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Highlights
Nonlinear mixed-effect modeling is
currently the most successful methodol-
ogy used to characterize the PK/PDdata
from different individuals.

Stochastic modeling approaches deserve
consideration for use in model-informed
drug discovery and development be-
cause events occurring at random can
have important repercussions on dis-
ease progression and treatment effects,
especially when population size is small.

Stochastic models can also help in
The model-informed drug discovery and development paradigm is now well
established among the pharmaceutical industry and regulatory agencies.
This success has been mainly due to the ability of pharmacometrics to bring
together different modeling strategies, such as population pharmacokinetics/
pharmacodynamics (PK/PD) and systems biology/pharmacology. However,
there are promising quantitative approaches that are still seldom used by
pharmacometricians and that deserve consideration. One such case is the
stochastic modeling approach, which can be important when modeling small
populations because random events can have a huge impact on these systems.
In this review, we aim to raise awareness of stochastic models and how to
combine themwith existingmodeling techniques, with the ultimate goal ofmaking
future drug–disease models more versatile and realistic.
the refinement of the original structural
PK/PD model.

Deterministic systems have a greater
mathematical simplicity, are computa-
tionally less demanding, and parameter
estimation is well established with a
large existing toolkit to help with model
fitting and simulation.

Coronavirus disease 2019 is the most
recent application where researchers
are building such models to describe
the spread of this disease in the
population.
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Mathematical Modeling and Simulation in Drug Development and Patient
Management
Current drug discovery and development is a long and complex process associated with a high
attrition rate, resulting in an unacceptable cost–benefit ratio for the drug industry. This fact
motivated the emergence of a strategic initiative by the US Food and Drug Administration (FDA)
in 2004, the Critical Path Initiative, with six broad topic areas, one of whichwas devoted to promote
mathematics, statistics, and computational analysis within the drug development and regulatory
review process [1]. This represented the first step towards the current Model-Informed Drug
Discovery and Development (MID3) paradigm that nowadays includes the disciplines of
pharmacometrics (see Glossary) and systems pharmacology (PSP). From a high-level
perspective, PSP involves integrating and quantitatively linking all types of information, methodolo-
gies and tools associated with the development of mechanistic models of biological/physiological
processes, and pharmacology that can help in our understanding and prediction of drug response
in patients. The value of MID3 approaches in decision-making is evidenced by the large number of
related publications, recent examples of which can be found in [2–5]. In these examples, the reliabil-
ity and explanatory power of the models depend predominantly on the level of detail included and
the assumptions onwhich they are based. A combination of strategies is often the best way to pro-
ceed. Especially in pharmacometrics, quantifying themean tendency of a population using ordinary
differential equations (ODEs) is themost common procedure, but also finding ways of modeling the
variance of the data, which may be the result of extrinsic random events and/or sampling errors.
This is the case of nonlinear mixed-effects (NLME) models (more commonly known as population
PK/PD models), extensively used by the pharmaceutical industry and regulatory agencies to
analyze experimental and clinical data, allowing the optimization of trial designs and proposing dos-
ing paradigms to maximize treatment efficacy.

In general, the mathematical models defined in PSP are deterministic; that is, the trajectory of the
model components is fully determined by the parameter values and initial conditions of the
system and no changes can occur in the absence of external perturbations. However, disease
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Trends in Pharmacological Sciences
progression and real pharmacological processes are always subject to stochastic effects, such
as mutation acquisition leading to cancerous cells or to drug resistance [6,7], patient withdrawal
from a clinical trial, or the initial transmission of infectious diseases [8]. Such events occurring
at random can have important repercussions for disease progression and treatment effects
especially when the population size is small; in addition, ignoring these phenomena may affect
the estimation of PK/PD parameters and derived conclusions. Stochastic models are able to
capture this phenomenon by assuming that the dynamics of the system is partly driven by
random fluctuations. However, those models come at a price; they are generally computationally
more demanding and more arduous to fit to experimental data.

Our main goal with this review is to encourage the PSP community to consider the stochastic
strategy between the methodologies that are part of MID3 to evaluate their potential use in clinical
trial design and patient management. To this end, we first provide an overall description of the
deterministic and stochastic approaches (more extended for the case of the stochastic models
because they are less applied in the pharmacology arena) and the main differences regarding:
(i) model structure; (ii) simulation process; and (iii) data fitting. Then, we provide the most
significant examples found in literature for each approach and finish with a section dedicated to
nonlinear mixed-effects models and proposals to combine the different modeling perspectives.

Differences between Deterministic and Stochastic Modeling Approaches
Model Structure
The structure of a model mathematically describes the relationship between the variables in a
system. This relationship can be based on different formalisms ranging from qualitative strategies
to quantitative approaches. Here, we focus on the latter.

Quantitative models can be further divided into deterministic and stochastic systems. Deterministic
models are often described by a system of ODEs. Here, the output of the model is fully determined
by the parameter values and the initial conditions of the system, and no randomness is assumed to
be present. Thus, the outcome of a deterministic model is unique and attempts to represent the
average behavior of the system, which in many cases is a suitable representation of real biological
processes.

However, there are two key limitations in deterministic models: (i) they do not account for uncer-
tainty in model dynamics; and (ii) they are trapped in constant steady states that are not necessarily
steady when considering stochasticity. The first limitation can pose a practical problem because
biochemical processes are always exposed to stochastic effects and are intrinsically heteroge-
neous, meaning that proper data fitting to a deterministic model requires some interpretation of
real stochasticity. The second issue refers to the ability for randomness to produce spontaneous
transitions, causing a system to switch from one stable state to another. In fact, some models
posit that this ability of stochastic systems is fundamental to cell plasticity [9,10] and, hence, it
could be an important feature to consider for understanding cancer progression [11,12].

