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Timely poacher detection 
and localization using sentinel 
animal movement
Henrik J. de Knegt  1,5*, Jasper A. J. Eikelboom  1,5*, Frank van Langevelde  1,2, 
W. François Spruyt3 & Herbert H. T. Prins  1,4

Wildlife crime is one of the most profitable illegal industries worldwide. Current actions to reduce it 
are far from effective and fail to prevent population declines of many endangered species, pressing 
the need for innovative anti-poaching solutions. Here, we propose and test a poacher early warning 
system that is based on the movement responses of non-targeted sentinel animals, which naturally 
respond to threats by fleeing and changing herd topology. We analyzed human-evasive movement 
patterns of 135 mammalian savanna herbivores of four different species, using an internet-of-things 
architecture with wearable sensors, wireless data transmission and machine learning algorithms. We 
show that the presence of human intruders can be accurately detected (86.1% accuracy) and localized 
(less than 500 m error in 54.2% of the experimentally staged intrusions) by algorithmically identifying 
characteristic changes in sentinel movement. These behavioral signatures include, among others, 
an increase in movement speed, energy expenditure, body acceleration, directional persistence and 
herd coherence, and a decrease in suitability of selected habitat. The key to successful identification 
of these signatures lies in identifying systematic deviations from normal behavior under similar 
conditions, such as season, time of day and habitat. We also show that the indirect costs of predation 
are not limited to vigilance, but also include (1) long, high-speed flights; (2) energetically costly flight 
paths; and (3) suboptimal habitat selection during flights. The combination of wireless biologging, 
predictive analytics and sentinel animal behavior can benefit wildlife conservation via early poacher 
detection, but also solve challenges related to surveillance, safety and health.

Wildlife trade is a low-risk, yet high-profit crime, ranking fourth in terms of revenue after trade in drugs, humans 
and arms1. Wildlife crime is driven by a rapidly expanding wealthy class in some cultures that views animal parts 
as medicine or status-enhancing luxury goods2. The demand for animal parts has led to escalating prices3, which 
consequently fuels poaching. As one of the main causes for biodiversity decline4, poaching increasingly threatens 
the existence of wildlife, notably pangolins, rhinos, elephants and tigers. Ultimately, losses of these and other 
species can reshape entire ecosystems via cascading effects.

Although the ultimate solution is to reduce the global demand for wildlife products, efforts to do so have 
not been successful enough5. Local efforts thus often aim at deterring poachers, mainly through ranger patrols. 
Deadly force used by poachers incites conservation authorities into intensified ‘militarized conservation’, result-
ing in frequent shootouts between poachers and conservation officers6. Sadly, poaching of wildlife still continues 
to be a threat to the preservation of many wildlife species1, as anti-poaching rangers often arrive too late at 
crime scenes7. An effective method for early poacher detection and localization is thus urgently needed, so that 
preventive action can be taken. With situational awareness, law enforcers can operate under safer conditions 
with reduced risk of fatalities and potential to de-escalate conflicts. An effective poacher early warning system 
(EWS) thus contributes to preventing lethal violence, not only against wildlife, but also against conservation 
officers and poachers6.

Animal sentinels, especially those that are abundant and no targets themselves, may provide an early warn-
ing that poachers are en route. Prey species may be good sentinels as these species have evolved a suite of traits 
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aimed at preventing them from being killed, e.g., via early predator detection and escape8. This often extrapolates 
to humans as well, since many prey species evolved together with human hunters, leading to anthropogenic dis-
turbance stimuli triggering similar, or often even stronger, evasive responses9,10. Until now, practical constraints 
have hampered the development of a sentinel-based EWS11. Although wireless sensors can generate large volumes 
of data, the areas in which poaching occurs often lack infrastructure that allows real-time wireless communica-
tion of sufficient bandwidth7. Moreover, animal behavior is known to be complex and context-dependent, thus 
an EWS needs to be able to handle rich contextual data when identifying behavioral abnormalities linked to 
anthropogenic disturbances. Fortunately, advances in technology, computing and analytics have now alleviated 
these constraints12. We therefore tested the concept of whether the behavior of sentinel animals can be used to 
detect and localize human intrusions using wearable biologging sensors and predictive algorithms (Supplemen-
tary Fig. S1).

We tested the sentinel-based EWS in an African savanna, home to several targeted species (e.g., pangolin, 
elephant, rhino and lion) that coexist with an assemblage of mammalian prey species that could be potential 
sentinels. We deployed wearable GPS and tri-axial accelerometer sensors on 138 animals equally over four spe-
cies (plains zebra, blue wildebeest, common eland and impala) in a 1200 ha fenced, predator-free area inside 
Welgevonden Game Reserve (WGR), South Africa (Fig. 1). These sensors transmitted data wirelessly via a LoRa 
network connected to a backhaul. During a period of 7 months, WGR park officials executed 57 intrusions 
mimicking poachers (referred to as ‘experimental intrusions’). Data collected in the absence of experimental 
intrusions were used to characterize undisturbed behavior, allowing quantification of the degree of abnormality 
of movement behavior at any point in time. During all these experimental intrusions and matched controls, a 
median of 47 sensors yielded data for further analyses.

