.

SNPs Expression between Replicates and Reciprocal
Crosses

We compared SNP expression patterns between replicates.

Between 70% and 77% of the SNPs had the same expression

patterns in biological replicates when attributed to one of the

three defined categories (i.e., biallelic, biased or monoallelic,

see description in Materials and Methods) (table 3). We thus

analyzed 10,665 SNPs for males and 14,412 SNPs for females

and compared their allele expression profiles between recipro-

cal crosses to distinguish strain-of-origin effects from parent-

of-origin effects (table 3). Among them, 5, 422 (51%) and

7,095 (49%) of the SNPs had a biallelic expression pattern for

males and females, respectively. In total, 128 (1%) and 1,063

(7%) SNPs showed a parent-of-origin expression pattern for

males and females, respectively. Others were either expressed

inastrain-of-originmannerorhadanonconcordantexpression

pattern between reciprocal crosses, representing 6% of all

SNPs (e.g., biallelic in one and biased in the other [table 3]),

which could be due to mitonuclear incompatibilities in the

hybrid crosses (Wolf 2009; Wolf et al. 2014). Indeed, this

type of incompatibilities is expected to be manifested and

may lead to aberrant gene expression patterns and/or loss of

imprinting in one direction of the cross (Wolff et al. 2014).

Parent-of-Origin Expressed Genes

We investigated whether SNPs with parent-of-origin patterns

were situated in known genes of S. mansoni. In males, 108

SNPs were located in the exons of 15 genes (in addition to one

mitochondrial) and expressed from the same parent in both

reciprocal crosses. Six different chromosomes were con-

cerned, with three genes on chromosomes 1, 2, and 4, and

one gene on the unplaced scaffold_0193 of chromosome 2,

the unplaced scaffold_0083 of chromosome 3, chromosome

5, ZW linkage group (Z-specific region), unplaced scaf-

fold_0138 and unplaced scaffold_0164. Most SNPs (n¼ 86)

were located in the same gene (cytochrome c oxidase I) of the

mitochondrial genome of maternal inheritance and thus pro-

viding an internal control as they had a strictly maternal ex-

pression pattern (table 4). Among the 15 genes in males, one

displayed monoallelic expressed SNPs from the maternal al-

lele, while 14 genes showed parentally biased SNPs in equal

proportion between the mother’s (n¼ 7) and the father’s al-

lele (n¼ 7) (table 5).

In females, SNPs showing consistent parent-of-origin ex-

pression were found in exons of a total of 378 different genes.

Among these, 278 genes had SNPs with a strict paternal ex-

pression and were known to be located in Z-specific regions

(i.e., ZW linkage group: position 3550000–13340000,

13860000–19650000, and 23230000–30820000 of the

v5.2 assembly [Protasio et al. 2012]) (supplementary table S1,

Supplementary Material online), which is consistent with the

heterogametic status of female schistosomes. Indeed, hetero-

gametic female schistosomes inherit their W chromosome

from the mother and the Z from the father: Such patterns

provided again an internal control validating the accuracy of

our method for the detection of parent-of-origin genes. Z-spe-

cific genes were therefore not considered in further analysis.

Additionally, 92 genes located on 22 individual unplaced

scaffolds (including Chr_1.unplaced. SC_0034 and

Chr_3.unplaced. SC_0192) contained SNPs with a paternal

expression pattern (supplementary table S1, Supplementary

Material online). We thus considered them as potentially

Z-specific and verified their status in the four biggest unplaced

scaffolds containing the larger amount of genes, for unique

(ZW) or double copy (ZZ) of genomic DNA in males and

Table 3

Summary Information of SNPs Recovered in the Transcriptomic Data and Associated SNPs Expression Patterns

Parental Discriminating

SNPs in Transcriptome

Categorized

SNPs between

Replicates

Number of

SNPs in

Reciprocal

Crosses

Biallelic

SNPs

Strain-of-

Origin

SNPs

Parent-of-

Origin SNPs

Other

SNPs

M: $ GH2 � # BRE 29,796 20,273 13,333 10,665 5,422 4,422 128 693

M: $ GH2 � # BRE 23,509 (70%)

M: $ BRE � # GH2 24,731 16,455

(51%) (41%) (1%) (6%)

M: $ BRE � #GH2 24,966 (72%)

F: $ GH2 � # BRE 25,092 17,595 14,412 7,095 5,455 1,063 799

F: $ GH2 � #BRE 26,286 (74%)

F: $ BRE � # GH2 27,349 21,014

(49%) (38%) (7%) (6%)

F: $ BRE � # GH2 28,885 (77%)
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Table 4