Stochastic processes assume that the dynamics of the system in every individual is partly driven
by random fluctuations (also known as process/system noise) and, hence, the same set of
parameter values and initial conditions can lead to different outcomes of the system. This
approach considers that each biological/pharmacological process is a random event that can
take place with a certain probability related to the properties of the components within the biolog-
ical system. Thus, the evolution of the system over time is dependent on a series of consecutive
probabilistic events. Consequently, the stochastic approach requires background in probability
theory. Themaster equation [13] is one fundamental mathematical description of this approach
Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11 883



Glossary
Adoptive cell transfer:
immunotherapy based on the isolation of
immune cells from patients with a tumor,
expanded in vitro and readministered to
mediate a tumor-specific response.
Basic reproduction number: average
number of infections caused by a single
individual in a full susceptible population.
Gillespie stochastic simulation
algorithm: a general method for
numerically simulating stochastic
processes that involves repeated
generation of random numbers.
Gompertz growth: growth models
used for modeling tumors growing in a
confined space with limited nutrients,
where ultimate depletion of nutrients will
eventually slow tumor growth.
Logistic model: growth model the net
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and it is obtained as a probability distribution for all the events that can occur during a very short
time interval (see Box 1 for an example). As can also be appreciated in the birth–death process
from Box 1, many deterministic models represent the average behavior of all possible stochastic
evolutions; that is, the differential equations of deterministic modeling can be nearly equivalent to
the differential equation that describes the time evolution of the mean of stochastic processes.

Model Simulation
Unfortunately, the analytical solution of a master equation is often intractable, especially if a large
number of components are involved. Instead of attempting to directly solve for the probability of
being in every state at a given time, numerical simulations attempt to sample many trajectories of
the stochastic system to gather enough information about the probabilistic properties. The most
common algorithm of this form is the Gillespie stochastic simulation algorithm (Gillespie
SSA), which provides exact simulations of possible trajectories of the master equation by using
standard Monte Carlo techniques that make random choices as the simulation progresses
[14]. However, the computational cost can be high for large biological systems because: (i) sim-
ulations must be repeated many times to reveal the complete range of behaviors of the system;
and (ii) every reaction event is individually simulated at each iteration of the algorithm.
growth rate of which decreases with
increasing tumor size, such that the
number of cells is given by an increasing
curve that converges on a maximum
size.
Markov process: stochastic process
in which the conditional probability
distribution over all future events
depends only on the present state and
not on its earlier history.
Master equation: system of ordinary
differential equations that describe the
temporal evolution of the probability
distribution of each state in a particular
stochastic system.
Maximum likelihood estimation:
procedure that determines values for the
parameters of a model by maximizing
the likelihood that the process described
by the model produces the data that are
actually observed.
Minimal residual disease (MRD):
describes the small number of cancer
cells that remains in the body after
cancer treatment.
Moments of a statistical
distribution: numerical characteristic
that describes the shape of a probability
distribution. The first moment refers to
the expected value or mean of the
distribution and the second moment
indicates the variance.
Pharmacodynamics (PD):
combination of all processes that
relate drug concentrations at the site
of action with the therapeutic effect of
the drug.
Pharmacokinetics (PK): combination
of all processes (absorption, distribution,
metabolism, and excretion) that
describe the concentration–time profile
of a drug in the body.

Box 1. Deterministic Model

Consider a cell population n where each cell gives birth to an offspring according to a constant birth rate β or dies accord-
ing to a certain death rate δ. Assuming that the population grows exponentially, then the ODE governing the exponential
growth of the population can be defined using Equation I:

dn
dt

¼ β − δð Þ � n ½I�

The analytical solution of Equation I is: n(t) = n0 · e
(β−δ )·t. This curve is fully determined by the birth and death rates and the

initial condition of the population n0: if the birth rate exceeds the death rate, β N δ, then the population size exponentially
increases, but when β b δ, it exponentially decreases toward zero.

Stochastic Model

To consider the stochastic version of the birth–death process, we need to define the master equation of the system as a
probability distribution for all the events that can occur during the time interval (t,t + Δt). Assume that the time interval Δt is
short enough so that only one of the following cases can exclusively occur: (i) a new cell is born with probability βΔt; (ii) the
cell dies with probability δΔt; and (iii) the cell neither gives birth nor dies with probability 1 – βΔt – δΔt. Now we need to cal-
culate the probability distributionPn(t), that is, the probability that the population size (the total number of cells in this case) is n
at time t, which is the sum of the probabilities of all the mutually exclusive events explained earlier and is given by Equation II:

Pn tþ Δtð Þ ¼ Pn tð Þ 1 – βnΔt – δnΔtð Þ þ Pn – 1 tð Þβ n – 1ð ÞΔtþ Pnþ 1 tð Þδ nþ 1ð ÞΔt ½II�

By letting Δt → 0, we obtain the master equation of the birth-death process (Equation III):

dPn tð Þ
dt

¼ β � n – 1ð Þ � Pn – 1 tð Þ þ δ � nþ 1ð Þ � Pnþ 1 tð Þ – βþ δð Þ � n � Pn tð Þ for n ≥ 1 ½III�

Equation III allows us to compute the average and variance population size values by solving the first and secondmoments
of the master equation using Equations IV and V:

Average : n ¼ n0 � e β − δð Þ�t ½IV�

Variance : Var n½ � ¼ n0 � β þ δ
β−δ

� e β − δð Þ�t � e β − δð Þ�t − 1
� �

½V�

We note that the analytic equation obtained for the average of the stochastic process is the same as the analytic equation
resulting from the deterministic model, although this is not necessarily the case for all stochastic models. Another aspect to
highlight is the dependence on time of the variance equation, which makes the variance of the process to increase over
time when β – δ N 0.
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Pharmacometrics: science of
developing and applying mathematical
and statistical methods to characterize,
understand, and predict the PK/PD
behavior of a drug.
Stochastic differential equations
(SDEs): differential equations the
coefficients of which are random
numbers or random functions of the
independent variable.
Systems pharmacology (PSP):
multiscale discipline that focuses on the
combination of the interactions among
multiple levels of biological organization
(molecules, cells, tissues, organs, etc.)
and basic principles of PK/PD as a
means to describe and predict
therapeutic and adverse drug effects at
the whole-organism level.
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In Figure 1, the use of Gillespie SSA to compute six stochastic realizations of the birth–death
process described in Box 1 is shown, together with the deterministic solution for two different
birth and death rate value combinations. While related, stochastic and ODE simulations can
show differences in behavior. First, in deterministic models, the number of cells never reaches
zero, but simply tends to zero as time goes to infinity. However, in the stochastic simulations,
the cells go extinct and there is considerable randomness associated with the time when this
occurs. The possibility that the population of cells can die out is an important feature of stochastic
models opposed to deterministic ones. Another point of divergence is that the stochastic process
depends explicitly on both the birth rate and the death rate, and not just on the net growth
rate (β − δ), as in the case of the deterministic model. As can be seen in Figure 1, the shape of
the curve is governed by the result of β − δ, but the variance of the process is also controlled
by β + δ (see the equations in Box 1), thus Figure 1B shows a greater degree of noise than the
Figure 1A. Table 1 provides a summary of the main differences between deterministic and
stochastic approaches.