We engineered a large set of potentially meaningful and ecologically relevant features, describing the geom-
etry of individual trajectories as well as emergent herd topologies and various characteristics of the animal-
environment interplay (split into 4 main classes: individual geometry, accelerometer-based, collective movement 
features, and indices of space usage; and 12 sub-classes; and various standardizations of features to capture 
deviations from normal behavior, see Supplementary Table S1). Then, we applied a multi-step dimensionality 
reduction approach (first across a subset of features within sub-classes to collapse the ecologically related features 
into a low-dimensional characterization, then across the set of selected principal components from all classes to 
reduce multicollinearity; see “Methods” section) and segmented the dataset into experimental intrusions and 
controls. Data during experimental intrusions were randomly matched with control data of the same period, 
one or 2 days earlier or later, when no intrusion took place. To generate predictive signatures for the EWS, we 
followed a three-step process: (1) behavioral response classification focusing on detecting evasive anti-predator 
behavior by each individual separately, followed by (2) intrusion detection focusing on a system classification 
through integrating signals over all individuals, and (3) intrusion localization. We allocated each experimental 
intrusion or control segment to either the training phase or the evaluation phase, applying a leave-one-group-out 
cross-validation approach on these segments to make the best use of all data (see “Methods” section for details).

Figure 1.   Overview of the study area with three examples of how normal behavior varies spatially: (a) 
topography and tree cover in the study area (white to green with increasing tree cover); (b) movement speed 
(third quartile) and directionality of wildebeest during the afternoon (blue to red with increasing speed; 
length and darkness of line segments indicates the degree of directional preference and orientation indicates 
the preferred movement direction); and (c) modelled habitat suitability of wildebeest during the afternoon 
as function of habitat characteristics (white to green with increasing suitability). The inset figures exemplify 
the importance of considering environmental context in the early warning system, since fast, straight and 
directional movements through low suitability areas are part of the sentinels’ normal behavior. Thus, solely 
detecting fast and straight movements may not suffice as early warning indicators. All maps were generated in 
R3.5.0 using GIS, location and modelled data49.
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Results
Exploration of the animals’ reaction to the experimental intrusions highlighted several broad characterizations 
of their response. First, the experimental intrusions triggered nearby sentinels to divert their movement away 
from the perceived treat while increasing their speed, body acceleration and directional persistence (Fig. 2). 
This, together with elevated variation in such features, resulted in more directional, brisk, straight and erratic 
movements. These evasive flights lasted on average 47 min per fleeing group of zebra (SD = 28, n = 29), 39 min for 
wildebeest (SD = 33, n = 15), 46 min for eland (SD = 18, n = 15), and 43 min for impala (SD = 14, n = 14). Second, 
the difference between the sentinels’ response behavior and their normal behavior was larger when comparing 
the individuals’ movement in the same spatial (location and habitat) and temporal (seasonal and diurnal) context. 
Third, the sentinels selected sub-optimal habitat and chose flight paths that incurred higher energetic costs via 
faster and uncommon uphill movement in response to the experimental intrusions, possibly in an effort to find 
refuge (Figs. 2, 3). Fourth, apart from alterations in the geometry of individual movement trajectories, patterns of 
collective geometry changed in the vicinity of the experimental intrusions. Generally, nearby individuals tended 
to form groups with more synchronized and aligned movements (Fig. 2f).

We trained a support vector machine (SVM) to algorithmically classify the animal’s response behavior as 
either undisturbed (i.e., calm or normal) or disturbed (a summary label for the above-described responses). We 
were able to achieve an average precision of classification (i.e., the area under the precision-recall curve) of 46%. 
Depending on the chosen value of the response probability decision boundary, the classification performance 
achieved up to 100% precision, or 100% recall, with a maximum F1-score of 47% (Supplementary Fig. S2). 
Comparing the SVM’s average precision on various subsets of the data resulted in three noteworthy variations 
in predictability of response behavior: (1) intrusion type (on foot 52%, by vehicle 14%), (2) species (eland 47%, 
impala 17%, wildebeest 29%, zebra 57%), and (3) time of day (morning 48%, noon 26%, afternoon 53%). A higher 
predictability near humans on foot compared to motorized vehicles suggests a stronger behavioral response to 
the former and is in line with other findings8,13. A lower predictability for impala and wildebeest may imply 
that these animals exhibit a broader suite of response behaviors, possibly including antipredator responses not 
included here (e.g., ‘freezing’ or ‘threat inspection’ behavior). For impala, being the smallest of our sentinel spe-
cies, it may furthermore be caused by a high-quality food requirement inducing them to delay escape and hence 
reduce the associated opportunity costs8. The lower predictability around noon could be due to the midday heat 
inducing animals to accept a higher risk and lower their energy expenditure of costly risk-avoidance behavior, 
thereby creating less pronounced signatures in the data.