Functional Annotation of Genes Containing Parent-of-Origin Expressed SNPs

Chromosomes Number of

Genes with

Parental

SNPs

Genes or

Position

Number of

Discriminant

SNPs with a

Parent-of-Origin

Expression

SNPs

Positions

Origin SNPs

Expression

Pattern

Genes

Function

Males

Chr_1 3 Smp_151660 1 2817123 $ Biased Putative uncharacterized protein

Smp_128980 7 21888575

21888786

21888843

21888966

21889671

21890143

21890705

$ Monoallelic Aminomethyltransferase

Smp_083130 2 39963130

39963183

$ Biased Beta1, 3-glucuronyltransferase I

Chr_2 3 XLOC_009689

(10176395–10178030)

1 10177131 # Biased Endonuclease-reverse transcriptase

Smp_169030 1 17479792 # Biased Probable asparagine–tRNA

mitochondrial

Smp_147330 1 19943769 # Biased Probable ATP-dependent RNA heli-

case dhx34

Chr_2.SC_0193 1 Smp_171530 1 63337 # Biased Beta Parvin related

Chr_3.SC_0083 1 Smp_168560 1 661857 $ Biased Steroid dehydrogenase

Chr_4 3 Smp_149950 1 3351765 $ Biased Bifunctional coenzyme a synthase

XLOC_015537

(18626181–18631701)

1 18631541 # Biased Gag-pol polyprotein

Smp_131150 1 28344103 $ Biased Exosome component 10

Chr_5 1 XLOC_017885

(537474–540461)

1 538919 $ Biased Tpa: endonuclease-reverse

transcriptase

ZW linkage

group

1 Smp_171960 1 15939680 # Biased Dehydrogenase: reductase SDR fam-

ily 1

SC_0138 1 Smp_125620 1 248617 # Biased Coiled-coil domain-containing pro-

tein 60

SC_0164 1 Smp_094930 1 60425 $ Biased Early growth response protein 1

Mitochondria 1 XLOC_034755

(1–14415)

86 Not shown $ Monoallelic

(mitochondrial)

Cytochrome c oxidase subunit i

Females

Chr_1 5 Smp_034860 1 15501570 $ Biased Nuclear receptor 2dbd gamma

Smp_128970 1 21880758 # Biased Endonuclease-reverse transcriptase/

Inhibitor of growth protein 3

Smp_173620 1 30834128 $ Biased Transmembrane protein C9orf5/

Strawberry notch related

XLOC_001902

(39431891–39435207)

2 39435074

39435138

$ Biased Gag-pol polyprotein

Smp_154960 1 44621620 # Biased Putative cop-coated vesicle mem-

brane protein P24 Emp24/gp25l

family

Chr_2 2 Smp_142400 1 4664882 # Biased Bhlhzip transcription factor Bigmax

Smp_122810 2 31605145

31605184

# Biased Mechanosensory protein 2/

MEChanosensory abnormality

family member

Mitochondria 1 XLOC_034755

(1–14415)

24 Not shown $ Monoallelic

(mitochondrial)

Cytochrome c oxidase subunit i

NOTE.—The localization of the genes in known chromosomes or unassembled portion of S. mansoni’s genome for male and female adults is represented in this table. Number
of SNPs, parental origin, expression pattern, and functional annotation are also presented. Expressed genes detected in this study that were not in the current annotated regions
of S. mansoni’s genome version (v5.2) are mentioned as XLOCs as identified in the GTF transcriptome reference (Picard et al. 2016). Notice that for those genes, the genomic
position has been provided.
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females using a quantitative PCR approach (table 6).

Unplaced scaffold_0115 of the ZW linkage group

(Chr_ZW.unplaced.SC_0115), as well as the unplaced

scaffolds number 0111 (SC_0111), 0129 (SC_0129), and

0136 (SC_0136), were thereafter classed as Z-specific

(table 6). The other scaffolds were not validated by

qPCR but were considered as potentially Z-specific and

excluded from further analysis (supplementary table S1,

Supplementary Material online).

The remaining seven genes in females (in addition to one

mitochondrial) presented biased SNPs consistent with parent-

of-origin expression. Two distinct regions in the genome were

concerned, with SNPs located in five genes on chromosome

1, and two genes on chromosome 2. These genes contained

biased SNPs expressed from the maternal (n¼ 3) or paternal

(n¼ 4) alleles. And last, the “cytochrome c oxidase” was

identified again with 24 SNPs located in the gene and with

a maternal expression (tables 4 and 5).

Table 5

Number of Genes Containing Parent-of-Origin SNPs

SNP Patterns in Reciprocal Crosses Male Progeny Female Progeny Total

Genes with paternal monoallelic SNPs 0 0 0

Genes with paternal biased SNPs 7 4 11

Genes with maternal monoallelic SNPs 1 (þ1 mitochondrial) 0 (þ1 mitochondrial) 1

Genes with maternal biased SNPs 7 3 10

Total monoallelic 1 0 1

Total biased 14 7 21

Total genes with parent-of-origin expressed SNPs 15 7 22

NOTE.—Genes with parent-of-origin SNPs are categorized 1) according to their expression in male and female progenies and 2) according to their expression pattern (i.e.,
maternal or paternal, and monoallelic or biased).