In SSAs, discrete particle (molecules, cells, etc.) counts are considered rather than continuous
concentrations. Since the fluctuations/noise in the system only increase by the square root of
the particle number, as this number increases, the system becomes seemingly more determinis-
tic because stochastic fluctuations become negligible. Therefore, when the initial number of par-
ticles is high, using ODEs instead of stochastic processes will give very approximate results with a
smaller computational cost, because simulations of deterministic systems are easily performed
with the high number of numerical ODE solvers available. Re-interpreting the model from discrete
numbers of molecules to real concentration values gives rise to the Langevin equation, an exam-
ple of stochastic differential equation (SDE), which uses a Gaussian additive noise term and
which approximates the underlying random behavior of the model while being a continuous-
valued simulation like an ODE. Again, taking the limit as the number of molecules going to infinity
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 1. Six Realizations of a Stochastic Linear Birth-Death Process (Solid Lines) Together with the
Continuous Deterministic Solution (Dashed Line) Corresponding to an Exponential Function for Two
Different Birth (β) and Death (δ) Rate Combinations. Each combination has β – δ = –1 (arbitrary units) and an initia
number of cells of 50 [(A) β = 0 and δ = 1; (B) β = 4 and δ = 5]. N represents the total number of cells/molecules. The
stochastic realizations were computed using a self-coded stochastic simulation algorithm.
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Table 1. Main Differences between the Deterministic and Stochastic Approach

Character Deterministic Stochastic

Model structure Defined by analytic or ODEs Defined by a master equation or SDEs

Uncertainty in model
dynamics?

No, dynamics is fully determined by
parameter values and initial
conditions

Yes, the same set of parameter values and initial
conditions can lead to different results

Describes Average behavior of components in
a biological system

Stochastic effects that appear in biological
systems

Unique outcome? Yes No

Variance of process Variability can be introduced as
random effects in model
parameters

Is inherent to the system

Population may
become extinct in
mass action models?

No Yes

Rate constants Quantify the rate of specific
biological processes/reactions

Might be interpreted as the probability that a
biological process/reaction occurs in a very small
time interval

Model simulation ODE solver • Gillespie or Stochastic Simulation Algorithm: exact
method. Requires a probabilistic method involving
repeated generation of random numbers

• Tau-leaping: approximate and discrete-valued sim-
ulation method

• SDE solver: continuous approximation

Existing toolkit for
parameter estimation
and simulation

Large Small

Computational
expense

In general, computationally less
demanding than for stochastic
models

High

Examples • Exponential and logistic growth
model (see analytic equation from
Figure 1 in the main text)

• Susceptible–infected–recovered
(SIR) model [33]

• Branching process and Moran process (see Box 2
in the main text)

• Stochastic SIR models [8,54]

Trends in Pharmacological Sciences
on the SDE representation recovers the classical mass-action kinetics of ODE model behavior
[15].

Some stochastic simulation software tools exist for easier computation of these processes,
including StochSS [16], GillesPy [17], or COPASI [18], but numerous published studies of
stochastic process simulation in biomedicine are still accomplished using self-coded algorithms
in programming languages such as C++ due to the fast computing time needed. Recent
advances in this field have greatly reduced the computational complexity; the sorting directmethod
[19], composition-rejection SSA [20], and rejection-based SSA (RSSA) [21] tend to be orders of
magnitude faster than the traditional Gillespie SSA [22]. These more efficient methodologies,
along with the first adaptive methods for stiff stochastic differential equations, are implemented in
newer Julia-based stochastic simulation software tools, such as DifferentialEquations.jl [23].

Model Fitting
A model needs to be capable of describing the experimental data. Values of model parameters
are generally obtained using estimation techniques aimed at searching the model that minimizes
the difference between the observations and the predictions. Extensive research has been done
on numerical ODE solvers and advanced algorithms that allow for a straightforward estimation of
886 Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11
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parameters from deterministic models thanks to the development of easy-to-use tools [24].
Stochastic models introduce additional challenges due to their intrinsic stochasticity and,
therefore, there is a lack of tools for easily finding parameter estimates for such models. Although
a few frameworks, such as StochSS, exist to help users to automatically complete this task, many
studies found in literature treat the system as deterministic instead of stochastic when estimating
the parameters of the model to be able to use common procedures, such asmaximum likelihood
estimation [25]. In those cases, the estimates of the parameter obtained through the determin-
istic formulation may be plugged back into the stochastic model for the simulation of the sto-
chastic process [26]. A word of caution should be given for this practice since ignoring
stochastic phenomena in the modeling may affect the estimation of model parameters and
the derived conclusions. Furthermore, in deterministic models such as ODEs, small perturba-
tions in the solution can cause the system to converge to a separate steady state. Such lack of
robustness would lead to many trajectories in stochastic systems not matching the data, thus
assigning a low likelihood to that set of parameters. Thus, stochastic modeling can help with
the convergence of parameter estimation because it reduces the number of local minima
[27]. A formal discussion about the theory behind parameter estimation algorithms in stochas-
tic systems is beyond the scope of this review.

Even when estimating parameters in deterministic systems, the data will not fit perfectly to
the prediction of a model because there could be assay errors or because the model might
not be completely accurate. This discrepancy is usually accounted for by a residual error term
(i.e., measurement noise). However, only defining this source of uncertainty might not be enough
when modeling the data of different individuals. To account for a variation component in addition
to the residual error, a NLME approach can be adopted, which uses deterministic models to
characterize the dynamics of the systems and a stochastic strategy to add random effects to
model parameters. This methodology is discussed later.