Figure 2.   A sample of the 2117 computed animal movement features characterizing the sentinels’ behavior near 
experimental intrusions, shown here as function of the time since the annotated start of their response behavior 
(i.e., ‘flight’ and ‘regroup’ as described in the main text). All y-axes show standardized values (zero-mean and 
unit-variance when undisturbed), and the shaded area around each line (i.e., sentinel species) depicts pointwise 
95% CI of a General Additive Model. When encountering the experimental intrusions, the sentinels moved 
faster (a), straighter (b), away from the intrusion (c), and with higher body acceleration (d). The sentinel species 
that prefer more grass-dominated habitats (i.e., lower tree cover) tended to move towards areas with higher 
tree cover (e) and thus lower habitat suitability. Moreover, encountering the intrusions induced more aligned 
collective movement (f).
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Following animal behavior classification, we were able to distinguish intrusions from controls with 86.1% 
accuracy (82.6% precision, 89.2% recall) using logistic regression, exclusively using the movement data of the 
sentinels (Table 1). The odds of an intrusion increased considerably with higher SVM-predicted probabilities 
of response behavior, the degree of local spatial autocorrelation therein, and a decrease in spatial clustering of 
sentinels that were predicted to be undisturbed. Including more features in the detection classifier boosted its 
predictive accuracy to 91% (Supplementary Fig. S4), but also increased the risk of lowering its generalizability 
to other areas due to potential overfitting. The true positive rate was 84.2%, and there was no apparent positive 
relationship between the probability that an intrusion was correctly detected and the number of working sensors 
(logistic regression, p = 0.260).

Following detection, we predicted the location of the intrusion relative to the position, movement direction 
and SVM-predicted response probabilities of the sentinels. We summarized the performance of the localization 
prediction through the Euclidian distance between the peak prediction and the true location of the intrusion, 
followed by computing the spatial error of the 10 most dense probability surfaces per experimental intrusion. 

Figure 3.   Spatial performance of our early warning system. (a) The predicted spatial probability surface for 
the intrusion’s location (based on data from the sentinel animals only) for one of the experimental intrusions. 
For all experiments where the intrusion was algorithmically detected (82.5%), the spatial localization accuracy 
as function of threshold distance (b) that 54.2% of these correctly detected intrusions could be localized with 
a spatial error of less than 500 m and 20.8% within 100 m. The dashed focal area shown in (a) is highlighted in 
(c–e), where the sentinels’ (here: wildebeest) movements in the next 10 min is indicated with dashed lines. (c) 
The spatial localization prediction of the intrusion. The evasive movements of the fleeing wildebeest are fast 
compared to their normal movement at that location (Fig. 1b), and highly aligned. While fleeing, the wildebeest 
move through habitat with a low suitability (d, see Fig. 1c), and towards areas that are energetically costly to 
reach (e, movement costs are computed based on topography and relative to their current position, where the 
cost of movement is assumed to be inversely proportional to movement speed on an incline as computed using 
Tobler’s hiking function). The experimental intrusion as depicted in this figure is animated in Supplementary 
Movie 1, including output from the animal classification and intrusion localization algorithms. All maps were 
generated in R3.5.0 using GIS, location and modelled data49.

Table 1.   Confusion matrix of the poacher detection algorithm. Bold numbers indicate correct predictions.

Prediction

Truth

Control Intrusion

Control 52 10

Intrusion 5 47



5

Vol.:(0123456789)

Scientific Reports |         (2021) 11:4596  | https://doi.org/10.1038/s41598-021-83800-1

www.nature.com/scientificreports/

In 20.8% of them the predictions were highly accurate, namely within 100 m from the true location, increasing 
to 41.7% and 54.2% respectively, for distances up 300 m and 500 m (Fig. 3b).

Discussion
Our study thus clearly demonstrates that sentinel animal behavior can be used to detect poachers, since predict-
able signatures in behavioral responses to disturbance stimuli can be used to detect and locate human intrusions. 
Indeed, the sentinels took systematic and detectable evasive action when experimental intruders came near.