Table 6

Quantitative PCR Results: Validation of Four New Z-Specific Scaffolds

Tested Scaffolds or Controls Target Positions Primer Sequences (50–30) Expected Product

Sizes (bp)

Primer

Efficiencies

Fold Changes

(female/male)

Chr_ZW (Z-specific control) 28071666–28072040 �TGTTATCAAACGCCCAGTGA- 375 1.8 0.47

�CGTTGAAAAGCCGAGTTTGT-

Chr_1 (autosome) 32740790–32741111 �CCTCACGAGGTACTCGAAGC- 322 1.8 1

�TATGGGACCTGCAACCTTTC-

Chr_ZW.unplaced.SC_0115 23140–23512 �CCTGCTTAGACCGCCTGTAG- 373 2 0.45

�ACTGTTTCGGCCGTAATGTC-

198332–198645 �TCGGTTGGTGTCTGATGGTA- 314 2 0.48

�CCACTGACCAATTTCCTCAAA-

729203–729462 �TCATCTGTCTCCCAGGCATT- 260 2 0.42

�GGCAAGAACATGACCGAGAT-

SC_0111 155978–156340 �GCTCCTCCATGTCCAACTCT- 363 1.8 0.44

�ACGCATTCGTAGCCGAGATA-

626009–626295 �GGCACCCTGTAAATTCATCC- 287 1.8 0.55

�CCTGCTTTTAGTTGCCCTGA-

1059389–1059655 �TGGATCCGAAAATTGTTTGTC- 267 1.8 0.46

�GTACCGCTTTCAAAACATGC-

SC_0129 99114–99482 �GATGTCAATGTGAGGCCAAA- 369 1.8 0.52

�GGCTACTCGTGTCCCGTAAG-

320296–320629 �GCTTAGGAATAAGCGGTTCG- 334 1.8 0.42

�AACGGCATAAATGGGTGAAT-

SC_0136 134667–134949 �TCGATAATCCCATGCACTCA- 283 1.8 0.41

�CCTTCATGAAAAACAGGGAAA-

23063–23394 �AAAAGAACGCTTCACCGAAA- 332 2 0.45

�TGAATCGTGCTGATTCTCCA-

NOTE.—Two control regions were used with one in a known Z-specific region (see Protasio et al. 2012) and one in an autosomal region. Three primers were taken arbitrary in
the unplaced scaffolds to be tested. The target positions, primer sequences, as well as the expected product sizes, primer efficiencies and female/male fold changes are presented
in the table.
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Function of the Parent-of-Origin Expressed Genes

The majority of genes identified with a parent-of-origin SNP

expression in male and female schistosomes (table 4) had bi-

ological processes involved in metabolism, growth, and devel-

opment. We furthermore identified putative genetic mobile

elements of unknown functions. Two types of expression

patterns were observed with 1) either the expression of pa-

ternal SNPs in males and maternal SNPs in females, or 2) the

opposite feature with paternal SNPs expressed in females or

maternal SNPs expressed in males. Interestingly, most of the

genes concerned with these SNPs expression patterns were

related to developmental pathways and therefore potentially

related to sex-specific and dimorphic phenotypes.

Is first described in this section the function of genes pre-

senting SNPs expressed from the parent of the same sex in

progeny. In males, seven genes with paternally expressed

SNPs were identified. Among those, we pinpointed the puta-

tive ATP-dependent RNA helicase dhx34 (Smp_147330) pro-

tein-coding gene, which is part of the DEAD box proteins

family, conserved in metazoan they are known for their im-

plication in embryogenesis, spermatogenesis, cellular growth,

and division (Godbout and Squire 1993; Johnstone et al.

2005; Matsumoto et al. 2005). Its ortholog in

Caenorhabditis elegans (smgl-2) is critical for muscle develop-

ment (Williams and Waterston 1994). Furthermore, such hel-

icases are part of a complex called the “compensasome”

because they mediate dosage compensation mechanism

(Sanju�an and Mar�ın 2001) in other organisms. The Beta-

Parvin related gene (Smp_171530) is essential during embryo-

genesis in other organisms (Zhang et al. 2004; Montanez

et al. 2009) and its ortholog in C. elegans is required for mus-

cle assembly and function, while mutation of the gene leads

to embryonic lethality. The coiled-coil domain-containing pro-

tein 60 (Smp_125620) potentially involved in protein demeth-

ylation and protein–protein interactions is also thought to be

important for embryonic development in vertebrates, with an

identified role in the dorsoventral axial establishment of zebra-

fish (Wei et al. 2016). A dehydrogenase reductase sdr family

member gene (Smp_171960) has also been identified and

interestingly a previous association study has shown a pater-

nal parent-of-origin effect of that gene on language impair-

ment (Nudel et al. 2014). At last three genes were identified

with paternally expressed SNPs, one being a probable aspar-

agine tRNA mitochondrial coding gene (Smp_169030) and

has been related to developmental diseases in humans

(Sofou et al. 2015; Vanlander et al. 2015), while two are

genetic mobile elements with an endonuclease or endopep-

tidase activity (XLOC_009689 and XLOC_015537).