Applications of the Two Modeling Approaches
Tumor growth inhibition models, frequently used to analyze the effect of anticancer agents in
oncology, are examples of deterministic models [28–31]. In these models, tumors are often
assumed to grow exponentially or following the so-called logistic curves or Gompertz law
[32] and the change in tumor size is generally explained by the cell growth minus tumor shrinkage
due to drug effects. Infectious diseases can be modeled by the popular susceptible–in-
fected–recovered (SIR) model [33], which study the spread of viruses by classifying individuals
as susceptible to the disease, infected, and recovered. Sizes in these classes change depending
on the fatality of the virus and the resources used to combat it. Variants of these models have
been proposed to model the spread of Coronavirus Disease 2019 (COVID-19) [34,35].

Those deterministic models provide good approximations of the growth of large populations,
but for small populations, it is important to analyze their inherent randomness because these
populations can go extinct due to random fluctuations, even in cases where the birth rate of
the population is greater than the death rate, something that is impossible when considering
deterministic models. That is why many authors have focused on the calculation of the probability
of extinction of a population [36–38]. For the birth–death process described in Box 1, the
probability of extinction of the cell population at time t is given by Equation 1 (see [39] for a
more exhaustive mathematical explanation):

P n tð Þ ¼ 0ð Þ ¼ −δ � e δ − βð Þ�t þ δ

−δ � e δ − βð Þ�t þ β

� �n0

½1�
Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11 887
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From Equation 1, we can see that, when t→∞ and β b δ,the probability of extinction will be 1 but

when t→∞ and β N δ, the probability of extinction becomes PðnðtÞ ¼ 0Þ∼
 
δ
β

!n0

, which means

that, for a small population size n0,we can obtain a probability of extinction of the process that
is different from 0. This property introduces the possibility of a complete cure of the patient if
the tumor cells become extinct because of the anticancer treatment. This can also be extrapo-
lated to infectious diseases, where estimation of the basic reproduction number [40] is crucial
because it determines the threshold between disease extinction and outbreak.

Another important characteristic of stochastic models is that the same initial conditions and
parameter values can lead to different steady states of the system. For example, in [38], the
authors propose a stochastic mathematical model for the analysis of adoptive cell transfer
immunotherapy against melanoma skin cancer where the treatment comprises the injection of
T cells that recognize a melanocyte-specific antigen and are able to kill differentiated melanoma
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 2. Logistic Growth Model. Six realizations of a stochastic logistic growth model (continuous blue lines) together with the deterministic solution (black dashed
line). N represents a population of cells/molecules, with an initial value N0, β is the birth rate value (1.2 arbitrary units in this example), δ is the death rate (equal to 1),
and K is the carrying capacity [equal to 500 in (A,B) and 5000 in (C,D)].
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cell types. Given that the number of T cells injected is low, the stochastic effects exerted by these
cells can be significant because, due to random fluctuations, the injected T cells can die out,
which leads to the growth of the differentiated melanoma cells. This behavior would not be
seen in the deterministic version of the same model because the immune cells would never die
due to stochasticity and explains why some patients respond to therapy while others do not.
The same behavior can be observed in the logistic growth model simulated in Figure 2: when
choosing a small initial population of cells, the SSA show two different steady-state values for
the model, one around the carrying capacity (K) and the other one in zero, because, due to
stochasticity, some of these cell populations could become extinct. However, when choosing a
larger initial population, even randomness is included, the number of cells never reaches zero.
Fluctuations also become less meaningful when the value of K increases, since the noise
increases by the square root of cell the number and, therefore, for long periods of time, it fluctuates

on a scale of
ffiffiffiffi
K

p
. This model behavior could be useful to characterize the minimal residual

disease (MRD) and how it can develop into the complete cure of the patient or into a relapse,
as demonstrated in [41], where the authors showed how random events in MRD may affect
the patient's fate. This work may aid clinicians in choosing treatment strategies that reduce the
risk of relapse.

Stochastic models have been widely used to model clonal evolution in growing tumors and the
evolution of resistance to anticancer drugs, which occurs when an initially sensitive tumor no
longer responds to treatment due to randomly generated (epi)genetic alterations in cancer cells
[6,42–44]. Here, discrete stochastic models describe cell growth and mutation acquisition by
defining probabilistic reaction rates of the respective events in the form of a Markov process.
Some of the most popular models in this context include branching processes [45–47], and
Moran processes [48] (Box 2). One example is research where the PK of erlotinib was linked to
the growth kinetics of drug-sensitive and drug-resistant nonsmall-cell lung cancer cell lines and
a branching process was used to explore the dynamics of these cells and the resistance to the
treatment [49,50]. Another example is the extension of the Moran process shown in [51],
where a new type of individual can become advantageous only if it manages to change environ-
mental factors. These models have been widely used to identify optimal dosing regimens that
minimize the total number of cancer cells or the probability of developing resistance [49,50,52].
Box 2. Branching Process

Branching processes are a class of stochastic models that describe the growth and composition of populations by stochastically reproducing individuals of the same or
different type [46]. Multitype branching processes are convenient for modeling clonal evolution of cancer cells because new (epi)genetic alterations emerge as random
events during cell division and give rise to tumor subclones with different fitness than their ancestors. Here, each cell is fully described by the cell-intrinsic birth, mutation,
and death rates (Figure IA). Apart from simulating the growth of heterogeneous cancer cell populations, the distinctive characteristic of these models compared with
deterministic approaches is that they allow the probability of developing resistance at any time after treatment initiation to be determined [72].

Branching processes can also be used to model infectious disease spread (Figure IB), where each subject infects a random number of individuals according to some
probability distribution. Here, giving birth corresponds to infecting someone and death corresponds to actual death, recovery, or isolation (no longer infectious). The
offspring mean in these models correspond to the basic reproduction number, which determines the average number of infections caused by a single individual in a
fully susceptible population and is a key factor in determining how fast an infection will spread in a population.