The sentinels increased their movement speed and body acceleration as they generally do during anti-predator 
responses8, whilst moving away from the perceived threat with higher directional persistence (Fig. 2). They did 
so for a considerable amount of time per flight response (45 min on average), longer than only instantaneously 
running away, thereby substantially trading off energy for safety14. This signal became even more pronounced 
in the context of the individuals’ normal behavior given the prevailing conditions (season, time of day and 
habitat), since a systematic deviation from normality is key to successful identification of disturbed behavior. It 
thus proved to be important to explicitly consider the spatial–temporal context of the movement-environment 
interplay when using sentinel movement metrics as early warning indicators. Solely using movement speed as 
indicator15 without incorporating environmental conditions is therefore not very informative (Fig. 1).

These findings suggest that the sentinels elevated their energy expenditure while fleeing, in line with theory on 
energy landscapes and the landscape of fear8,14,16,17. However, not only did experimental intrusions trigger faster-
than-normal movement, but the sentinels also tended to utilize the terrain by moving uphill, thereby increasing 
their energy expenditure (Fig. 3). Moreover, the sentinels seemed to alter their decision-making during evasive 
actions, selecting less optimal habitat than they would do when undisturbed (Figs. 2e, 3d). This suggests that 
anti-predator trade-offs relate to energy trade-offs and that perceived threats can induce resource avoidance18. 
Together, these consequences of anti-predator behavior can incur significant energetic and opportunity costs18. 
These energetic costs are generally not considered in the indirect costs of predation within the landscape of fear 
framework, but are now increasingly being recognized14,18. Our findings suggest that anti-predator behavior not 
only incur costs in terms of trading off foraging and resting for vigilance, but also in terms of increased costs 
due to (1) performing long, high-speed flights; (2) choosing energetically costly flight paths; and (3) selecting 
suboptimal habitats during flights.

Although the study of collective behavior of animals within groups has predominantly relied on controlled 
laboratory-based studies and theoretical models19,20, our high-resolution data on manifold large terrestrial mam-
mals allowed the detailed computation of collective movement properties in their natural habitat in relation to 
perceived threats. The sentinels increased group coherence when intruders were near (Fig. 2f), presumably in 
an effort to find safety in numbers21, whilst at the same time avoiding the likelihood of collisions by increasing 
alignment during escape22. These findings support predictions from theoretical studies23 and controlled labora-
tory experiments24.

Central to these findings is that the responsive and evasive behavior of animal sentinels can be used to algo-
rithmically detect and localize poachers. A sentinel-based EWS is robust against adaptive behavior of poachers, 
as an abundance of sentinels cannot easily be manipulated and fooled25,26. Additionally, shooting sentinel animals 
would give away the poacher’s position, both via its acoustic signal7 as well as through the sensor data of the shot 
animal. Moreover, if hackers were to tap into the dataflow, only the locations of the sentinels may be revealed, but 
not those of targeted species. Applying biologging technology directly to targeted species is risky, and will rule 
out preventive intervention as it only enables the post hoc identification of mortalities7. Instead, the responsive 
behavior of untargeted sentinels crossing path with poachers en route provides an early warning and situational 
awareness to anti-poaching personnel.

Our proposed sentinel-based EWS critically hinges on the premise that sentinel animals respond reactively 
to human intrusions. This requires that these sentinels have evolved with natural and human predators, and that 
they have maintained their anti-predator behavior27. In African savannas, apex predators like lion and leopard 
are generally present and fear of the human “super-predator”28,29 is pervasive throughout mammal communi-
ties in Africa30. However, empirical evidence shows that response to natural predators and humans varies across 
contexts and with predator mode: sit-and-wait ambush predators induce different responses than cursorial 
predators31,32, and humans on foot are generally more evocative than other anthropogenic stimuli (e.g., motorized 
vehicles)8,13. To prey, illicit human activity in conservation areas may be rarer and less predictable than encoun-
ters with natural predators. Human encounters could therefore be more stressful, since lack of predictability is 
a well-established trigger of reactive responses like flight33. Several studies suggest that free-roaming animals 
not only respond differently to human presence than to natural predators, but also that human presence evokes 
stronger responses9,34,35. Since our study was intentionally conducted in a predator-free environment, the next 
logical step is to include the sentinels’ responses to their natural predators in the EWS. Although we currently 
lack the knowledge and data to separate human-induced from predator-induced behavioral shifts in wild-living 
animals36,37, the behavior and approach movements of natural predators is expected to be sufficiently different 
from that of humans to successfully do so.

The main advantage of our proposed sentinel-based EWS is its ability to filter out periods without poaching 
activity, thereby prioritizing model sensitivity over specificity. However, in African savannas it is generally a rare 
event for a sentinel to encounter a human. Therefore, given our current false positive rate of 8.8%, many false 
positives will be generated over time when an EWS is actually deployed. The poacher detections by the EWS 
will thus require an extra layer of verification by, e.g., visually inspecting the patterns in localizations generated 
by the EWS or dispatching an Unmanned Aerial Vehicle to the detected poacher location. Known locations of 
legal human activity should then be taken into account as well, e.g., roads or camps with tourists who could 
trigger responses by animals. The role of this EWS is not that of a fully automatic system to directly dispatch an 
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anti-poaching unit, but to help wildlife reserves make informed decisions about managing their anti-poaching 
resources.