In females, the genes with maternally expressed SNPs iden-

tified had functions linked to development and female specif-

icities. The most relevant gene that can directly be related to

female-specific phenotypes was the nuclear receptor 2dbd

gamma gene (Smp_034860). It contains a domain similar to

the ligand-binding domain of C. elegans nuclear hormone

receptor Sex-1 protein. This transcription factor plays pivotal

role in sex fate of C. elegans by regulating the transcription of

the sex-determination gene xol-1, which specifies male fate

when active and hermaphrodite fate when inactive (Carmi

et al. 1998; Farboud and Meyer 2006). Other genes related

to developmental pathways were identified such as the

“Strawberry Notch related” gene (Smp_173620). Notch

genes encode for transmembrane proteins and have con-

served functions in developmental pathways. They are re-

quired during embryogenesis and oogenesis in Drosophila

and zebrafish (Coyle-Thompson and Banerjee 1993;

Majumdar et al. 1997; Takano et al. 2010).

At last, a genetic mobile element (XLOC_001902), identi-

fied as a gag-pol polyprotein, was maternally expressed in

schistosome females.

The analysis of SNPs with opposite expression patterns in

males and females (i.e., from the parent of opposite sex) also

revealed genes potentially involved in male and female devel-

opmental pathways but may also be relevant in a coevolution

context between sexes. Concerning maternally expressed

SNPs in males, eight genes were identified including one

with monoallelic expressed SNPs (Smp_128980). This amino-

methyltransferase gene is nuclear-encoded but confined to

the mitochondria and is involved in glycine metabolism.

Also, mainly present in the mitochondrial matrix, we identified

the Bifunctional coenzyme A synthase gene (Smp_149950).

This last gene predicted to be involved in ATP-binding activity

and dephospho-CoA kinase activity has an ortholog in

C. elegans (Y65B4A.8), which seems involved in embryo de-

velopment, feminization of hermaphroditic germ-line, germ

cell development, nematode larval development, regulation

of cell proliferation, and regulation of meiotic nuclear division

(Kerins et al. 2010; Waters et al. 2010).

Other genes with maternally biased SNPs in males were

identified. The “putative Beta1-3 glucuronyltransferase”

(Smp_083130) which is involved in carbohydrate metabolic

process is mainly expressed in the brain of Drosophila and is

involved in the growth of peripheral nerves during larval

development (Pandey et al. 2011). In C. elegans sqv-8 (homol-

ogous to three distinct glucuronyl transferases [GlcAT-I,

GlcAT-P, and GlcAT-D]), which encodes a glucuronyl transfer-

ase, is required for one-cell embryos and for vulval morpho-

genesis. Sqv mutants have a vulval defect, but also an oocyte

and somatic gonad defect, resulting in hermaphrodite sterility.

Moreover, some sqv mutations cause maternal-effect lethality

(Herman et al. 1999; Bulik et al. 2000) It has also been shown

that glct-6 (another Beta1-3 glucuronyltransferase ortholog in

C. elegans) is involved in determination of adult lifespan (Kim

and Sun 2007). The “exosome component 10” gene

(Smp_131150), also known as “polymyositis scleroderma

autoantigen” in humans, is a cell death-related nuclease,

that is required for DNA degradation during apoptosis. It is

also thought to participate in dosage compensation
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mechanism by inactivation of the X chromosome. Indeed, in

mouse, a specific nuclear component of the exosome

(Exosc10) gene involved in mRNA degradation pathways leads

to downregulation of spliced Xist transcript production and

blocks the onset of the X-inactivation process (Ciaudo et al.

2006). The transcription factor gene “Early growth response

protein 1” (Smp_094930) targeting important genes for nor-

mal development and differentiation (Silverman et al. 1998;

Pagel and Deindl 2011) may also play an important role in

Schistosoma blood flukes development. Finally, a Steroid de-

hydrogenase gene (Smp_168560) was detected with a ma-

ternal SNPs expression in males. Interestingly, steroid

dehydrogenase pathway was also found overrepresented in

male schistosomes from cercariae to adult stages (Picard et al.

2016). In C. elegans, some ortholog genes to Smp_168560

were found (stdh-4, stdh-1, and let-767) they encode for a

putative steroid dehydrogenase and expressed not only in

larval and adult pharynx (stdh-4) but also in larval intestine,

and in both larval and adult body wall muscle and neurons

(stdh-1) and is required for normally short lifespan. The

ortholog gene let-767 is particularly important for C. elegans

development, as it is required for embryogenesis, and female

reproduction. This gene is zygotically expressed in the intes-

tine, but a maternal-effect lethal allele (let-767 [s2464]) also

exists, indicating that LET-767 is probably provided maternally

which is consistent with our maternal expressed SNPs identi-

fied. Mutations in this gene cause abnormal embryonic devel-

opment, slow growth and small adult body size as well as a

failure to mature gonads and last an hypersensitivity to low

cholesterol (Kuervers et al. 2003). Other genes with opposite

expression patterns in males and females could not be asso-

ciated to any known functions (Smp_151660) or were pre-

dicted as a genetic mobile element with an endonuclease

activity (XLOC_017885).