Moran Process

The Moran process, named after the Australian statistician Pat Moran, is a widely used stochastic model in population genetics [48]. In this model, the total population
size is fixed and stable coexistence of different cell types is impossible. At each time step, a cell is chosen to divide at random, but proportional to fitness. The chosen cell
produces a daughter cell that replaces another randomly chosen cell that dies. Thus, the total number of cells remains strictly constant (Figure IC). This model can be
useful not only to describe cancer initiation since the total number of precancer cells tends to be stable, but also as an attempt to include spatial considerations into the
stochastic process of selection and mutation [51,73]. Stochastic SIR models can also be thought as a special case of Moran process, because the population size is
always constant, but the number of susceptible, infectious, and recovered individuals varies depending on the transmission and recovery rates defined (Figure ID).

Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11 889
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Figure I. Schematic Representation of Branching and Moran Processes. (A) Schematic representation of a two-type branching process for modeling clonal
evolution of cancer cells where new (epi)genetic alterations emerge as random events during cell division and give rise to tumor subclones with fitness (birth and
death rates) different from that of their ancestors. (B) Schematic representation of a two-type branching process to characterize infectious disease transmission.
Here, contaminated but healthy individuals (blue color) infect a random number of individuals. Infected cases can be detected (red color) and isolated from the
population to stop spreading the virus. (C) Schematic showing a Moran process to describe clonal evolution where total population size is fixed. At each time step, a
randomly chosen cell divides and the daughter cell replaces another cell that dies. Hence, the total number of cells remains constant. (D) Schematic representation
of a stochastic SEIR (susceptible, exposed, infected, and no longer infectious) model where population size is always constant, but the number of individuals in each
group varies depending on the transmission and recovery rates defined     (A) and (C) are based on the figure from [74].
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.  
Another interest area is the use of stochastic processes to model infectious disease transmission
[53]. Here, it is vital to take stochasticity into account in the initial epidemic growth because
chance can have the most important role when the number of infectives is small. Indeed, contam-
ination is a highly random process that depends on different aspects: the number of contacts
between individuals; the transmission rate of the virus; and for how long patients remain contagious.
Figure IB shows the two-type branching process described in [54] to characterize the growth
of two subpopulations with COVID-19: contaminated but healthy individuals who do not know
that they are infected, and detected cases that, once they are discovered, are isolated from the
population and stop spreading the virus. Separating the population into two groups is a great
890 Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11
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simplification of reality and, therefore, the authors of [8] classified individuals into four categories:
susceptible; exposed; infectious; and no longer infectious (Figure ID). They defined a more
complex contact structure, a stochastic transmission rate, and calculated the risk that introduced
infections would establish in a new population. The incorporation of a new treatment in these
models could provoke a decrease in the infection rate or an increase in the recovery rate.

Nonlinear Mixed-Effects Models
NLME modeling is the gold-standard methodology for the analysis of longitudinal PK/PD data,
because it provides a reasonable approximation of the dynamics of the drug in the body and
its effects [55–57]. NLME models characterize the individuals by a common deterministic
model known as the structural model and a statistical model that allows for model parameters
to vary within the population. The term ‘mixed-effects’ refers to the presence of both fixed effects
that describe the typical parameter values of the population and random effects that handle the
variability of the model. In general, there are two sources of random variability; variability assigned
to model parameters and residual variability (RV) to account for the differences between the indi-
vidual prediction of the model and the measured observation. Unexplained parameter variability
can be further divided into interindividual variability and between-occasion variability. Figure 3
graphically represents these basic concepts.

In the NLME approach, the structural model is generally defined by an algebraic or ordinary differ-
ential equation. Even if some randomness in model parameters is involved, this methodology
does not allow for uncertainty in the dynamics of the model. Therefore, this stochasticity must
not be confused with the stochastic models explained earlier. The stochastic component of
TrendsTrends inin PharmacologicalPharmacological SciencesSciences

Figure 3. Basic Scheme of the Main Principles of the Mixed-Effects Modeling Approach, the Gold-Standard
Methodology in Pharmacometrics. Fixed effects represent the parameter values that characterize the mean
description of the population and random effects handle the unexplained variability of the model. This methodology
describes not only the mean/typical behavior of the population, but also the individual profiles of each patient
Interindividual variability describes the difference between the population and individual profiles, whereas residual variability
accounts for the differences between the individual predictions and the measured observations.
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NLME models is needed to describe the randomness involved in the measurements of the pop-
ulation but, given an initial condition and the parameter values for every individual, the output of
the model will always be the same. The currently most popular tools to estimate parameters in
NLME modeling are NONMEMi, MONOLIXii, and Staniii.

This structural model could be replaced with a stochastic model to introduce stochasticity in the
dynamics of the model itself. NLME models based on SDEs extend the first-stage model of the
hierarchical structure by decomposing the residual variability into measurement noise accounting
for uncorrelated errors (assay sensitivity, sampling errors, etc.) and system noise accounting for
model misspecifications or true random physiological fluctuations [58,59]. Thus, here three levels
of random effects are included. One example of the application of SDEs into PK/PD modeling is
work by Mazuka et al. [58], who evaluated the use of SDEs to characterize the absorption prop-
erties of single oral dose of metformin. The authors suggested a state equation for the absorption
rate parameter of the drug that fluctuates randomly, which managed to better capture the
absorption phase of the concentration profiles. Tracking the temporal dynamics of the absorption
rate parameter allowed the refinement of the original structural model by using a Weibull function
that described the extended release absorption rate. For more applications in PK/PD modeling,
see [60].

Bridging the Gap
Up to this point, deterministic and stochastic models can be thought of as distinct modeling
paradigms. However, we argue that these approaches are not mutually exclusive and could be
combined to create models where components can be deterministic or stochastic.

For instance, NLME models are best suited for modeling extrinsic variability; that is, variability
coming from different subjects. The rest of the unexplained intraindividual/intrinsic variability is
then modeled using a normally distributed error term. Stochastic models could help to decipher
part of this unexplained intrinsic variability by allowing the simulation of processes that can
happen at random in every individual and, hence, help in differentiating between real source of
errors during measurement collection and errors due to model misspecifications.

We have repeatedly highlighted that stochastic models have been proven to be important to
characterize the effects made by small populations (e.g., to analyze the evolution of the minimal
residual disease or adoptive cell transfer immunotherapy, or to model the initial infectious disease
transmissions). It can be also useful to model in vitro experiments because drug effects are
complex and probabilistic at the single-cell level. Genetically identical cells differ widely in their
responsiveness to drugs even in a uniform environment due to stochasticity in gene expression
levels or other biochemical phenomena [61]. Thus, applying single-cell assays and quantitative
modeling to determinewhich of the observed phenomena arise from processes that are inevitably
stochastic, and which ones are explained by the presence of special subpopulation of cells
(characterized by covariate models) could be important for the evaluation of different treatments
[62] and can possibly explain large amounts of what was previously unknown variability.