Using animal sentinels as a lens to the environment is in itself not new, as they have long been employed to 
detect human exposure to biological and chemical hazards (e.g., canaries in coal mines)38,39, and more recently 
to detect the onset of natural disasters40,41, epileptic seizures42 or outbursts of violence43. Elucidating the hitherto 
hidden information in the behavior of animals with cutting-edge technology can help us gauge the conditions of 
life on Earth44. More specifically, this approach can expose illicit human activities, such as illegal fishing45 and, 
as shown here, poaching. Our study is the first to document the use of untargeted sentinel behavior as an early 
warning against wildlife crime, yet our approach is generalizable beyond animals as sentinels. Similar methods 
could be utilized to detect anomalous behavior of people in crowds in response to a perceived threat46. Harness-
ing the collective sensing capacities of sentinels will thus not only innovate wildlife conservation and help turn 
protected areas into safe havens, it has the potential to advance many other applications as well.

Methods
Study system and species.  This study was performed in Welgevonden Game Reserve (WGR), a privately 
owned game reserve in the Limpopo province, South Africa (24° 10′ S; 27° 45′ E to 24° 25′ S; 27° 56′ E). The 
reserve is located in the mountainous Waterberg region. WGR was established on former agricultural lands in 
the early 1980s and the main occurring vegetation types are Waterberg Mountain Bushveld and Sour Bushveld. 
The Waterberg region has a temperate climate, with two distinct seasons, characterized by the rainfall regime: a 
dry season ranging from April to September and a wet season ranging from October to March, with an average 
annual precipitation in WGR of 634 mm. Our study area is an enclosed breeding camp within WGR, with a size 
of approximately 1200 ha. Main predator species such as lion, cheetah and spotted hyena were excluded from 
this study area, as well as elephant and rhino.

WGR equipped 35 impala (Aepyceros melampus), 34 blue wildebeest (Connochaetes taurinus), 35 plains zebra 
(Equus burchellii) and 34 common eland (Taurotragus oryx) with a GPS and accelerometer sensor equipped 
custom made collar; an estimated 23% of the individual impalas present in the area, 48% of the eland, 40% of the 
wildebeest and 40% of the zebra. However, due to malfunctioning and errors made in the sensor development 
process, only 83 of the sensors yielded data at any point in time, thus lowering the effective density of sentinel 
animals. During the experimental intrusions (see below), the median number of data-yielding sensors was 47, 
and minimally 30. The animal movement data were recorded day and night and transmitted wirelessly in near 
real-time to five long-range low-power LoRa radiocommunication gateways in the study area, from where data 
packages were routed to an on-line data warehouse via a 3G/4G backhaul. The deployment of these sentinel 
animals were approved by the board and CEO of WGR as a management action and was performed in accord-
ance with relevant guidelines and regulations (see Supplementary GPS Collaring letter).

Experimental intrusions.  Between September 2017 and March 2018, WGR employees performed experi-
mental intrusions (lasting ca. 2 h) on foot and by car through the study area, at varying locations and movement 
routes through the study area, independent from the locations of the sentinel animals. The movement of the 
intrusions were tracked by GPS, and the relevant metadata for each intrusion recorded (mode of transport, 
group size, start time, end time). The intrusions were distributed in a stratified way over the mornings, middays 
and afternoons (with time slots relative to specific solar positions: sunrise, solar noon and sunset). Furthermore, 
the intrusions were temporally spread in such a way to avoid a disturbance overflow for the sentinel animals, by 
performing a maximum of five experiments per week and a maximum of two experiments per day (and then 
only with one intrusion in the morning and one in the afternoon).

Data gathering.  The animal sensors gathered location data via GPS and overall dynamic body accelerations47 
(ODBA) via a tri-axial accelerometer (range ± 2 g; sampling frequency 100 Hz, down-sampled to 10 Hz prior to 
analysis). The GPS was scheduled to record spatial position at irregular intervals depending on the level of activ-
ity as gauged by ODBA. All sensors were scheduled to record locations every 15 min in the absence of sufficient 
activity (given that successive fixes were further than 5 m apart, else a geofence was applied and the new coor-
dinate was omitted to save bandwidth and battery power, thereby assuming that the animal still was at its previ-
ous location). The GPS fix rate was increased up to 2- or 10-min intervals (depending on two different sensor 
settings) when ODBA indicated sufficient activity (after checking for the geofence). ODBA data were sampled 
continuously and summarized per 15 s window in a mean, maximum and variance value.