In females, five genes were found containing SNPs

expressed from the paternal allele. Among them, one gene

exhibited a monoallelic expressed SNP, while the four others

contained biased SNPs. In this last situation we identified an

uncharacterized protein-coding gene (Smp_128970), con-

taining PHD finger domains, related to the “inhibitor of

growth protein family” which has been implicated in

chromatin-mediated transcriptional regulation in C. elegans

embryo and is therefore potentially important for schistosome

development (Luo et al. 2009). Other genes were involved in

not only protein and vesicle-mediated transport

(Smp_154960) but also transcriptional regulation of develop-

mental pathways (Smp_142400) (Steingr�ımsson et al. 1998;

Hallsson et al. 2004; Hsu et al. 2004) and mechanosensory

response (Smp_122810) (Huang et al. 1995).

Discussion

Parent-of-origin gene expression has been studied in

mammals, plants, and some invertebrates (da Rocha and

Ferguson-Smith 2004; Arico et al. 2011; Ferguson-Smith

2011; Macdonald 2012; Kocher et al. 2015), and aberrant

expression in gene subject to imprinting has severe conse-

quences, mainly on development and growth (Tycko and

Morison 2002). The term imprinting was first used to describe

the elimination of an entire paternal chromosome in sciara

flies (Crouse 1960) and refers to the entire heterochromatiza-

tion (silencing) of the paternal genome in the soccid mealy-

bug, which is involved in maleness determination (Khosla

et al. 2006). In addition to the kinship theory of genomic

imprinting (Haig 2000), another interesting alternative expla-

nation proposes that imprinting may be related to a mecha-

nism for the resolution of intralocus sexual conflict and may

be important for traits under sex-specific selection (Day and

Bonduriansky 2004; Bonduriansky 2007). This sexual antago-

nism theory involving male and female coevolution has the

potential to act differently for each sex (sex-specific imprint-

ing) and predicts that imprinting may affect organisms with

sexual dimorphism (Bonduriansky 2007) as it is the case in

schistosomes adult parasites. For that reason, we have inves-

tigated S. mansoni transcriptome for parent-of-origin gene

expression considering intralocus sexual conflicts and sexual

antagonism. We have identified genes containing SNPs

expressed in a parent-of-origin manner and even if larger scale

parent-of-origin gene expression in this species could not be

addressed here we argue that regarding to the function of the

genes concerned by these pattern, they have the potential to

explain sexual differences in schistosome parasites.

A total of 1,191 SNPs were identified as expressed in a

parent-of origin manner in male (128 SNPs) and female

(1,063 SNPs) adult schistosomes (table 3). These parental

SNPs were located in 15 genes in males (in addition to the

cytochrome c oxidase) and in 378 genes in females. As

expected, the mitochondrial cytochrome c oxidase gene

was also detected with a maternal expression in both sexes,

thus providing validation of our methodology. In females,

these parental expressed SNPs also revealed as expected

278 known Z-specific genes expressed exclusively from the

paternal allele (monoallelic SNPs expression), which is consis-

tent with the schistosomes female heterogametic situation.

Furthermore, in females, 92 genes situated on 22 unplaced

scaffolds were found with a paternal expression pattern. We

hypothesized that they might be related to Z-specific loci and

tested the four biggest unplaced scaffolds containing the ma-

jority of paternal expressed genes using a quantitative PCR

approach. This allowed us to identify four new Z-specific ge-

nomic regions (unplaced scaffold 0115 of the ZW linkage

group, unplaced scaffold 0111, 0129 and 0136, table 6).

We believe that other unplaced scaffolds are potentially Z-

specific and need further validation (supplementary table

S1, Supplementary Material online).

A total of 22 genes showing expressed SNPs consistent

with parent-of-origin expression were identified in reciprocal

cross duplicates of female (seven genes) and male (15 genes)
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adult schistosomes. These genes only contained few SNPs

consistent with parental expression and the majority of

them was biased rather than monoallelic. Notwithstanding,

in males gene “Smp_128980” contained seven monoallelic

SNPs expressed from the maternal allele and gene

“Smp_083130” contained two biased SNPs expressed from

the maternal allele, while in females two biased SNPs were

identified in XLOC_001902 and Smp_122810 expressed from

the maternal and paternal alleles, respectively (table 4). This is

probably the consequence of the poor amount of discrimi-

nant SNPs from which we have based our analysis and there-

fore hampers our ability to confirm any existing imprinting at

the whole gene level in this species. Another consideration

comes from the fact that imprinting may be tissue specific and

that working with whole adult worms may mitigate the

resulting expression patterns found in this work. Moreover,

in the present experimental design the adult worms recovered

from single-sex infections present an immature phenotype

(especially for female worms that rely on males for their mat-

uration), which may have biased the expression and hamper

the detection of further imprinted genes. Nevertheless, the

genes identified with these parent-of-origin expressed SNPs in

males and females had interesting functions related to sex-

specific phenotypes and sexual dimorphism in this species and

share interesting common relations with parent-of-origin

genes expression theories.