However, research efforts that incorporate stochastic phenomena at higher than the single-cell
level are rarely found and there is almost no experience in the application of those models to
guide clinical trial design or patient management. Some examples of the implementation of
SDEs in NONMEM already exist where the absorption or elimination rate constant have been
defined as stochastic processes and the extended Kalman filter has been coupled for parameter
estimation [63–65]. This same method has also been implemented in R [66] and Matlab [67] for
estimation of insulin secretion rates. We have also mentioned the use of branching processes
892 Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11



Outstanding Questions
What are the best practices for
integrating models built using different
strategies?

Would stochastic model dynamics be
considered more often in model-informed
drug discovery and development?

Will more straightforward stochastic
modeling tools be developed?

Would the activity of combining
modeling approaches become a major
part of pharmacometrics and systems
pharmacology in the near future?
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for optimal dose regimen identification [52]. However, the use of Gillespie SSA or related more
advanced methodologies is rarely seen in combination with population PK/PD models, mainly
due to a lack of tools to perform such integration easily. Pumasiv, a Julia-based pharmacometric
modeling platform that builds on top of DifferentialEquations.jl, tries to overcome this limitation by
allowing these models (SDEs, SSAs, and such mixtures with delay differential equations and
stochastic delay differential equations) to be the dynamics of nonlinear mixed-effect, physiologi-
cally based PK, or quantitative systems pharmacology (QSP) models. While Pumas is still in its
alpha version, this wider array of models will enable pharmacometricians to start exploring effects
that were previously inaccessible.

Concluding Remarks
Here, we have raised awareness of stochastic models and how to combine them with existing
modeling techniques with the ultimate goal of making future models more versatile and useful.
While there are still many aspects that need to be improved, we believe that the activity of com-
bining models could become a major part of PSP in near future, in which different processes
could be modeled independently and then integrated in the simulation process through variable
transformation and synchronization (see Outstanding Questions). QSP represents a perfect
example where different modeling strategies coming from systems biology and pharmacometrics
have been merged [68]. Although many advances have been made in this research area over the
past decadev [2,69–71], the use of stochastic models in QSP is infrequent. However, with recent
advances in adaptive stochastic simulation techniques, this area is ripe for pharmacometric
modelers to uncover the effects of stochastic models and utilize their inherent randomness to
improve the prediction of disease progression and drug effects.

Resources
ihttps://iconplc.com/innovation/nonmem/
iihttp://lixoft.com/products/monolix/
iiihttps://mc-stan.org/
ivhttps://pumas.ai/
vhttps://www.nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf

References

1. Woodcock, J. and Woosley, R. (2008) The FDA critical path

initiative and its influence on new drug development. Annu.
Rev. Med. 59, 1–12

2. Hartmann, S. et al. (2016) Quantitative systems pharmacology
model to predict the effects of commonly used anticoagulants
on the human coagulation network. CPT Pharmacometrics
Syst. Pharmacol. 5, 554–564

3. Parra-Guillen, Z.P. et al. (2018) Systematic modeling and design
evaluation of unperturbed tumor dynamics in xenografts.
J. Pharmacol. Exp. Ther. 366, 96–104

4. Campagne, O. et al. (2018) The impact of tacrolimus exposure
on extrarenal adverse effects in adult renal transplant recipients.
Br. J. Clin. Pharmacol. 85, 516–529

5. Ahmed, S. et al. (2019) Guiding dose selection of monoclonal
antibodies using a new parameter (AFTIR) for characterizing
ligand binding systems. J. Pharmacokinet. Pharmacodyn. 46,
287–304

6. Chakrabarti, S. and Michor, F. (2017) Pharmacokinetics and
drug interactions determine optimum combination strategies in
computational models of cancer evolution. Cancer Res. 77,
3908–3921

7. Yamamoto, K.N. et al. (2019) Stochastic evolution of pancreatic
cancer metastases during logistic clonal expansion. JCO Clin.
Cancer Inform. 1–11

8. Kucharski, A.J. et al. (2020) Early dynamics of transmission and
control of COVID-19: a mathematical modelling study. Lancet
Infect. Dis. 20, 553–558

9. Huang, R. et al. (2017) Lei J Cell-type switches induced by sto-
chastic histone modification inheritance. Discrete & Continuous
Dynamical Systems -B 24, 5601–5619

10. Raser, J.M. and O’Shea, E.K. (2004) Control of stochasticity in
eukaryotic gene expression. Science 304, 1811–1814

11. Gupta, P.B. et al. (2011) Stochastic state transitions give rise to
phenotypic equilibrium in populations of cancer cells. Cell 146,
633–644

12. Melone, M.A.B. et al. (2018) The carnitine system and cancer
metabolic plasticity. Cell Death Dis. 9, 228

13. Gillespie, D.T. (1992) A rigorous derivation of the chemical
master equation. Physica A Stat. Mech. Applications 188,
404–425

14. Gillespie, D.T. (1977) Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem. 81, 2340–2361

15. Gillespie, D.T. (2000) The chemical Langevin equation. J. Chem.
Phys. 113, 297–306

16. Drawert, B. et al. (2016) Stochastic simulation service: bridging
the gap between the computational expert and the biologist.
PLoS Comput. Biol. 12, e1005220

17. Abel, J.H. et al. (2016) GillesPy: A Python package for stochastic
model building and simulation. IEEE Life Sci. Lett. 2, 35–38