The experimentally intruding groups were outfitted with handheld GPS devices that recorded their location 
every 5 s and these groups logged and timestamped all their pre-defined activities and metadata on a tablet using 
CyberTracker48 during their intrusion. Most cars traveling through the study area were tracked by GPS as well 
to filter the animal data for disturbances by cars unrelated to the experimental intrusions.

Weather data (temperature, radiation, precipitation and wind) in the study area were recorded on a 3-min res-
olution with a weather station in the north of the study area. We assumed the 1200 ha study area to be sufficiently 
small to assume the weather station data to be representable for the prevailing weather conditions throughout 
the study area. GIS data of the study area (summarized in Supplementary Table S1) consisted of information on 
topography, infrastructure (e.g., fences, roads, powerlines, etc.) and vegetation cover (supervised classification 
of 25 cm resolution aerial imagery into four classes: trees, herbaceous/grass, sand/soil and other/built-up area).

All further data processing and algorithm development was done in the software R3.5.049.

Data pre‑processing.  To link the animal location data with the intrusion location data, as well as to correct 
for the substantial level of positional noise present in the animal location data, we modelled the animal location 
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data to regular 1-min resolution trajectories using the following five steps. First, we filtered out large obvious 
errors (e.g., obvious outliers and irregularities such as locations far outside the study area) from the data. Second, 
we corrected systematic medium-scale outliers: ‘spikes’ that occurred due to positional outliers. Such spike-like 
outliers were visible during sensor testing while following known straight-line trajectories along an airstrip, 
thereby confirming that these spike-like geometries most likely resulted from positional error rather than true 
animal movement. Points were classified as anomalous spike points when (a) the displacement to and away 
from this point was high (> 500 m), (b) when the distance between the locations before and after this point was 
small, and (c) when the turning angle at this point approached 180 degrees. Therefore, we corrected the locations 
that were classified as spike-like anomalies by shifting them closer to the straight line between the neighboring 
points. The extent of this shift was set relative to the degree of spikiness of the points (the spikier the pattern, 
the larger the shift towards the midpoint of the adjacent coordinates). Third, after filtering and correcting the 
original locations we smoothed the timeseries of x/y coordinates at each original timepoint with a Kalman 
smoother using a dynamic linear model. Fourth, we linearly interpolated the locations to a 10 s resolution based 
on ODBA, where we considered the animal to be stationary between multiple timepoints if the accelerometer 
signal suggested the animal was not moving. Fifth, we fitted an X-spline through the data, where we gave the lin-
early ODBA-interpolated locations a smaller weight, and sampled the fitted spline on a regular 1-min resolution. 
These pre-processing steps resulted in the modelled animal trajectory data, composed of spatial locations every 
minute, and averaged ODBA statistics per step (i.e., the segments between consecutive coordinates). These data 
were used as input for the next steps in the analyses. In contrast to the animal data, the raw intrusion data were 
of a high temporal resolution and spatial accuracy so that we only needed to subset the data in order to acquire 
1-min resolution time-synchronized intrusion trajectories.

The first three parts of the data pre-processing were only needed because of firmware issues in our custom-
made sensors. Without these issues, a simple denoising technique like a Kalman filter will suffice.

Feature engineering and processing.  We computed a plethora of human-engineered features from the 
animal trajectories, ODBA data, weather data and several GIS layers with environmental data from the study area 
(summarized in Supplementary Table S1). All features were computed such that they could not directly be linked 
to specific points in space or time (by computing movement features relative to the environmental variables), so 
that only behavioral patterns and abnormalities therein could be linked to intrusion presence. After engineering 
these base features, we transformed certain features (after visual inspection of the histograms) to approximately 
symmetric distributions using logarithms. Then we truncated the distributions to the lower and upper 0.001 
percentile to correct possible outliers. After that, we standardized all computed features to zero mean and unit 
variance per species. We also computed scaled versions of selected features by subtracting the mean and divid-
ing by the variance of the selected features per reference set to capture deviations from normal behavior: (1) per 
area (characterized by a 30 by 30 m neighborhood around each grid cell), (2) per time of day (morning, midday, 
afternoon) in a period of 5 weeks around each intrusion or control, (3) per area per time of day per 5 weeks, and 
(4) per individual sentinel per time of day per 5 weeks (Supplementary Table S1). Furthermore, after computing 
and standardizing the features, we computed more features by applying moving window computations (5 min 
centered, 10 and 20 min lagging, and the difference between these: 5 min centered minus 10 and 20 min lagging) 
on the standardized features to capture (the change in) the recent history of animal movement descriptors (mean 
and standard deviation of all features, fitted Mean Squared Displacement exponential function parameters, net-
gross distance ratio and variance of log First Passage Times). Finally, we discretized all features to ordinal values 
to avoid odd-, fat- and heavy-tailed distributions. In total we computed 2117 features describing different aspects 
of movement geometry of individual trajectories, herd topology and the interactions with landscape variation.