If we base our reflection on the kinship theory (Haig 2000)

defined by parental conflict over resource allocation and off-

spring fitness, we would of expected to find an impact of

gene dosage on the fitness of matrilineal or patrilineal rela-

tives. Moreover, usually schistosome couples are monoga-

mous, but mate change can occur among these parasites

(Tchuem Tchuent�e et al. 1996; Beltran and Boissier 2008,

2009) potentially causing a source of relatedness asymmetry

for matrigenes and patrigenes in offspring. For example, ma-

ternally expressed alleles would be selected to reduce the ex-

traction of resources and therefore reduce organism size,

while paternally expressed genes should favor taking more

resources from the mother and therefore induce growth.

Indeed males are much more muscular than females (i.e.,

sexual dimorphism), and sexual selection may favor large

body in males and the opposite in females, thus paternal

genes should be selected in males to extract resources at a

greater rate than in females. Schistosomes are oviparous

organisms therefore neither the paternal or maternal genome

can directly influence resource allocation after spawning. As

observed in this study for schistosomes, it is difficult to recon-

cile these predictions to the function of the genes identified in

this work except for genes that may influence growth and

development of offspring, but this may overlap with the func-

tions predicted by other models and in particular the sexual

antagonism theory.

A clear dimorphic trait found in adult males is their strong

musculature compared with the thin females. Interestingly we

identified genes containing SNPs expressed from the paternal

alleles that seem important for muscle development

(Smp_147330, Smp_171530, Smp_125620), which is clearly

predicted by the sexual antagonism theory. In some case,

mutations of orthologous genes in C. elegans lead to embry-

onic lethality (Smp_171530). Moreover, some of those genes

have been related to paternal parent-of-origin effects

(Smp_171960) (Nudel et al. 2014) and developmental dis-

eases in humans (Smp_169030) (Sofou et al. 2015;

Vanlander et al. 2015), which often find their cause in im-

printing defaults. Another interesting point may concern the

relationship with dosage compensation mechanism

(Smp_147330) as such helicases genes mediate dosage com-

pensation mechanism in other organisms (Sanju�an and Mar�ın

2001). In schistosomes, heterogametic (ZW) females need to

balance Z-linked transcript levels relative to homogametic (ZZ)

males (Vicoso and Bachtrog 2011; Graves 2016). These pre-

vious observations are consistent with the sexual antagonism

theory proposed by Day and Bonduriansky (Day and

Bonduriansky 2004; Bonduriansky 2007).

Maternal expressed SNPs found in male genes were in-

volved in development (Smp_149950, Smp_094930), with

embryogenesis and reproduction (Smp_168560) but also

growth (Smp_083130). In C. elegans let-767 (orthologous

to Smp_168560) is zygotically expressed in the intestines,

and mutations in this gene cause abnormal embryonic devel-

opment, slow growth and small adult body size as well as a

failure to mature gonads and last a hypersensitivity to low

cholesterol (Kuervers et al. 2003). Other mutations of C. ele-

gans orthologous genes (sqv genes orthologous to

Smp_083130; let-767 orthologous to SMP_168560) cause

maternal-effect lethality (Herman et al. 1999; Bulik et al.

2000) indicating that they are probably provided maternally

in C. elegans, which is similar to our observations in schisto-

somes. This may suggest that the maternal genome largely

contributes to male phenotypes and is probably also indis-

pensable for proper schistosome development. Moreover,

we identified a probable candidate gene (Smp_131150, exo-

some component 10) known to be involved in dosage com-

pensation mechanism in mouse (Exosc10) as it leads to

downregulation of spliced Xist transcript production and

blocks the onset of the X-inactivation process (Ciaudo et al.

2006). This seems to indicate a strong coadaptation between

sexes in schistosomes. Moreover, consistent with such coad-

aptation we identified in males two genes (Smp_128980,

aminomethyltransferase, containing maternal monoallelic

SNPs together with the Bifunctional coenzyme A synthase

gene [Smp_149950] containing maternal biased SNPs) that

are mainly confined to the mitochondria. This may underlie

coevolved complexes between the maternal inherited mito-

chondrial genome and nuclear maternally expressed genes in

males, and therefore male and female coadaptation.

Cytonuclear interacting genes seem important in the evolu-

tion of genomic imprinting (Wolf 2009). Such genes are
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important in a coevolution context between sexes because it

may allow stronger coadaptation between the maternal

inherited mitochondrial genome and the expression of mater-

nal nuclear alleles in males (Beekman et al. 2014).