18. Hoops, S. et al. (2006) COPASI—a complex pathway simulator.
Bioinformatics 22, 3067–3074

19. McCollum, J.M. et al. (2006) The sorting direct method for sto-
chastic simulation of biochemical systems with varying reaction
execution behavior. Comput. Biol. Chem. 30, 39–49
Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11 893

https://iconplc.com/innovation/nonmem/
http://lixoft.com/products/monolix/
https://mc-stan.org/
https://pumas.ai/
https://www.nigms.nih.gov/Training/Documents/SystemsPharmaWPSorger2011.pdf
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0005
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0005
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0005
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0010
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0010
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0010
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0010
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0015
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0015
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0015
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0020
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0020
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0020
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0025
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0025
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0025
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0025
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0030
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0030
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0030
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0030
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0035
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0035
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0035
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0040
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0040
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0040
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0045
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0045
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0045
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0050
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0050
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0055
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0055
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0055
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0060
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0060
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0065
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0065
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0065
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0070
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0070
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0075
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0075
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0080
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0080
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0080
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0085
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0085
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0090
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0090
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0095
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0095
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0095


Trends in Pharmacological Sciences
20. Slepoy, A. et al. (2008) A constant-time kinetic Monte Carlo algo-
rithm for simulation of large biochemical reaction networks.
J. Chem. Phys. 128, 205101

21. Thanh, V.H. et al. (2014) Efficient rejection-based simulation
of biochemical reactions with stochastic noise and delays.
J. Chem. Phys. 141, 134116

22. Thanh, V.H. (2019) A critical comparison of rejection-based
algorithms for simulation of large biochemical reaction networks.
Bull. Math. Biol. 81, 3053–3073

23. Rackauckas, C. and Nie, Q. (2017) DifferentialEquations.jl – a
performant and feature-rich ecosystem for solving differential
equations in Julia. J. Open Res. Softw. 5, 15

24. Cao, Y. et al. (2003) Adjoint sensitivity analysis for differential-
algebraic equations: the Adjoint DAE system and its numerical
solution. SIAM J. Sci. Comput. 24, 1076–1089

25. Yamamoto, K.N. et al. (2019) Computational modeling
of pancreatic cancer patients receiving FOLFIRINOX and
gemcitabine-based therapies identifies optimum intervention
strategies. PLoS ONE 14, e0215409

26. Diabate, M. et al. (2020) Parameter estimation and treatment
optimization in a stochastic model for immunotherapy of cancer.
J. Theor. Biol. 502, 110359

27. Leander, J. et al. (2014) Stochastic differential equations as a
tool to regularize the parameter estimation problem for continu-
ous time dynamical systems given discrete time measurements.
Math. Biosci. 251, 54–62

28. Jusko, W.J. (1971) Pharmacodynamics of chemotherapeutic
effects: dose-time-response relationships for phase-nonspecific
agents. J. Pharm. Sci. 60, 892–895

29. Norton, L. and Simon, R. (1986) The Norton-Simon hypothesis
revisited. Cancer Treat. Rep. 70, 163–169

30. Ribba, B. et al. (2014) A review of mixed-effects models of tumor
growth and effects of anticancer drug treatment used in population
analysis. CPT Pharmacometrics Syst. Pharmacol. 3, e113

31. Garcia-Cremades, M. et al. (2018) Predicting tumour growth and
its impact on survival in gemcitabine-treated patients with
advanced pancreatic cancer. Eur. J. Pharm. Sci. 115, 296–303

32. Gompertz, B.X.X.I.V. (1825) On the nature of the function
expressive of the law of human mortality, and on a new mode of
determining the value of life contingencies. In a letter to Francis
Baily, Esq. FRS &c. Philos. Trans. R. Soc. Lond. 115, 513–583

33. Diekmann, O. and Heesterbeek, J.A.P. (2000) Mathematical
Epidemiology of Infectious Diseases: Model Building, John
Wiley & Sons, Analysis and Interpretation

34. Anastassopoulou, C. et al. (2020) Data-based analysis, model-
ling and forecasting of the COVID-19 outbreak. PLoS ONE 15,
e0230405

35. Kissler, S.M. et al. (2020) Projecting the transmission dynamics
of SARS-CoV-2 through the postpandemic period. Science.
368, 860–868

36. Coldman, A.J. and Goldie, J.H. (1983) A model for the resistance
of tumor cells to cancer chemotherapeutic agents. Math. Biosci.
65, 291–307

37. Foo, J. and Michor, F. (2010) Evolution of resistance to anti-
cancer therapy during general dosing schedules. J. Theor.
Biol. 263, 179–188

38. Baar, M. et al. (2016) A stochastic model for immunotherapy of
cancer. Sci. Rep. 6, 24169

39. Adke, S.R. and Moyal, J.E. (1963) A birth, death, and diffusion
process. J. Math. Anal. Appl. 7, 209–224

40. van den Driessche, P. and Watmough, J. (2002) Reproduction
numbers and sub-threshold endemic equilibria for compartmen-
tal models of disease transmission. Math. Biosci. 180, 29–48

41. Dinh, K. et al. (2019) Predicting minimal residual disease in acute
myeloid leukemia through stochastic modeling of clonality. Blood
134, 1448

42. Komarova, N. (2006) Stochastic modeling of drug resistance in
cancer. J. Theor. Biol. 239, 351–366

43. Greaves, M. and Maley, C.C. (2012) Clonal evolution in cancer.
Nature 481, 306–313

44. Michor, F. et al. (2004) Dynamics of cancer progression. Nat.
Rev. Cancer 4, 197–205

45. Haccou, P. et al. (2005) Branching Processes: Variation,
Growth, and Extinction of Populations, Cambridge University
Press

46. Kimmel, M. and Axelrod, D.E. (2015) Branching Processes in
Biology, Springer

47. Durrett, R. (2015) Branching Process Models of Cancer,
Springer

48. Moran, P.A.P. (1958) Random processes in genetics. Math.
Proc. Camb. Philos. Soc. 54, 60–71

49. Chmielecki, J. et al. (2011) Optimization of dosing for EGFR-
mutant non-small cell lung cancer with evolutionary cancer
modeling. Sci. Transl. Med. 3, 90ra59

50. Foo, J. et al. (2012) Effects of pharmacokinetic processes and
varied dosing schedules on the dynamics of acquired resistance
to erlotinib in EGFR-mutant lung cancer. J. Thorac. Oncol. 7,
1583–1593

51. Måløy, M. et al. (2019) An extended Moran process that
captures the struggle for fitness. Math. Biosci. 308, 81–104

52. Irurzun-Arana, I. et al. (2020) Pharmacokinetic profiles determine
optimal combination treatment schedules in computational
models of drug resistance. Cancer Res. 80, 3372–3382