Subsetting and dimensionality reduction.  Before analyzing the computed animal movement features, 
we applied some filtering on the data. We removed all periods with an experimental intrusion during which there 
were less than 30 active animal sensors in total. We also removed data of both animals and intrusion when they 
were close to the reserve’s main gate in order to avoid dilution of the data with other known disturbances. This 
resulted in 57 intrusions that were selected for further analyses. For every intrusion we selected control data of 
the same period one or 2 days earlier or later during which no intrusion took place, resulting in an approximately 
balanced intrusion-control dataset. Furthermore, we removed data from animals that were located within 250 m 
and within 20 min of a vehicle moving through the area that was not part of our experiment.

For each feature, we computed 4 importance metrics based on binary labelled data: records associated to 
locations within 1 km from the intrusion (subscript 1) versus an equally-sized random selection of data points 
during control periods (subscript 0): Mahalanobis distance, marginality (computed as µ1−µ0

σ0
 , for sample mean µ 

and sample standard deviation σ ), specialization (computed as σ1
σ0

 ) and the Mean Decrease Accuracy of a Random 
Forest classifier (with default hyperparameters). We then ranked the features according to their importance and 
selected a feature for further analyses if it occurred in the top 125 features for any of the 4 importance measures 
described above (resulting in a total of 361 selected features). Subsequently, we converted the selected features 
per main feature class (Supplementary Table S1) to principal components, keeping those principal components 
that capture the most variation (in total 95%), which resulted in 99 selected components in total. Finally, we 
transformed these components again via a second principal component analysis, now across all the selected 99 
components. In subsequent training of the animal behavior classifier, we optimized the total number of included 
components as a hyperparameter, which resulted in the first 8 principal components in the best performing 
classifier.
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Labelling.  We labelled the sentinel movement data through visual inspection of the animal and intruder 
trajectories, where we considered the animals’ behavior to be undisturbed when the animal was not near an 
intrusion, or when the animal was close to an intrusion yet did not visually display a change in behavior. How-
ever, when the animal was near the intrusion and displayed a sudden or gradual behavioral change in response to 
intrusion proximity, we labelled the data as ‘flight’ (changing the movement direction away from the intrusion, 
possibly with increased speed) or ‘regroup’ (when individuals clustered together). In total, only ca. 1% of the 
animal data were associated to either flight or regroup behavior (which we will refer to as ‘response’ behavior). A 
few animals also appeared to exhibit behavior we could label as ‘freeze’, i.e., halting movement in the proximity 
of the intrusion, yet this class was too underrepresented to be accurately predicted and hence dropped from the 
final dataset. Furthermore, we assigned a qualitative measure of intensity to each labelled behavioral response 
(‘low’, ‘medium’, ‘high’) to describe how visually pronounced this response was. Besides the supervised labelling 
based on visual inspection of behavioral responses via video animations of the trajectories, we also labelled data 
using an unsupervised k-means nearest neighbor classifier, where we clustered the feature space consisting of the 
99 features selected as described above into 25 clusters per species.

Animal behavior classification.  We trained an RBF kernel C-classification Support Vector Machine 
(SVM) with a subsequent moving window over the outputted probabilities to distinguish undisturbed versus 
response behavior. In the training datasets we only included the data separated by more than 1 km from the 
intrusion and labelled as ‘undisturbed’, and removed 90% thereof to train algorithms with a more balanced data-
set. Furthermore, we only trained and validated on data with intrusions present in the area. We trained another 
SVM to distinguish the flight response from the regroup response. All computations were done in R 3.5.0 with 
the e1071 package on the Linux High Performance Cluster of Wageningen University and Research. We opti-
mized the following hyperparameters and model settings during the training phase for the Average Precision via 
a grid search (with the selected values between brackets):

•	 gamma (undisturbed-response: 10–3.2; flight-regroup: 10–2.0);
•	 cost (undisturbed-response: 10–2.2; flight-regroup: 10–1.5);
•	 number of principal components to include as features (undisturbed-response: 8; flight-regroup: 12);
•	 species-specific models versus one model with species dummy variables included in the features (species-

specific models);
•	 specific models for the different times of day versus one model with time of day dummy variables (one model);
•	 response intensities to include in the training data (only medium and high intensities);
•	 weights to assign to the classes (equal weights);
•	 the quantile to be computed of the SVM probabilities by the moving window (100%, i.e., maximum value);
•	 the alignment of the moving window (centered);
•	 the size of the moving window (15 min on both sides).