In females, we identified genes involved in developmental

pathways (Smp_173620), embryogenesis and oogenesis and

also in transcriptional regulation of embryo development and

animal reproduction (Smp_142400). Others were related not

only to protein and vesicle-mediated transport (Smp_154960)

but also to mechanosensory response (Smp_122810) (Huang

et al. 1995). Interestingly, we identified an uncharacterized

protein-coding gene (Smp_128970), which seems to play a

role in chromatin-mediated transcriptional regulation, and

also contain a PHD finger domain, related to the “inhibitor

of growth protein family.” This gene found in females has

SNPs expressed from the paternal allele and together with

other genes expressed from the paternal allele in females

may once more allow a better coadaptation between sexes.

Indeed, the paternal genome may influence the transcrip-

tomic profile of females in order to increase the adaptive in-

tegration of offspring and the paternal genome leading to

higher female’s fitness. This observation is also consistent

with the sexual antagonism theory, but rather than expressing

male- or female-specific coding genes in the same sexes, it

shows that the opposite parent may influence the phenotype

of the progeny in order to stick with its own sexual features

(e.g., Smp_128970; inhibitor of growth protein family

expressed from the paternal allele in females potentially tends

to reduce females size which is one important dimorphic trait

representative of schistosome sexual features). This again

shows how difficult the patterns observed in our organism

can be reconciled with any particular model on the evolution

of parent-of-origin gene expression and be nonexclusive.

Importantly, this also suggests that parent-of-origin gene

expression or imprinting may occur in systems that have pre-

viously not been the focus of research because of the absence

of conflict over maternal investment, but that imprinting shall

be present in organisms where coadapted traits may have

fitness effects for progeny (Wolf and Hager 2006). This theory

described in the maternal–offspring coadaptation theory

(Wolf and Hager 2006), in any case does not reject the pos-

sibility of having coadaptation between paternal and offspring

traits (Wolf and Hager 2006). Therefore, we may have stron-

ger coadaptation between the paternal genome and off-

spring in schistosomes rather than relative to the maternal

genome. Thus, the maternal–offspring coadaptation theory

may not be obvious in schistosomes and this may be a reason

why we do not observe any particular features predicted by

this model. Furthermore, this is plausible considering the

strong influence that male schistosomes have on their

female’s fitness (Popiel 1986; Boissier and Mon�e 2001; Lu

et al. 2016). An example of such coevolution at the pheno-

typic level can be observed from the fact that the male schis-

tosomes continuously feed the female via the tegument and

that female cannot reach sexual maturity without pairing with

a male (Popiel 1986; Beltran and Boissier 2008). In order to

explain the monogamous mating system of schistosomes it

has been proposed that prezygotic paternal investment (trans-

port of the female to the oviposition site, female maturation,

and feeding) is higher than maternal investment (Beltran and

Boissier 2008) in contrast with other models on which imprint-

ing has been studied. Second, it is well established that the sex

ratio is male-based making the male the more competitive sex

(Boissier and Mon�e 2000; Mon�e and Boissier 2004; Beltran

and Boissier 2010).

At last in females the genes expressed from the maternal

allele once more provide interesting elements concordant

with the sexual antagonism theory. Indeed, some had partic-

ular conserved functions in developmental pathway

(Smp_173620; Strawberry Notch related) and required during

embryogenesis and oogenesis in other organisms (Coyle-

Thompson and Banerjee 1993; Majumdar et al. 1997;

Takano et al. 2010). Moreover, we identified a gene with a

maternal biased SNP in females (Smp_034860) containing a

domain similar to the ligand-binding domain of C. elegans

nuclear hormone receptor Sex-1 protein. It is used as an

X-chromosome signal that determines nematode sex and

may also play a role in dosage compensation mechanisms

(Carmi et al. 1998; Farboud and Meyer 2006). As the molec-

ular determinants of sex determination are not yet known in

schistosomes besides that it is genetically determined during

egg fertilization, this gene seems to be an interesting candi-

date to explore.

Why Is Parent-of-Origin Expression an Interesting
Phenomenon to Explain Gonochorism and Sexual
Dimorphism in Schistosomes and May Need Further
Consideration?

As seen, most of the expression patterns observed in this work

are difficult to reconcile with all predictions made by the dif-

ferent models of the evolution of genomic imprinting, namely

the kinship theory (Moore and Haig 1991; Haig 2000), the

maternal–offspring coadaptation theory (Wolf and Hager

2006), and the sexual antagonism theory (Day and

Bonduriansky 2004; Bonduriansky 2007). Nevertheless re-

garding sexual dimorphism, we have mainly focused here

on patterns predicted by the sexual antagonism theory. Day

and Bonduriansky predicted in their sexual antagonism theory

(Day and Bonduriansky 2004) that sex-specific imprinting may

occur, and in combination with sexually antagonistic selection

result in sexual dimorphism. Studies have clearly shown that

some parentally expressed genes are expressed in a sex-

specific manner and might be at the base of sexual dimor-

phism and differences in behavior like, for example, maternal

care (Gregg et al. 2010), but also have effects on complex

traits (Hager et al. 2008). Sex-specific parent-of-origin expres-

sion in adults can thus contribute to transcriptional differences
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leading to morphological and or physiological changes at the

base of male and female adult phenotypes in contrast with

the schistosomes morphologically indistinguishable larval

stages. Therefore, sex-specific imprinting would allow males

and females to approach their phenotypic optima and may

contribute to the evolution of sexual dimorphism

(Bonduriansky 2007). In this work, we highlighted interesting

elements concordant with such predictions.