53. Allen, L.J.S. (2017) A primer on stochastic epidemic models: for-
mulation, numerical simulation, and analysis. Infect. Dis. Model.
2, 128–142

54. Yanev, N.M. et al. (2020) Stochastic modeling and estimation of
COVID-19 population dynamics. arXiv 2020 arXiv:2004.00941

55. Ette, E.I. and Williams, P.J. (2013) Pharmacometrics: The
Science of Quantitative Pharmacology, John Wiley & Sons

56. Mould, D.R. and Upton, R.N. (2013) Basic concepts in population
modeling, simulation, and model-based drug development—
part 2: introduction to pharmacokinetic modeling methods. CPT
Pharmacometrics Syst. Pharmacol. 2, e38

57. Upton, R.N. and Mould, D.R. (2014) Basic concepts in popula-
tion modeling, simulation, and model-based drug development:
part 3—introduction to pharmacodynamic modeling methods.
CPT Pharmacometrics Syst. Pharmacol. 3, e88

58. Matzuka, B. et al. (2016) Stochastic nonlinear mixed effects: a
metformin case study. J. Pharmacokinet. Pharmacodyn. 43,
85–98

59. Leander, J. et al. (2015) Mixed effects modeling using stochastic
differential equations: illustrated by pharmacokinetic data of
nicotinic acid in obese Zucker rats. AAPS J. 17, 586–596

60. Donnet, S. and Samson, A. (2013) A review on estimation of sto-
chastic differential equations for pharmacokinetic/pharmacodynamic
models. Adv. Drug Deliv. Rev. 65, 929–939

61. Wang, R. et al. (2017) Evidence of drug-response heterogeneity
rapidly generated from a single cancer cell. Oncotarget. 8,
41113–41124

62. Niepel, M. et al. (2009) Non-genetic cell-to-cell variability and the
consequences for pharmacology. Curr. Opin. Chem. Biol. 13,
556–561

63. Olafsdottir, H.K. et al. (2018) Exact gradients improve parameter
estimation in nonlinear mixed effects models with stochastic
dynamics. AAPS J. 20, 88

64. Delattre, M. and Lavielle, M. (2013) Coupling the SAEM algorithm
and the extended Kalman filter for maximum likelihood estima-
tion in mixed-effects diffusion models. Statistics and Its Interface
6, 519–532

65. Tornøe, C.W. et al. (2005) Stochastic differential equations in
NONMEM®: implementation, application, and comparison with
ordinary differential equations. Pharm. Res. 22, 1247–1258

66. Klim, S. et al. (2009) Population stochastic modelling (PSM)—an
R package for mixed-effects models based on stochastic differ-
ential equations. Comput. Methods Prog. Biomed. 94, 279–289

67. Mortensen, S.B. et al. (2007) A Matlab framework for estimation of
NLME models using stochastic differential equations: applications
for estimation of insulin secretion rates. J. Pharmacokinet.
Pharmacodyn. 34, 623–642

68. Trame, M.N. et al. (2018) Perspective on the state of
pharmacometrics and systems pharmacology integration. CPT
Pharmacometrics Syst. Pharmacol. 7, 617–620

69. Sorger, P.K. et al. (2011) Quantitative and Systems Pharmacology
in the Post-Genomic Era: New Approaches to Discovering Drugs
and Understanding Therapeutic Mechanisms. An NIH white
paper by the QSP Workshop Group, NIH

70. van Hasselt, J.G.C. and van der Graaf, P.H. (2015) Towards
integrative systems pharmacology models in oncology drug
development. Drug Discov. Today Technol. 15, 1–8
894 Trends in Pharmacological Sciences, November 2020, Vol. 41
, No. 11

http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0100
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0100
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0100
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0105
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0105
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0105
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0110
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0110
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0110
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0115
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0115
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0115
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0120
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0120
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0120
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0125
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0125
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0125
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0125
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0130
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0130
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0130
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0135
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0135
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0135
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0135
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0140
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0140
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0140
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0145
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0145
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0150
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0150
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0150
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0155
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0155
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0155
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0160
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0160
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0160
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0160
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0165
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0165
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0165
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0170
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0170
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0170
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0175
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0175
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0175
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0180
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0180
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0180
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0185
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0185
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0185
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0190
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0190
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0195
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0195
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0200
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0200
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0200
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0205
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0205
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0205
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0210
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0210
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0215
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0215
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0220
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0220
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0225
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0225
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0225
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0230
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0230
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0235
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0235
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0240
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0240
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0245
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0245
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0245
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0250
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0250
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0250
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0250
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0255
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0255
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0260
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0260
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0260
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0265
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0265
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0265
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0270
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0270
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0275
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0275
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0280
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0280
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0280
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0280
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0285
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0285
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0285
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0285
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0290
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0290
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0290
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0295
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0295
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0295
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0300
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0300
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0300
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0305
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0305
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0305
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0310
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0310
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0310
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0315
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0315
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0315
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0320
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0320
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0320
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0320
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0325
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0325
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0325
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0330
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0330
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0330
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0335
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0335
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0335
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0335
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0340
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0340
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0340
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0345
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0345
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0345
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0345
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0350
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0350
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0350


Trends in Pharmacological Sciences
71. van Hassselt, J.G.C. and Iyengar, R. (2017) Systems
pharmacology-based identification of pharmacogenomic
determinants of adverse drug reactions using human iPSC-
derived cell lines. Curr. Opin. Syst. Biol. 4, 9–15

72. Iwasa, Y. et al. (2006) Evolution of resistance during clonal
expansion. Genetics 172, 2557–2566

73. Komarova, N.L. (2006) Spatial stochastic models for can-
cer initiation and progression. Bull. Math. Biol. 68,
1573–1599

74. Altrock, P.M. et al. (2015) The mathematics of cancer: in-
tegrating quantitative models. Nat. Rev. Cancer 15,
730–745
Trends in Pharmacological Sciences, November 2020, Vol. 41, No. 11 895

http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0355
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0355
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0355
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0355
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0360
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0360
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0365
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0365
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0365
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0370
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0370
http://refhub.elsevier.com/S0165-6147(20)30211-X/rf0370