The best model was selected via a leave-one-intrusion-out cross-validation approach. We summarized the pre-
dictive performance by computing the Average Precision of the least occurring class (i.e., ‘response’ for the 
undisturbed-response model: 46%, Supplementary Fig. S2; and ‘regroup’ for the flight-regroup model: 80%, Sup-
plementary Fig. S3). After having computed these probabilities with an SVM and a temporal window smoother, 
we tried to improve the predicted performance by including the predicted animal response probabilities of nearby 
animals. However, this spatial explicit approach hardly improved the predictive performance, indicating that the 
spatial contextualization of behavioral response was sufficiently captured by the computed features. We there-
fore did not include this spatial contagion effect of predicted animal response probabilities in the final analysis.

System classification—detection.  Based on the predicted SVM response probabilities and feature clus-
ter analysis, we computed summary features per 15 min of each intrusion and control period. These summary 
features related to the odds ratios of the probability of association of unsupervised clusters with intrusions versus 
controls, the SVM predicted probabilities of behavioral response, and several features describing the values (and 
its spatial structure, e.g., clustering or autocorrelation) of these SVM predicted response probabilities. After 
computing summary features per 15 min, we summarized them even further for the intrusions versus controls 
using the following eight statistics: mean, standard deviation, minimum, maximum, mean of the lagged differ-
ences, standard deviation of the lagged differences, minimum of the lagged differences and maximum of the 
lagged differences.

After computing the summary features, we build a logistic regression classifier to distinguish intrusions 
from controls. To create a parsimonious model, we iteratively added features to the model and evaluated its 
performance after each iteration. We evaluated the performance based on the model accuracy and performed 
validation through 25 times twofold cross-validation in a stratified way (by 25 times choosing a balanced random 
sample of intrusions and controls). We determined the sequence of adding features to the model by performing 
an independent two-sample t-test for each feature between the intrusions and controls. The feature with the 
largest t-value was then added to the model. After each feature addition, we removed its correlation with the 
remaining features using linear regressions with the added feature as independent variable and the remaining 
features as dependent variables, from which we extracted the residuals, standardized them to zero mean and 
unit variance, and applied the t-tests again. The (original) feature with the largest t-value was then added to the 
model again. This procedure was repeated until all features were ordered corresponding to their “importance”. 
We then performed logistic regressions without interactions between the features for an increasing number of 
features (Supplementary Fig. S4). The model already performed quite accurately with only 7 features (86.1% 
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accuracy ± SD 3.3%, precision 82.6% ± SD 6.9%, recall 89.2% ± SD 5.1%). However, with 20 features and 2-way 
interactions the model achieved the maximum accuracy (90.9%).

System classification—localization.  The data gathered during intrusions that were correctly predicted 
as such by the detection classifier were used to train the intrusion localization algorithm. The probability surface 
of the location of the intrusion was fitted relative to that of the sentinel animals using:

where Oi,j is the odds ratio of intrusion presence at location i evaluated for individual j , pj is the SVM-predicted 
probability that individual j is exhibiting response behavior. The function fwn is the wrapped normal probability 
density function, θi,j is the direction from location i to the location of the focal animal j , µj is the movement 
direction of individual j , ρ1 and ρ0 are the standard deviations of the unwrapped distributions. The function fln 
is the lognormal probability density function, where γi,j is the distance of location i to j , µ1 and µ0 as well as σ1 
and σ0 are the log-normal distribution parameters (respectively log-mean and log-sd).

The parameters µ1 , σ1 and ρ1 capture the geometry of intrusion-animal topology for animals that exhibited 
a predicted behavioral response to the intrusion. Similarly, µ0 , σ0 and ρ0 are the corresponding parameters 
for animals that were predicted to be undisturbed. The parameters µ1 , log(σ1) and log(ρ1) were fitted to the 
data assuming a 3rd order polynomial relationship to ts : the time (in minutes) since the start of the predicted 
behavioral response (using the maximum F1 classification score). Since the behavioral response signature is lost 
over time, we truncated ts to 45 min (thus ts > 45 min was set to ts = 45 ). The parameters µ0 , σ0 and ρ0 were 
estimated using the data of the controls and with randomly generated intrusion locations in the study area, in 
order to correct for the effects of geometry of the study area on the predicted response surfaces. The probability 
surface Pi was then calculated as:

where α is a normalization constant so that Pi integrates to 1 over the area covered by the rectangular axis-aligned 
bounding box around the study area.

To measure the prediction accuracy of each localization surface, we simplified each surface to a point coor-
dinate located at the location of maximum probability, and computed the Euclidian distance to the known true 
position of the intrusion. We then summarized each experimental intrusion by selecting the 10 prediction 
surfaces with the most condense highest probability density, i.e., those in which the top 5% probability density 
is contained in the smallest, most condense, area. The spatial error of the localization prediction associated with 
these selected predictions was further summarized by taking the average Euclidian distance over the 10 selected 
predictions.

Data availability
Our data and code are available in the 4TU.ResearchData repository: https​://doi.org/10.4121/13900​10650.
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