First, most of the genes identified have functions related to

development and sex-specific functions. As we know that

schistosomes have evolved from hermaphroditic ancestors,

both sexes have therefore obligatorily coevolved and

parent-of-origin gene expression may allow stronger coadap-

tation between sexes as seen previously. Second, gonochor-

ism is thought to have appeared with the colonization of

warm-blooded species (Loker and Brant 2006). The diversity

generated by sexual reproduction was proposed to allow the

parasite to counter vertebrate’s immune system. Moreover,

sexual dimorphism is essential for schistosomes and allows

male and female schistosomes to have complementary roles

in the definitive hosts (Basch 1990). Indeed, males are much

more muscular than females (i.e., sexual dimorphism), and

sexual selection may favor large body in males and the oppo-

site in females. It is interesting to consider that parent-of-

origin expression may have allowed sexual reproduction main-

tenance in order to generate diversity in these species, as

imprinting defaults can have detrimental effects in other

organisms (Swales and Spears 2005) and cause embryonic

lethality. Furthermore, it might have contributed to the evo-

lution of sexual dimorphism as proposed by Day and

Bonduriansky’s predictions (Day and Bonduriansky 2004). At

last, the identification of genetic mobile elements with

parent-of-origin expressed SNPs is also an interesting point

as it has been shown that imprinted regions tend to show

significantly more transposon insertions or more generally,

retroviral repeats, than other regions (Pignatta et al. 2014).

Thus, imprinting in schistosomes could also be the side effect

of host defense mechanism against foreign DNA (McDonald

et al. 2005) that was thereafter selected because of its adap-

tive significance. It has recently been shown that “captured”

genes of retroviral origin (Syncytins) have sex-dependent

effects in mice, and that they are involved in the development

of the placenta in females, and have a role in muscle devel-

opment in males (Redelsperger et al. 2016). This again under-

lies a possible contribution of imprinted genes to sexual

dimorphism in schistosome parasites.

Conclusion

Schistosomes are diploid metazoan parasites with separate

sexes, thus the maternal and paternal genomes are thought

to contribute equally to the fitness of their offspring. In this

work, we explored the transcriptome of male and female

adult worms to search for parent-of-origin expressed genes.

It allowed us to not only identify new Z-Specific loci but also

detect genes containing SNPs consistent with parent-of-origin

patterns. Because of the poor amount of SNP markers avail-

able, we cannot conclusively affirm that imprinting exists at a

larger scale in this species, but suggest that it needs further

considerations. Interestingly, in males and females an impor-

tant number of genes identified with parent-of-origin SNPs

are related to developmental processes such as embryogene-

sis, spermatogenesis, and oogenesis and may act as funda-

mental contributors to male and female phenotypes and

more specifically to sexual dimorphism. Other genes related

to dosage compensation mechanisms also seem important

for sex-specific phenotypes, especially in males, and the iden-

tification of the Sex-1 protein gene ortholog found in females

is an important candidate to explore the molecular bases of

sexual determination in schistosomes. We propose that

parent-of-origin gene expression may be a mechanism allow-

ing to mitigate conflict linked to parenthood and potentially

solve intralocus sexual conflict in this species as it has been

proposed from Day and Bonduriansky’s sexual conflict theory,

defining imprinting as a mechanism for the evolution of sex

specific traits. In schistosomes, it is appealing to think that if

imprinting exists in this species, it may coincide with the shift

from hermaphroditism to gonochorism and thus may be at

the base sexual reproduction and sexual dimorphism mainte-

nance. Importantly, future studies on parent-of-origin expres-

sion in schistosomes should address the question of the

underlying molecular mechanisms. Indeed, the imprinting by

the usual mechanism of DNA methylation could be contro-

versial in this species for which such mechanism is still under

debate (Raddatz et al. 2013); therefore other epigenetic

actors will have to be explored, such as histone modifications.

Growing evidences show that chromatin modifications are

indeed involved in schistosomes development (Roquis et al.

2015), moreover in a sex-specific manner (Picard et al. 2016).

Another interesting perspective would be to look for parental

biased expression in the nondifferentiated cercarial stage.

Finally, by detecting genes with strain-specific expressions,

our unprecedented analysis opens new perspectives to under-

stand hybridization mechanisms in schistosomes and thus on

the disease dynamics, including interspecific interactions in

the context of the modification of species geographical distri-

bution due to climate change (Boissier et al. 2016).
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